当前位置:文档之家› 矩阵分析第四章

矩阵分析第四章

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

第五章矩阵分析(改)

第五章 矩阵分析 本章将介绍矩阵微积分的一些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识. §5.1 向量与矩阵的范数 从计算数学的角度看,在研究计算方法的收敛性和稳定性问题时,范数起到了十分重要的作用. 一、向量的范数 定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件: 1)非负性 对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有 x =0; 2)齐次性 对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三角不等式 对任意V y x ∈,,有 y x y x +≤+, 则称此函数x (有时为强调函数关系而表示为?) 为V 上的一种向量范数. 例1 对n C 中向量()T n x x x x ,,,21 =,定义 2 22212 n x x x x +++= 则2x 为n C 上的一种向量范数[i x 表示复数i x 的模]. 证 首先,2n x C 是上的实值函数,并且满足

1)非负性 当0x ≠时,0x >;当0x =时,0x =; 2)齐次性 对任意k C ∈及n x C ∈,有 22||||||kx k x = =; 3)三角不等式 对任意复向量1212(,, ,),(,, ,)T T n n x x x x y y y y ==,有 222 221122||||||||()n n x y x y x y x y +=++++ ++ 2221122()()()n n x y x y x y ≤++++ ++ 2 21 1 1 ||2||||||n n n i i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ 不等式) 222222 2 22||||2||||||||||||(||||||||),x x y y x y ≤++=+ 因此 222||||||||||||x y x y +≤+ 所以 2||||x 确为n C 上的一种向量范数 例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义 112||||||||||n x x x x =+++, 1max i i n x x ∞ ≤≤=, 则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数. 证 仅对后者进行证明. 1)非负性 当0x ≠时,max 0i i x x ∞ =>,又显然有00∞=; 2)齐次性 对任意向量()T n x x x x ,,,21 =及复数k ,

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律

结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 .

(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为 可得结论1:只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数;结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律;结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即. 1.3.3运算性质(假设运算都是可行的)

几种矩阵完备算法的研究与实现_矩阵分析仿真大作业

几种矩阵完备算法的研究与实现 ——《矩阵分析》课程仿真作业报告* 刘鹏飞 电?系2016210858 摘要 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵恢复可以通过 求解?个与核范数有关的凸优化问题来实现。由此诞?了许多矩阵恢复的算 法,?如FPC算法等。FPC算法虽然实现简单,但其迭代速度较慢。在此基 础上,APG算法经过改进,能够提升迭代速度。但最?化核范数并不是求解 矩阵完备问题的唯??法,其中OptSpace算法构造了?个在流形上的优化问 题,相?于前两种算法能够以更?的精度恢复出原始矩阵。本?主要总结了 FPC、APG和OptSpace三种算法的步骤。特别地,对于OptSpace算法,本 ?提出了求解其中两个?优化问题的具体算法。最后,本?通过仿真实验和理 论分析?较了三种算法的特点,并给出了OptSpace算法的精度?于APG算 法的解释。 关键词:矩阵完备,核范数,FPC,APG,OptSpace 1介绍 1.1矩阵完备及其算法综述 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵完备可以描述成这样?个问题:对于?个m×n的矩阵M,其秩为r,我们只有对M中的部分采样,记*报告中所涉及到的仿真代码可在https://https://www.doczj.com/doc/12229183.html,/s/1jHRcY8m下载 1

