04第四章 微分方程(1)
- 格式:pdf
- 大小:210.18 KB
- 文档页数:8
爱启航在线考研第四章常微分方程4.1答案:应选(C )解析:原方程写成23e 0+'+=yxyy ,分离变量有23e d =e d y x y y x --,积分得232e 3e --=x y C ,其中C 为任意常数.4.2答案:应填sin e=C xy ,其中C 为任意常数.解析:原方程分离变量,有d cos d ln sin =y xx y y x,积分得1ln |ln |ln |sin |ln =+y x C ,通解为ln sin =y C x 或sin e=C x y ,其中C 为任意常数.4.3答案:应填()2112e-=x y x 解析:原方程化为d 1d ⎛⎫=- ⎪⎝⎭y x x y x .积分得通解211ln ||ln ||2y C x x =-,即122ex y Cx -=.由初值(1)1=y 解出12e C =得特解.故答案为:()2112e-=x y x .4.4答案:应选(B )解析:原方程求导得()2()'=f x f x ,即()2()'=f x f x ,积分得2()e =x f x C ,又(0)ln 2=f ,故ln 2=C ,从而2()e ln 2=x f x .故应选(B ).4.5解:曲线()=y f x 在点(,)x y 处的切线方程为()'-=-Y y y X x ,令0=X ,得到切线在y 轴截距为'=-xy y xy ,即(1)'=-xy y x .此为一阶可分离变量的方程,于是d 11d ⎛⎫=- ⎪⎝⎭y x y x ,两边积分有1ln ||ln =-y C x x ,得爱启航线考研到e =x Cx y .又()11e y -=,故1=C ,于是曲线方程为e =xx y .4.6解:22d d 11+y y y x x x x =∆=+,得2d d 1=+y y x x ,变量分离2d 1d 1=+y x y x.两边积分得1ln arctan y x C =+.可得arctan exy C =又()0y =π,则C =π.所以arctan πexy =,()πarctan141πeπe y ==.4.7解:令=yu x,即=y ux ,则y u x u ''=+,又由题给表达式可得2y u u '=,即有u x u '+2u u =-d 1d 22=-x xu u ,两边积分得1ln 1ln ln u x C -=+,即ln(1ln ln 1=-+⇒-=⇒-=y Cu x C x xy C x x.4.8答案:应填2(ln ||)=+x y y C 解析:将x 看成未知函数,原方程改写为2d 1d 222+==+x x y x y xy y x这是一个伯努利方程,令2=z x ,有d 1d -=z z y y ,得11d d 2e ed (ln ||)-⎛⎫⎰⎰==+=+ ⎪ ⎪⎝⎭⎰y y y y x z y C y y C .故答案为:2(ln ||)=+x y y C ,其中C 为任意常数.4.9答案:应填()cos +x C x解析:属于一阶非齐次线性方程,直接根据一阶非齐次线性微分方程的通解公式即可得出答案.故答案为:()cos +x C x ,其中C 为任意常数.4.10答案:应填1爱启航在线考研解析:()2d 2d 22e 4e d e4ed x x xxy x x C x x C--⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰222e (21)e (21)e x x xx C x C --⎡⎤=-+=-+⎣⎦.当0=x 时,1=-y ,则0=C .可得21=-y x ,则()11=y .故答案为1.4.11答案:应填1解析:由11()()'+=y P x y Q x 及22()()'+=y P x y Q x 得()()1212()()()αββαβ'+++=+y y P x ay y Q x .又因12αβ+y y 满足原方程,故应有()()()β+=a Q x Q x ,即1αβ+=.故答案为1.4.12解:()sin d sin d e cos e d -⎛⎫⎰⎰=+ ⎪⎝⎭⎰x xx x gx x x C ()cos cos e cos ed -=+⎰xxx x C又()00g =,故()()cos cos cos 0e cos ed cos ed limlime lim xxxx x x x x Cx x Cg x xxx--→→→++==⋅=⎰⎰cos 0e lim cos e 1x x x -→⋅=.4.13解:2d 1d 2y x x y =-,则2d 2d x x y y =-,即2d 2d x x yy-=-()()2d 2d 222222111e e d e e d e 224yy y y y x y y C y y C y y C --⎛⎫⎰⎰⎡⎤=-+=-+=+++ ⎪⎣⎦⎝⎭⎰⎰.4.14解:令=tx u ,则u t x d d =,则代入到题给表达式101()d ()d xf tx t f u u x =⎰⎰,可得20()d 2()xf u u xf x x =+⎰.两边求导得()2()2()2f x f x xf x x '=++,则()2()2f x xf x x '+=-.从而11131d d 2222222()e (1)ed 33x x x x f x x C x x C x Cx ---⎛⎫⎛⎫⎰⎰=-+-+=-+ ⎪⎝ ⎝⎭=⎪⎭⎰.