识别油气井径向流选层
- 格式:doc
- 大小:23.50 KB
- 文档页数:8
利用测井资料判断岩性及油气水层一、普遍电阻率测井(双侧向、三侧向、2.5m、4.0m、七侧向、微电极)1、基本原理:电阻率测井是由一个供电电极或多个供电电极供给低频或较低频电流I,当电流通过地层时,用另外的测量电极测量电位U,利用Ra=K U/IK:电极系数Ra:视电阻率U:电位I:电流2、应用(1)求地层电阻率利用微球形聚焦、微电极,求取冲洗带电阻率。
利用浅侧向、2.5m求取侵入带电阻率。
利用深侧向、4.0m求取原状地层电阻率。
(2)确定岩性界面:利用微球形聚焦、微电极划分界面,界面划在曲线最陡或半幅点处。
利用侧向划分界面,界面可划在曲线半幅点处。
利用2.5m划分界面,顶界划在极小值,底界划在极大值。
(3)判断岩性泥岩:低电阻,微球形聚焦、微电极、双侧向基本重合,2.5m、4.0m平直。
灰质岩:高阻,微球形聚焦,微电极、双侧向基本重合,2.5m、4.0m都高。
盐膏岩:电阻特别高,井径规则时深侧向>浅侧向>微球聚焦。
4.0m>2.5m>微电极。
页岩、油页岩:高阻,井径规则时微球、双侧向基本重合,4.0m、2.5m、微电极基本重合。
(4)判断油气水层①油气层:高阻,A、Rmf>Rw ,增阻侵入,随探测深度增加电阻率降低。
Rmf――泥浆滤液电阻率,Rw――地层水电阻率。
B、Rmf<Rw ,减阻侵入,随电探测深度增加电阻率增加。
②水层:低阻A、Rmf>Rw,增阻侵入,R深<R浅。
B、Rmf<Rw,减阻侵入,R深>R浅。
C、Rmf≈Rw,则R深≈R浅。
R深――深电极R浅――浅电极(5)识别裂缝发育带碳酸盐岩剖面裂缝发育带,在高阻中找低阻。
二、感应测井1、基本原理感应测井是测量地层的电导率。
它是由若干个同轴线围组成的-组发射线圈和一组接受线围的复合线圈系。
当发射线圈发出恒定强度为20000周的高频率交变电流时,由此产生的交变磁场则在地层中感应次生电流,而次生电流在与发射线圈同轴的环形地层回路中流动,又形成了次生磁场,这样使在接受线圈中感应出电动势。
录井资料识别油、气、水层油、气、水定层定性判别利用气测录井资料判断油、气、水层:一般而言,油气层在气测曲线的全烃含量和组分数值会出现异常显示,可根据气测曲线的全烃含量、峰形特征及组分情况判断油、气、水层。
油层具有全烃含量高,峰形宽且平缓及组分齐全等特征;气层具有全烃含量高,曲线呈尖峰状或箱状,组分主要为C1,C2以上重烃甚微且不全;含有溶解气的水层具有全烃含量低,曲线呈锯齿状,组分不全,主要为C1等特征;纯水层气测则无异常。
利用荧光录井判断油、气、水层利用发光明亮成都,发光颜色,含油显示面积、扩散产状、流动速度等荧光录井描述可定性对油、气、水层进行判别。
一般而言,油质越好颜色越亮,油质越差颜色越暗。
轻质油荧光显示为蓝紫色、青蓝色、蓝色,正常原油荧光显示为黄橙、黄色、黄褐色,稠油荧光显示为棕色、深褐色、黑色。
扩散产状常见有晕状、放射状和溪流状,其中,晕状、放射状显示含油级别高,溪流状系那是含油级别低。
流动速度常见有快速、中速和慢速,其中,快速、中速显示含油级别高,慢速显示含油级别低。
含油显示面积大于60%显示含油级别高,30%~60%显示含油级别中等,小于30%显示含油级别低。
利用岩屑录井判断油、气、水层:井底岩石别钻头破碎后,岩屑随钻井液返出井口,按规定的取样间隔和迟到时间,连续采集岩屑样品,济宁系统观察、分析、鉴定、描述和解释,并初步恢复地层剖面。
岩屑录井是地质录井的主要方法,根据岩屑录井描述可初步对储集层的含油、气、水情况作出判断。
油、气、水层定量判别气测数据质量控制:T g=C1+2C2+3C3+4iC4+4nC4+5C5T g为全烃值,可以根据T g/(C1+2C2+3C3+4iC4+4nC4+5C5)比值对气测数据是否准确进行判断。
如果该值为0.8~2.0,用气测数据定量判别油、气、水层效果较好,反之,判别结果与实际试油结论符合率较低,因此,当该比值为0.8~2.0时,认为气测数据可比较真实地反映底层流体性质,可用气测数据结合一些优选的经验统计方法实现对油、气、水层较为准确的定量判别。
石油知识:测井曲线划分油、气、水层石油知识:测井曲线划分油、气、水层1、油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
油、气、水层在测井曲线上显示不同的特征:(1油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻。
井径常小于钻头直径。
(2气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
储层地质油水层的判断第一篇:储层地质油水层的判断摘要:本文讲述了判断油气水层的依据及其主要特征,并在文中着重介绍了现代石油工业中主要运用的油气水判别方法。
并且着重介绍了当代各种测井方法。
关键字:四性判断、曲线分析、各种测井曲线图引言:油气水层的判断是油气储层地质研究的核心问题;是油田开发的重要依据。
只有通过对油气水层准确且合理的判断,才能增加油田产量,提高经济效益。
正文:一、识别油、气、水层的主要依据1、依据四性关系原理(岩性、物性、电性、含油性),综合利用本井的测井曲线对储层油、气、水变化进行分析。
在岩性、物性一致的情况下,电阻率越高,储层含油饱和度越高,含油性越好,油层电阻率一般是岩性、物性相近临近水层的两倍左右。
在岩性、含油性一致情况下,物性越好,电阻率越低。
2、根据地层对比结果,划分油田的油、气、水层界面深度,从而判定本井的油、气、水层界面。
3、根据录井、气测、井壁取心等第一性资料,分析储层的含油气情况。
二﹑油,气,水层主要特征1、油层常规测井曲线在油层的最主要特征是R高,一般高于临近同岩性水层的两倍左右,即R>RW。
受泥浆侵入影响,一般油质为稀油的储层,在地层水矿化度与泥浆矿化度差异不是很大情况下,深、浅探测电阻率数值差异较大,远大于水层的差异。
自然电位幅度略小于临近水层。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
声波时差值中等,曲线平缓呈平台状。
井径常小于钻头直径。
2、气层.最主要特征是深探测的电阻率数值较高;由于受天然气影响,声波时差有增大或周波跳跃现象;由于气层含氢指数低,对快中子减速能力差,对伽玛射线的吸收能力也差,导致气层中子伽玛数值高。
在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。
识别油气井径向流选层提高老井重复压裂措施效果对油田的可持续发展变得尤为重要。
基础井网压裂井数比例达86.76%,压裂厚度达74.5%;压裂投产后油气井的生产特征一般分为3个阶段。