这些采样位置组成的集合为?,那么是否有可能从已知的部分元素中恢复出整个矩阵M。假如M为低秩矩阵,并且已知的元素?够多并且?够均匀地分布在整个矩阵中,那么我们可以通过解如下优化问题来恢复出原始矩阵[1]: min rank(W) s.t.W ij=M ij,(i,j)∈?(1-1)但是,问题(1-1)是?个NP难的?凸问题。在?定条件下,问题(1-1)可以转化成?个最?化核范数的问题。对于矩阵W m×n,W的核范数定义为其奇异值之和,即 ∥W∥?=min(m,n) ∑ k=1 σk(W)(1-2) 其中,σk(W)表?W第k?的奇异值。问题(1-1)可以转化成: min∥W∥? s.t.W ij=M ij,(i,j)∈?(1-3)对于(1-3)中带等式约束的问题,进?步地,可以将它凸松弛成?个?约束的 优化问题[2][3][4]: min 1 2 ∥A(W)?b∥22+μ∥W∥?(1-4) 其中,b是由矩阵中采样位置对应的元素组成的p×1维向量,p=|?|(|·|表?集合的势);A:R m×n?→R p是?个线性映射,A(W)=(W ij)|(i,j)∈?;μ是?个可以调整的参数。 对于(1-4)中的?约束问题,?献[2][3]分别提出了Fixed Point Continuation (FPC)和Singular Value Thresholding(SVT)的算法。本?认为,这两种算法虽然出发点不同,但其实质都是梯度下降法,没有本质的差别,在算法实现上也基本?样。因此,本?只研究其中?种,即FPC算法。FPC算法虽然实现简单,但其迭代速度慢,效率不?。在此基础上,?献[4]做出了改进,提出?种Accelerated Proximal Gradient Singular Value Thresholding(APG)算法(该算法是在SVT算法上改进的,本?认为FPC和SVT实质上是?种算法,故不做区别),能够?幅度地提?收敛速度。 前?提到的?种算法,都是从(1-1)中的最?化秩的问题出发,经过?步步凸松弛得到的。与上述基本思路不同,?献[5]提出了OptSpace算法,它实质上是通过解另?种优化问题来实现矩阵完备: min F(W)= ∑ (i;j)∈? ∥M ij?W ij∥2 s.t.rank(W)=r(1-5)

中科院矩阵分析_第五章

第五章 特征值的估计及对称矩阵的极性 本章主要讨论数值代数中的三个特殊理论, 即 特征值的估计 广义特征值问题 实对称矩阵(一般是Hermite 矩阵)特征值的 极小极大原理,其次也涉及到一些特征值 和奇异值的扰动问题,最后简要地介绍矩阵 直积的一些性质及其在线性矩阵方程求解 方面的应用。这几方面的内容,在矩阵的 理论研究与实际应用当中都有着相当重要 的作用。 5.1特征值的估计 一、特征值的界 首先给出直接估计矩阵特征值模的上界的 一些方法 定理5.1 设A=(a rs )∈R n×n ,令 M=||2 1 max ,1sr rs n s r a a -≤≤ λ若表示A 任一特征值,则λ的虚部Im(λ) 满足不等式 2 ) 1(|)Im(|-≤n n M λ |Im(λ)|≤||A -A T ||2 / 2 |Im(λ)|≤||A -A T ||1 ?/2. 证明:设x+i ?y 为对应于λ的A 的特征向量, 则 A(x+i ?y)=(α+β?i)(x+i ?y) 其中λ=α+β?i.显然x,y 为实向量,且x,y 为 线性无关的 向量。 经整理A(x,y)=(x,y)B, 其中B=??? ? ??-αββα 。 从而(x,y)T A(x,y)=(x,y)T (x,y)B 展开有

???? ??Ay y Ax y Ay x Ax x T T T T =α????? ??y y y x y x x x T T T T + β???? ? ? ?--x y y y x x y x T T T T (求等式两边矩阵的对角元之和,可得 α(x T x +y T y )=x T Ax +y T Ay (1) 等式两边矩阵的左上角单元减去右下角单元 可得: β(x T x +y T y )=x T (A -A T )y 1). 记B=A -A T ,则 |x T By|≤||x||2 ?||B||2?||y||2 从而 |β|≤||x||2 ?||B||2?||y||2 /((||x ||2)2 +(||y ||2)2) 利用ab /(a 2+b 2)≤1/2 可得 |β|≤||B||2 /2. 2). 由于|x T By|≤||Bx||1 ?||y||∞≤||B||1?||x||1 ?||y||∞ 从而 |β|≤||B||1 ?||x||1 ?||y||∞ /((||x ||2)2 +(||y ||2)2) 易证明 ||x||1 ?||y||∞ /((||x ||2)2 +(||y ||2)2) /2. (显然,不妨假设(||x ||2)2 +(||y ||2)2=1, 设||y ||∞=t =cos(α), 则y 必为t ? e j 的形式(为什么?), 从而极值转化为求解如下最大值问题: max ||x||1, 满足约束(||x ||2)2=1-t 2 这样有均值不等式||x||1 x ||2 = -t 2)1/2, 从而我们需要求解t (1-t 2)1/2的最大值,设t =cos(α) 可得t (1-t 2)1/2的最大值为1/2. 从而得证。) 因此 |β|≤||B||1 3). 由于b ii =0, i =1,2,…,n , b ij = -b ji , 因此 |x T By|2=| 1 1()n ij i j j i i j i b x y x y -=>??-∑∑|2 ≤(2M )2 2 1||n i j j i i j i x y x y =>??- ??? ∑∑ (利用(a 1+a 2+…+a n )2≤ n ((a 1)2+(a 2)2+…+(a n )2) ≤(2M )2 (n (n -1)/2) 21||n i j j i i j i x y x y =>??- ??? ∑∑