爱启航在线考研4.15解:将原方程改写成211cos sin y x x yy '+=-,并令1z y =,则21z y y ''=-,且原方程化为sin cos z z x x '-=-.d de (sin cos )e d x x z x x x C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰e (sin cos )e d x x x x x C -⎡⎤=-+⎣⎦⎰()e sin ed cose d xxx x x x x C --=-+⎰⎰,其中()sin e d sin d e sin e e cos d x x x x x x x x x x ----=-=-+⎰⎰⎰,故()e sin e e sin x x x z x C C x -=-+=-,即1e sin x C x y=-为所求通解.4.16答案:应选(C )解析:因原方程阶数为2,通解中应包含两个任意常数(可求出通解为3126++x C C x );特解中不含有任意常数(3*6=x y 为特解);36+x Cx 满足原方程,为原方程的解,故选项(A ),(B ),(C )都不对,应选(C ).4.17解:(1)令y p '=,则d d p y x ''=,从而2d 1d pp x=+,则2d d 1p x p =+积分得p arctan 1arctan p x C =+,故()1d tan d yp x C x=+=,则两边对x 积分1d tan()d y x C x =+⎰⎰,得()1121sin()d ln cos cos()x C y x x C C x C +==-+++⎰.(2)()10xy xy C '''=⇒=,即1y xC '=,故12ln y C x C =+.4.18解:由21e x y =,得212e x y x '=,()22124e x y x ''=+;由22e x y x =,得222(12)e x y x '=+,()22364e x y x x ''=+.因爱启航在线考研()()()22222211144224e 42e 42e 0x x x y xy x y x x x x '''-+-=+-⋅+-=.()()()()222232222244264e 412e 42e 0x x x y xy x y x x x x x x '''-+-=+-++-=.故1y 与2y 都是方程的解.又因21y x y =不等于常数,故1y 与2y 线性无关.于是方程的通解为()2112212e x y C y C y C C x =+=+.4.19答案:应选(A )解析:根据高阶线性微分方程根的形式可知,选(A ).4.20答案:应选(B )解析:由题意可知,-1是特征方程二重特征根,1是特征方程的特征根,故特征方程为()()2110+-=r r ,即3210+--=r r r .故三阶常系数齐次线性方程为0y y y y ''''''+--=.故选(B ).4.21答案:应选(C )解析::特征方程为2220++=r r 即2(1)1+=-r ,解得特征根为1,21i r =-±.而()e sin x f x x -=,i 1i w ±=-±λ是特征根,故特解的形式为*e (cos sin )x y x a x b x -=+.4.22答案:应填()*22e xy x ax bx c dx =+++解析:特征方程为220-=r r ,特征根10r =,22r =.对21()1=+f x x ,10λ=是特征根,所以()*21y x ax bx c =++.对22()exf x =,22λ=也是特征根,故有*22e =x y dx .从而***12=+y y y 就是特解.故答案为()*22e x y x ax bx c dx =+++.4.23解:所给微分方程的特征方程为256(2)(3)0++=++=r r r r ,特征根为12=-r ,23=-r .于是,对应齐次微分方程的通解为2312)e e xx y x C C --=+.爱启航在线考研设所给非齐次方程的特解为*e xy A -=.将*()y x 代入原方程,可得1A =.由此得所给非齐次方程得特解*e xy -=.从而,所给微分方程得通解为2312()e e e xx x y x C C ---=++,其中1C ,2C 为任意常数.4.24答案:应选(C )解析:将()()000y y '==代入3e xy py qy '''++=,得()01''=y .()()()()()22000ln 122limlimlimlim 2x x x x x x x y x y x y x y x →→→→+===='''.故选C.4.25答案:应填12e(cos sin )e xxC x C x ++解析:所给微分方程的特征方程为22201i -+=⇒=±r r r ,从而齐次通解为12e (cos sin )x C x C x +,设特解为e x A ,代入方程得e 2e 2e e 1x x x x A A A A -+=⇒=,即得特解为e x .非齐次通解为12e(cos sin )e xx C x C x ++.。
第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。
一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。
自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。
第四章常微分方程§4.1 基本概念和一阶微分方程甲内容要点一.基本概念1.常微分方程含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。
2.微分方程的阶微分方程中未知函数的导数的最高阶数称为该微分方程的阶3.微分方程的解、通解和特解满足微分方程的函数称为微分方程的解;通解就是含有独立常数的个数与方程的阶数相同的解;通解有时也称为一般解但不一定是全部解;不含有任意常数或任意常数确定后的解称为特解。