2020年(战略管理)大战略矩阵

(战略管理)大战略矩阵

大战略矩阵 大战略矩阵(GrandStrategyMatrix) [编辑] 大战略矩阵简介 这是由市场增长率和企业竞争地位俩个坐标所组成壹种模型,在市场增长率和企业竞争地位不同组合情况下,指导企业进行战略选择的壹种指导性模型,它是由小汤普森(A.A.Thompson.Jr.)和斯特里克兰(A.J.Strickland)根据波士顿矩阵修改而成。 大战略矩阵(GrandStrategyMatrix)是壹种常用的制定备选战略工具。它的优点是能够将各种企业的战略地位都置于大战略矩阵的四个战略象限中,且加以分析和选择。X公司的各分部也可按此方式被定位。大战略矩阵基于俩个评价数值:横轴代表竞争地位的强弱,纵轴代表市场增长程度。位于同壹象限的企业能够采取很多战略,下图例举了适用于不同象限的多种战略选择,其中各战略是按其相对吸引力的大小而分列于各象限中的。

[编辑] 位于不同象限的战略选择 位于大战略矩阵第壹象限的X公司处于极佳的战略地位。对这类X公司,继续集中运营于当前的市场(市场渗透和市场开发)和产品(产品开发)是适当的战略。第壹象限X公司大幅度偏离已建立的竞争优势是不明智的。当第壹象限X公司拥有过剩资源时,后向壹体化、前向壹体化和横向壹体化可能是有效的战略。当第壹象限X公司过分偏重于某单壹产品时,集中化多元运营战略可能会降低过于狭窄的产品线所带来的风险。第壹象限X公司有能力利用众多领域中的外部机会,必要时它们能够冒险进取。 位于第二象限的X公司需要认真地评价其当前的参和市场竞争的方法。尽管其所在产业正在增长,但它们不能有效地进行竞争。这类X公司需要分析企业当前的竞争方法为何无效,企业又应如何变革而提高其竞争能力。由于第二象限X公司处于高速增长产业,加强型战略(和壹体化或多元化运营战略相反)通常是它们的首选战略。然而,如果企业缺乏独特的生产能力或竞争优势,横向壹体化往往是理想的战略选择。为此,可考虑将战略次要地位的业务剥离或结业清算,剥离可为X公司提供收购其他企业或买回股票所需要的资金。 位于第三象限的X公司处于产业增长缓慢和相对竞争能力不足的双重劣势下。在确定产业正处于永久性衰退前沿的前提下,这类X公司必须着手实施收割战略。首先应大幅度地减少成本或投入,另外可将资源从现有业务领域逐渐转向其他业务领域。最后便是以剥离或结业清算战略迅速撤离该产业。 位于第四象限的X公司其产业增长缓慢,但却处于相对有利的竞争地位。这类X公司有能力在有发展前景的领域中进行多元运营。这是因为第四象限X公司具有较大的现金流量,且对资金的需

大战略矩阵案例

案例一: 伊藤洋华堂(Ito-Yokado) 在2004年公布的世界500强企业排名中,伊藤洋华堂位于第149位。战略聚类模型也是一个广泛使用的战略工具,在伊藤洋华堂使用的诸多管理工具中,战略聚类模型是最受经理们推崇的。 案例二: 金融危机对深圳市A机械有限公司的影响 深圳市A机械有限公司(简称:“A机械公司”),成立于2002年,总部设在深圳,在国内多个大城市设有办事处,并在多地设有展厅,员工400多人,拥有先进成产设备。公司凭借多年的机械制造经验,形成集技术开发、生产、代理、销售和进出口为一体的经营模式,并与国内外生产科研企业和公司长年保持紧密合作。该公司是深圳市机械行业协会会员,公司已全面通过ISO9001:2000质量体系认证,产品符合GB体验标准。产品行销全国并在多个国家享誉盛名。与时俱进,不断提升自身制造能力,严格把关产品质量,近年来一直坚持成本领先的竞争战略,以最具竞争力的价格向海外客户提供可靠、精准的机床产品。 3.近三年部分财务数据状况 因数据收集有限,本文仅对A机械公司部分财务数据进行研究分析。该公司在2006年、2007年、2008年的销售额如图7:

图:A机械公司近三年产品销售额 依据图所示,A机械公司的销售收入随着深圳机械行业在2006-2007年间快速发展的趋势,实现了较好的增长收入。然而,受金融危机对我国的中小企业的直接影响,产品进出口情况出现较大幅度的下滑,虽然相比较于2007年的销售收入有增长,但增幅呈现回落态势。 图:A机械公司近三年利润趋势 该公司08年的利润率于07年,大幅减少,这对该企业的资金周转造成一定影响,对公司进行固定资产的投资、公司规模扩大都是不利条件,也使得该企业倍感压力。对公司的发展、调整即是挑战又是

中科院矩阵分析_第五章

第五章特征值的估计及对称矩阵的极性本章主要讨论数值代数中的三个特殊理论,即 特征值的估计 广义特征值问题 实对称矩阵(一般是Hermite矩阵)特征值的极小极大原理,其次也涉及到一些特征值和奇异值的扰动问题,最后简要地介绍矩阵直积的一些性质及其在线性矩阵方程求解方面的应用。这几方面的内容,在矩阵的理论研究与实际应用当中都有着相当重要的作用。 5.1特征值的估计 一、特征值的界 首先给出直接估计矩阵特征值模的上界的 一些方法 定理 5.1 设A=(a rs) R n X1,令 1 , , M= ma彷总a sr| 若表示A任一特征值,则的虚部Im() 满足不等式 |Im( )| M n(n21) |Im( )| ||A A T||2 / 2 |Im( )| ||A A T||1n /2. 证明:设x+i y为对应于的A的特征向量, 则A(x+i y)=( + i)(x+i y) 其中=+ i.显然x,y为实向量,且x,y为线性无关的向量。 经整理A(x,y)=(x,y)B, 其中B= 从而(x,y) T A(x,y)=(x,y) T(x,y)B 展开有

i 1 j i T T X y X X T T y y y X (求等式两边矩阵的对角元之和,可得 (x T x+y T y)=x T Ax+y T Ay (1) 等式两边矩阵的左上角单元减去右下角单元 可得: (x T x+y T y)=x T (A A T )y 1) . 记 B=A A T ,则 |x T By| ||x||2||B||2||y||2 从而 1 1 1凶|2 ||B||2||y||2 /((||x||2)2 +(||y|2)2) 利用 ab/(a 2+b 2) 1/2 可得 | | ||B||2 /2. 2) . 由于 |x T By| ||B X ||I ||y|| ||B||i ||X ||I ||y|| 从而 | | ||B||i ||x||i ||y|| /((||X |2)2 +(||y||2)2) 易证明 ||x||i ||y|| /((||X ||2)2 +(||y||2) 2) n /2. (显然,不妨假设(||X ||2)2 +(||y||2)2=1, 设HyH =t=cos (),则y 必为t e 的形式(为什么?) 从 而极值转化为求解如下最大值问题: max ||X ||1,满足约束(||X ||2)2=1 t 2 这样有均值不等式 ||x|h i n ||X ||2= 、、n (1 t 2)1/2, 从而我们需要求解t(1 t 2)1/2的最大值,设t=cos() 可得 t(1 t 2)1/2的最大值为1/2.从而得证。) 因此 11 ||B||1 . n /2. 3) . 由于 b ii =0, i =1,2,…,n, b ij = b ji , n 1 因此 x T By|2=| b ij (X y j X j y i )|2 i 1 j i 2 n (2M)2 |xy j X j Y i | i 1 j i (利用(a 1+a 2+…+a n )2 n((a 1)2+(a 2)2+ …+(a n )2) n (2M)2(n(n 1)/2) | X y j X j yj 2 X T A X y T Ax X T Ay y T Ay T T X X X y T T X y y y

第五章矩阵分析(改)(完整资料).doc

【最新整理,下载后即可编辑】 第五章 矩阵分析 本章将介绍矩阵微积分的一些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识. §5.1 向量与矩阵的范数 从计算数学的角度看,在研究计算方法的收敛性和稳定性问题时,范数起到了十分重要的作用. 一、向量的范数 定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件: 1)非负性 对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有x =0; 2)齐次性 对V 中任意向量x 及F 中任意常数k ,有 ;x k kx = 3)三角不等式 对任意V y x ∈,,有 y x y x +≤+, 则称此函数x (有时为强调函数关系而表示为?) 为V 上的一种向量范数. 例1 对n C 中向量()T n x x x x ,,,21 =,定义