4.微分方程的初始条件要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。
5.积分曲线和积分曲线族微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。
6.线性微分方程如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。
不含未知函数和它的导数的项称为自由项,自由项为零的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。
二.变量可分离方程及其推广1.变量可分离的方程(1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()()C dy y N y N dx x M x M =+⎰⎰1221 ()()()0,012≠≠y N x M2.变量可分离方程的推广形式(1)齐次方程⎪⎭⎫ ⎝⎛=x y f dx dy 令u x y=, 则()u f dxdu x u dx dy =+=()c x c x dxu u f du +=+=-⎰⎰||ln(2)()()0,0≠≠++=b a c by ax f dxdy令u c by ax =++, 则()u bf a dxdu+=()c x dx u bf a du+==+⎰⎰(3)⎪⎪⎭⎫ ⎝⎛++++=222111c y b x a c y b x a f dx dy①当02211≠=∆b a b a 情形,先求出⎩⎨⎧=++=++00222111c y b x a c y b x a 的解()βα, 令α-=x u ,β-=y v则⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛++=u v b a u v b a f v b u a v b u a f du dv 22112211属于齐次方程情形 ②当02211==∆b a b a 情形,令λ==1212b b a a 则()⎪⎪⎭⎫ ⎝⎛++++=211111c y b x a c y b x a f dxdy λ令y b x a u 11+=, 则⎪⎪⎭⎫ ⎝⎛+++=+=211111c u c u f b a dx dyb a dx du λ 属于变量可分离方程情形。
第四章微分方程
考纲要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
4.会用降阶法解下列微分方程:()
()n y
f x =,(,)y f x y ′′′=和(,)y f y y ′′′=.
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,比会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.一、基本概念
1微分方程的基本概念
考纲要求了解微分方程及其阶、解、通解、初始条件和特解等概念.微分方程:含有自变量、未知函数、未知函数的导数的等式.
微分方程的阶(order):微分方程中出现的未知函数的导数的最高阶数.微分方程的解:满足微分方程的函数.
微分方程的通解:微分方程的解中含有任意常数,且独立的任意常数的个数等于微分方程的阶数.定解条件:确定微分方程通解中任意常数的值的条件(初始条件和边界条件).微分方程的特解:确定了通解中任意常数的值后所得到的解.初值问题(Cauchy 问题):求微分方程满足初始条件的特解.一阶微分方程初值问题:
(,,)0F x y y ′=,00()y x y =.
二阶微分方程初值问题:
(,,,)0F x y y y ′′′=,00()y x y =,00
()y x y ′′=.微分方程的积分曲线:微分方程的解的图形(通解的图形是一族曲线).二、一阶微分方程
一阶微分方程的一般形式是:(,,)0F x y y ′=,解出y ′:
(,)dy
f x y dx
=,考纲要求掌握变量可分离的微分方程、一阶线性微分方程、齐次微分方程、伯努利方程的解法.求解微分方程的步骤是:
判断方程的类型并用相应的方法求解.1.可分离变量的微分方程:
()()dy
g x h y dx
=解法分离变量:
()()dy g x dx h y =;两端积分:()()
dy
f x dx h y =∫∫.
2.齐次型方程:
dy y dx x ϕ⎛⎞=⎜⎟⎝⎠
解法令y u x =
,则y xu =,dy du u x dx dx =+,代入方程,得()du u x u dx
ϕ+=并求解.▲可化为齐次型的方程:
11
111()a b dy ax by c dx a x b y c a b
++=≠++.
3.若
4.1.3.
5.⎩7.0)2(2=+−xdy dx y xy 8.4
252+−−−=
′y x x y y 9.当0→∆x 时,α是比x ∆高阶的无穷小,α++∆=∆2
1x
x
y y ,π=)0(y ,求)1(y .【4π
πe 】
10.设e x
y =是微分方程()xy P x y x ′+=的一个解,求此微分方程满足条件ln 20x y ==的特解.
11.作变量替换2y u x =,求解x y y x y dx dy 2tan 212+=.【Cx x
y =2
sin 】
12.设()()()F x f x g x =,其中函数()f x ,()g x 在(,)−∞+∞内满足以下条件:()()f x g x ′=,
()()g x f x ′=,且(0)0f =,()()2x f x g x e +=.