2 22212 n x x x x +++= 则2x 为n C 上的一种向量范数[i x 表示复数i x 的模]. 证 首先,2n x C 是上的实值函数,并且满足 1)非负性 当0x ≠时,0x >;当0x =时,0x =; 2)齐次性 对任意k C ∈及n x C ∈,有 22||||||kx k x = =; 3)三角不等式 对任意复向量 1212(,, ,),(,, ,)T T n n x x x x y y y y ==,有 222 221122||||||||()n n x y x y x y x y +=++++ ++ 2221122()()()n n x y x y x y ≤++++ ++ 2 2 1 1 1 ||2||||||n n n i i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ不 等式) 22 2222 2 22||||2||||||||||||(||||||||), x x y y x y ≤++=+ 因此 222||||||||||||x y x y +≤+ 所以 2||||x 确为n C 上的一种向量范数 例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义 112||||||||||n x x x x =+++, 1max i i n x x ∞ ≤≤=, 则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数.

定量战略计划矩阵

定量战略计划矩阵(QSPM矩阵)是战略决策阶段的重要分析工具。该分析工具能够客观地指出哪一种战略是最佳的。QSPM利用第一阶段和第二阶段的分析结果来进行战略评价。QSPM的分析原理是这样的:将第二阶段制定的各种战略分别评分,评分是根据各战略是否能使企业更充分利用外部机会和内部优势,尽量避免外部威胁和减少内部弱点四个方面,通过专家小组讨论的形式得出。得分的高低反映战略的最优程度。也就是说,QSPM的输入信息正是第一阶段的因素评价结果(由EFE矩阵、IFE矩阵、竞争态势矩阵分析得出)和第二阶段的备选战略(由SWOT矩阵、SPACE分析、BCG矩阵、IE矩阵和大战略矩阵分析得出),QSPM的结果反映战略的最优程度。 虽然QSPM是基于事先确认的外部及内部因素来客观评价备选战略的工具,然而,良好的直觉判断对QSPM仍然是必要且极为重要的。 QSPM矩阵的格式如下表所示。QSPM顶部一行包括了从SWOT矩阵、SPACE 矩阵、BCG矩阵、IE矩阵和大战略矩阵中得出的备选战略。这些匹配工具通常会产生类似的可行战略。需注意的是,并不是说匹配技术所建议的每种战略都要在QSPM中予以评价,战略分析者必须运用良好的直觉对行业的丰富经验剔除一些明显不可行的战略选择,只将最具吸引力的战略列入QSPM矩阵。QSPM 的左边一列为关键的外部和内部因素(来自第一阶段),顶部一行为可行的备选战略(来自第二阶段)。具体地说,QSPM的左栏包括了从EFE矩阵和IFE矩阵直接得到的信息。在紧靠关键因素的一列中,将标出各因素在EFE矩阵和IFE 矩阵中所得到的权数。在QSPM矩阵中一个重要的概念是战略的最优程度。它是根据各战略对外部和内部因素的利用和改进程度而确定的。QSPM中包括的备选战略的数量和战略组合的数量均不限,分析的结果并不是非此即彼的战略取舍,而是一张按重要性和最优程度排序的战略清单

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

大战略矩阵

大战略矩阵 大战略矩阵(Grand Strategy Matrix) 目录 [隐藏] ? 1 大战略矩阵简介 ? 2 位于不同象限的战略选择 ? 3 适用范围 ? 4 大战略矩阵案例分析 o 4.1 案例一:伊藤洋华堂(Ito-Yokado) o 4.2 案例二:金融危机对深圳市A机械有限公司的影响 [1] ? 5 参考文献 [编辑] 大战略矩阵简介 这是由市场增长率和企业竞争地位两个坐标所组成一种模型,在市场增长率和企业竞争地位不同组合情况下,指导企业进行战略选择的一种指导性模型,它是由小汤普森(A. A. Thompson. Jr.)与斯特里克兰(A. J. Strickland)根据波士顿矩阵修改而成。 大战略矩阵(Grand Strategy Matrix)是一种常用的制定备选战略工具。它的优点是可以将各种企业的战略地位都置于大战略矩阵的四个战略象限中,并加以分析和选择。公司的各分部也可按此方式被定位。大战略矩阵基于两个评价数值:横轴代表竞争地位的强弱,纵轴代表市场增长程度。位于同一象限的企业可以采取很多战略,下图例举了适用于不同象限的多种战略选择,其中各战略是按其相对吸引力的大小而分列于各象限中的。