13.1.2.3.特点:右端不显含x .解法:换元,化为一阶方程求解.步骤如下:
⑴令y p ′=,则dp dp dy dp y p dx dy dx dy ′′=
==,方程化为(,)dp
p f y p dy
=(这是关于变量y ,p 的一阶方程)
;⑵解出p ;⑶再由y p ′=解出y .
例题
1.求微分方程(ln ln )xy y y x ′′′′=−的通解.【11111
12111
111e [e e ]C x C x C x y xd x C C C C +++=
=−+∫】2.求初值问题2
21,(1)1,(1)1yy y y y ′′′′=+==−的解.【2
1(45)2
y x x =
−+】▲二阶可降阶方程求特解过程中,任意常数出现一个,确定一个,有利于下一步求解.四、二阶常系数线性微分方程
二阶线性微分方程的一般形式:()()()y P x y Q x y f x ′′′++=,若()0f x ≡,则称方程是齐次的,否则称方程是非齐次的.1.线性微分方程解的性质
⑴如果1y 与2y 是齐次方程()()0y P x y Q x y ′′′++=的两个解,则1122y C y C y =+是此齐次方程的解.⑵如果1y 与2y 是非齐次方程()()()y P x y Q x y f x ′′′++=的两个解,则12y y −是对应齐次方程
()()0y P x y Q x y ′′′++=的解.
⑶(解的叠加原理)设*
k y
是线性方程
()()()k y P x y Q x y f x ′′′++=的特解,则*
1
n
k k y =∑是
1
()()()n
k k y P x y Q x y f x =′′′++=∑的特解.
2.线性微分方程解的结构
定理1(齐次方程解的结构)如果1y 与2y 是齐次方程()()0y P x y Q x y ′′′++=的两个线性无关的特解,则1122y C y C y =+是此齐次方程的通解.
定理2(非齐次方程解的结构)设*
y 是非齐次方程()()()y P x y Q x y f x ′′′++=的一个特解,
1122y C y C y =+是对应的齐次方程()()0y P x y Q x y ′′′++=的通解,则*1122y y C y C y =++是此非齐次
方程的通解.
例题设123,,y y y 是)()()(x f y x Q y x P y =+′+′′的三个线性无关的解,则其通解为
.【
1121231()()y C y y C y y +−+−】
3二阶常系数线性齐次方程0
y py qy ′′′++=先求出它的特征方程2
0r pr q ++=的两个根,再根据特征根的三种不同情形写出通解(见下表).
41.2.1.求满足的解.【4
4】2.求2
sin y a y x ′′+=的通解,其中0>a .
3.求x x y y cos +=+′′的通解.【x x x x C x C y sin 2
1
sin cos 21+++=】4.x x y y sin 12
++=+′′的特解形式可设为
.【*
2
(cos sin )y ax bx c x A x B x =++++】
5.设()x ϕ是方程0y y ′′+=的满足条件(0)0y =,(0)1y ′=的解,证明0
()()x y t f x t dt ϕ=
−∫
是方程
()y y f x ′′+=的满足条件(0)(0)0y y ′==的解.
5欧拉方程2
()x y pxy qy f x ′′′++=(数学一)
令1.2.31.2.3.六、微分方程的应用:
关键是建立微分方程(包括初始条件).例题
1.设)(x f y =是第一象限连接)0,1(),1,0(B A 的一段连续曲线,),(y x M 为该曲线上任意一点,点C 为M
在x 轴上的投影,O 为坐标原点,若梯形OCMA 的面积与曲边三角形CBM 的面积之和为31
63+x ,求
)(x f 的表达式.【2)1()(−=x x f 】
2.设位于第一象限的曲线()y f x =
过点1
2
,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段
3.4.5.6.7..(假设注入液体前,容器内无液体)
⑴根据t 时刻液面的面积,写出t 与()y ϕ之间的关系;【2
()4t y ϕ=−】⑵求曲线()(0)x y y ϕ=≥的方程.【03-2,6
2y x e
π
=】
8.设有一高度为()h t (t 表示时间)的雪堆在融化过程中,其侧面满足方程222()
()()
x y z h t h t +=−(设长度
单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130厘米的雪堆全部融化需要多少小时?【01-1,100
t=】
9.要设计一形状为旋转体的水泥桥墩,桥墩高为h,上底面直径为2a,要求桥墩在任意水平截面上所受的
平均压强为常数p,求桥墩的形状.【
()
2
g
y h
p
x ae
ρ
−−=】
10.桶内有清水100升,现在以每分钟3升的速度向桶内注入浓度为每升2克的食盐水,同时以每分钟4升的速度流出混合液,求30分钟后桶内液体的含盐量.
1.
2.
设
1.
2.
3.
4.
5.
6.
则。