战略管理工具 A 安索夫矩阵 ADL矩阵 B 贝恩利润池分析工具波特竞争战略轮盘模型波特竞争对手分析模型辩证式探询法 变革五因素 C 策略资讯系统 策略方格模型 产品剔除策略 创新动力模型 D 定量战略计划矩阵 大战略矩阵 多点竞争战略 定向政策矩阵 E

[编辑] 位于不同象限的战略选择 位于大战略矩阵第一象限的公司处于极佳的战略地位。对这类公司,继续集中经营于当前的市场(市场渗透和市场开发)和产品(产品开发)是适当的战略。第一象限公司大幅度偏离已建立的竞争优势是不明智的。当第一象限公司拥有过剩资源时,后向一体化、前向一体化和横向一体化可能是有效的战略。当第一象限公司过分偏重于某单一产品时,集中化多元经营战略可能会降低过于狭窄的产品线所带来的风险。第一象限公司有能力利用众多领域中的外部机会,必要时它们可以冒险进取。 位于第二象限的公司需要认真地评价其当前的参与市场竞争的方法。尽管其所在产业正在增长,但它们不能有效地进行竞争。这类公司需要分析企业当前的竞争方法为何无效,企业又应如何变革而提高其竞争能力。由于第二象限公司处于高速增长产业,加强型战略(与一体化或多元化经营战略相反)通常是它们的首选战略。然而,如果企业缺乏独特的生产能力或竞争优势,横向一体化往往是理想的战略选择。为此,可考虑将战略次要地位的业务剥离或结业清算,剥离可为公司提供收购其他企业或买回股票所需要的资金。 位于第三象限的公司处于产业增长缓慢和相对竞争能力不足的双重劣势下。在确定产业正处于永久性衰退前沿的前提下,这类公司必须着手实施收割战略。首先应大幅度地减少成本或投入,另外可将资源从现有业务领域逐渐转向其他业务领域。最后便是以剥离或结业清算战略迅速撤离该产业。 位于第四象限的公司其产业增长缓慢,但却处于相对有利的竞争地位。这类公司有能力在有发展前景的领域中进行多元经营。这是因为第四象限公司具有较大的现金流量,并对资金的需求有限,有足够的能力和资源实施集中多元化或混合式多元化战略。同时,这类公司应在原产业中求得与竞争对手合作与妥协,横向合并或进行合资经营都是较好的选择。 [编辑]

南京理工大学硕士研究生矩阵分析与计算试题答案

20XX 年南京理工大学硕士研究生 《矩阵分析与计算》考试(A 卷)参考答案 注意:所有试题答案都写在答题纸上,写在试卷上无效 一、(12分)设矩阵0.60.50.10.3A ??=????,计算21,,F A A A A ∞。 解:10.8, 1.1,F A A A ∞=== …………. 9 分 0.370.330.330.34T A A ??=???? m a x ()0.6853T A A λ≈, …………. 2 分 从而20.8278A == …………. 1 分 二、(15分)求矩阵141130001A -????=--?????? 的初等因子及Jordan 标准形。 解:初等因子 21,(1)λλ-+ …………. 10 分 Jordan 矩阵1111J ????=-????-?? …………. 5 分 三、(20分)已知1011011,11121A b ????????==???????????? (1)求A 的满秩分解;(2)求A +;(3)用广义逆矩阵方法判断线性方程组Ax b =是否有解;(4)求Ax b =的极小范数解或极小范数最小二乘解,并指出所求的是哪种解. 解:(1)101010101111A FG ??????==?????????? …………. 6 分

(2) 54114519112A +-????=-?????? …………. 6 分 (3) []21123 T b A b A += ≠,方程组无解; …………. 4 分 (4)极小范数最小二乘解为[]021129 T b x A +== …………. 4 分 四、(10分)利用盖尔圆隔离定理证明205141011210A i ????=?????? 有三互异特征值。 解:取(1,1,3)D diag =,则1B DAD -=的三个行盖尔园隔离,因此矩阵有3个互异特征值. ………….10 分 五、(10分)用LU 分解求解方程组 1234102040101312431301035x x x x ??????????????????=???????????????? ?? 解: 1020110200101011011243121210 10301012??????????????????=?????????????????? …………. 5 分 求解得到(2,2,1,1)T x = …………. 5分 六、(10分)利用幂法计算矩阵 1319????-?? 的按模最大特征值及对应特征向量。(取初始向量(1,1)T ,结果保留4位有效数字) 解: max 8.6055λ≈, 特征向量(0.3945,1)T ………… 10分

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵就是一个按照长方阵列排列得复数或实数集合、矩阵就是高等代数学中得常见工具,也常见于统计分析等应用数学学科中、在物理学中,矩阵于电路学、力学、光学与量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵得运算就是数值分析领域得重要问题。将矩阵分解为简单矩阵得组合可以在理论与实际应用上简化矩阵得运算。在电力系统方面,矩阵知识已有广泛深入得应用,本文将在介绍矩阵基本运算与运算规则得基础上,简要介绍其在电力系统新能源领域建模方面得应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统得紧密结合。 1矩阵得运算及其运算规则 1。1矩阵得加法与减法 1、1、1运算规则 设矩阵,,?则 ?简言之,两个矩阵相加减,即它们相同位置得元素相加减!?注意:只有对于两个行数、列数分别相等得矩阵(即同型矩阵),加减法运算才有意义,即加减运算就是可行得. 1。1、2运算性质 满足交换律与结合律

交换律;?结合律. 1.2矩阵与数得乘法 ?1。2、1运算规则?数乘矩阵A,就就是将数乘矩阵A中得每一个元素,记为或.?特别地,称称为得负矩阵。 1。2、2运算性质?满足结合律与分配律?结合律:(λμ)A=λ(μA);(λ+μ)A=λA+μA.?分配律:λ(A+B)=λA+λB. 1、2、3典型举例?已知两个矩阵 满足矩阵方程,求未知矩阵、?解由已知条件知 1、3矩阵与矩阵得乘法 ?1。3.1运算规则?设,,则A与B得乘积就是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C得第行第列得元素由A得第行元素与B得第列元素对应相乘,再取乘积之与、 1、3、2典型例题

矩阵分析

《矩阵分析》作业布置 第三章 章末习题:3-1,3-30,3-25,3-12,3-13,3-14,3-27,3-20,3-19,3-28(1)(2) 3-26,3-22,3-9,3-3(1),3-16,3-23 注:题3-261λ2 应改为1 λ 2 补充题: #3*1 试证:向量长度的齐次性,即,,.n k k k C C ααα=?∈∈ #3*2 试证:在任意酉空间V 中成立广义商高定理: 2 2 2 ,&(,)0V αβαβαβ αβ∈=?+=+ #3*3令()()()1231,1,1,1,3,3,1,1,2,0,6,8T T T ααα==--=-。求12,3{,}Span ααα的一个标准正交基。 #3*4 试证下列矩阵是酉矩阵:(i )0000 1?????? ? ?? ? (ii )0i 000i i 00?? ? ? ?-??, #3*5 用归纳法证明下列结论:(i ) 对任意正整数n 成立1+3+5+……+(2n-1)=2 n .(ii)对任意正整数k 成立: 2 22 11k 1&(,)0,k i j k V i j αααααααα∈=?≠?+=+……………… #3*6 试证:A=001 0001i i i ?? ? - ? ?+?? ,(i =为正规矩阵。试问:A 是否为H 矩阵,反H 矩阵,或酉矩阵?为什么? #3*7 试证:对正定矩阵A 存在正定矩阵S 使得k S A =,其中k 为任意正整数。 第四章 章末习题:4-1(1)(2);4-2 (其中矩阵A 代之以101001?? ? ? ??? ) 补充题: #4*1 ***,,,,,m n m m n n A B C A UBV U U V U ∈=∈∈若则称 B 与A 酉等价。 试证:B 与A 酉等价当且仅当B 与A 有相同奇异值集。 #4*2 设***A ,,m n m m n n r C U U V U ∈∈∈使得* 1r 0,(,00U AV diag b Λ?? =Λ= ??? ……,b),

矩阵分析与计算教学大纲

编号:070111A16 课程名称:矩阵分析与计算 英文名称:Matrix Analysis and Computation 一、课内学时: 32 学分: 2 二、适用专业:理工科硕士生,经济学硕士生 三、预修课程:线性代数,微积分 四、教学目的:任何涉及数学的领域(包括工程学,最优 化,经济学,控制论,电子学,网络等等)都需要矩阵的知识。本课程介绍矩阵分析及计算的基本概念和基本方法,力求花较少的时间,使学生了解到较多的实用的概念和方法,做到知识面广,使学生有能力处理在各自学科研究中出现的矩阵基本问题。 五、教学方式:课堂授课 六、大纲内容(包括实验内容)及学时分配、对学生的要 求:(注:“*”表示重点,“#”表示难点,“★”表示涉及学科前沿,“●”表示研究性内容) 1、矩阵的标准型(6学时) 1.1矩阵的相似对角形 1.2矩阵的Smith标准形,不变因子,初等因子# 1.3Jordan 标准型*

1.4Hamilton-Cayley定理 1.5酉空间,酉矩阵 1.6酉相似标准型 2、向量范数,矩阵范数(6学时) 2.1 向量范数 2.2 矩阵范数* 2.3 矩阵范数与向量范数的相容性 2.4 矩阵的谱半径及应用 2.5 矩阵的条件数及应用 3、矩阵分解(3学时) 3.1 三角分解 3.4 矩阵的满秩分解* 3.5 矩阵的奇异值分解# 4、矩阵特征值的估计与计算(3学时) 3.1 盖尔圆定理 3.2 特征值的隔离* 3.3 幂迭代法与逆幂迭代法 5、广义逆矩阵(3学时) 5.1 Penrose 方程 5.2 {1}-逆的计算及性质 5.3 Moore.Penrose逆的计算及性质* 6、矩阵函数(3学时)

大战略矩阵

大战略矩阵 Document number:PBGCG-0857-BTDO-0089-PTT1998

大战略矩阵 大战略矩阵(Grand Strategy Matrix) 目录 [] ? ? ? ? o o ? [] 大战略矩阵简介 这是由和两个坐标所组成一种模型,在市场增长率和企业竞争地位不同组合情况下,指导进行的一种指导性模型,它是由(A. A. Thompson. Jr.)与(A. J. Strickland)根据修改而成。 大战略矩阵(Grand Strategy Matrix)是一种常用的制定备选工具。它的优点是可以将各种的战略地位都置于大战略矩阵的四个战略象限中,并加以分析和选择。的各分部也可按此方式被。大战略矩阵基于两个评价数值:横轴代表竞争地位的强弱,纵轴代表增长程度。位于同一象限的企业可以采取很多战略,下图例举了适用于不同象限的多种战略选择,其中各战略是按其相对吸引力的大小而分列于各象限中的。

[] 位于不同象限的战略选择 位于大战略矩阵第一象限的处于极佳的战略地位。对这类公司,继续集中于当前的(和)和()是适当的战略。第一象限公司大幅度偏离已建立的是不明智的。当第一象限公司拥有过剩资源时,、和可能是有效的战略。当第一象限公司过分偏重于某单一时,集中化多元经营战略可能会降低过于狭窄的所带来的风险。第一象限公司有利用众多领域中的外部机会,必要时它们可以冒险进取。 位于第二象限的公司需要认真地评价其当前的参与的方法。尽管其所在正在增长,但它们不能有效地进行竞争。这类公司需要分析企业当前的竞争方法为何无效,企业又应如何变革而提高其。由于第二象限公司处于高速增长,(与一体化或相反)通常是它们的首选战略。然而,如果企业缺乏独特的或,往往是理想的战略选择。为此,可考虑将战略次要地位的业务剥离或结业,可为公司提供其他企业或所需要的。 位于第三象限的公司处于产业增长缓慢和相对不足的双重劣势下。在确定产业正处于永久性衰退前沿的前提下,这类公司必须着手实施。首先应大幅度地减少或投入,另外可将资源从现有业务领域逐渐转向其他业务领域。最后便是以剥离或结业迅速撤离该产业。 位于第四象限的公司其产业增长缓慢,但却处于相对有利的竞争地位。这类公司有在有发展前景的领域中进行多元经营。这是因为第四象限公司具有较大的,并对资金的有限,有足够的能力和资源实施或。同时,这类公司应在原产业中求得与合作与妥协,或进行合资经营都是较好的选择。 [] 适用范围 该矩阵主要应用于下列两种情形: (1)在时; (2)当企业面临着业务的重大调整,在考虑是收缩还是扩张时。

相关主题
文本预览
相关文档 最新文档