Improve the effect of old well repeated fracturing measures for the sustainable development of the oilfield is particularly important. Basic well pattern fracturing well number proportion reaches 86.76%, the thickness of the fracturing was 74.5%; Fracturing of oil and gas well production characteristics after the production of general is divided into three stages.(1)线型流阶段。
此阶段原油从支撑裂缝前缘流向井筒,为压后高产阶段,不过产量下降较快。
(1) linear flow phase. At this stage of crude oil is flowing from support crack front shaft, for high yield after pressure stage, but the decline in output quickly.(2)拟径向流阶段。
此阶段原油一方面从支撑裂缝前缘流向井筒,另一方面也从裂缝两侧基岩流入井筒。
此时产量已低于第一阶段产量,但生产能力仍高于油层未经过压裂改造前的产量,此阶段产量较稳定。
(2) the phase of quasi radial flow. This stage of crude oil is flowing from support crack front shaft on one hand, on the other hand also on both sides of the bedrock from the cracks into the wellbore. Production at this point is below the first stage of production, but production capacity is still higher than before after fracturing oil layer of the production, the output of this stage is relatively stable.(3)径向流阶段。
此阶段支撑裂缝已失去了高导流能力,生产能力已恢复到压前水平。
压裂井经过线型流、拟径向流直至径向流,增产期即告结束,此时,原油处于经济生产下限,应考虑重复压裂。
(3) the radial flow stage. This stage to supportcracks has lost high flow conductivity, production capacity has been restored to the front of the pressure level. Fracturing Wells after linear flow, quasi radial flow and radial flow, production period is come to an end, at this point, the crude oil in the economic limit production, repeated fracturing should be considered.支撑剂镶嵌到裂缝壁面,减小了裂缝宽度,使导流能力下降,其影响达到20%以上;同时对裂缝壁面产生压实作用,加大了地层流体进入裂缝的渗流阻力;以往原缝重复层压裂措施有效率为40%左右,有效井压后初期平均单井日增油仅为平均压裂井增油效果的1/3,平均有效期只有3个月。
Proppant inlaid into the cracks in the wall, decrease the crack width, the diversion ability drops, its influence to over 20%; Compaction on the cracks in the wall at the same time, increased the formation fluid into the fracture seepage resistance; Before the original seam duplicate layer fracturing measures effective rate was 40%,3 / 8effective after the initial growing on average single well oil well pressure was only about one third of the average increment of oil fracturing well, mean is only valid for 3 months.压裂选井选层不合理。
对井层认识不准,压裂层段物性差、地层能量低或注采不完善导致压后低效和高含水;二是压裂时机选择不当。
酿酒设备改造时间相对超前,上次增产改造未得到充分发挥,改造时间滞后,不能及时接替产量,造成增油量的损失;三是施工规模和砂量不够。
Layer fracturing Wells picked is not reasonable. Understanding of the well layer, poor physical properties of the fracturing zone and low formation energy or imperfect injection-production pressure after inefficiency and high water cut; The second is improper fracturing timing. Modification time is relatively advanced, the last production stimulation is not fully play, modification time lag, cannot replace in time production, thereby causing loss to the increasedamount of oil; Three is the construction scale and sand quantity is not enough.化学结垢和沉积引起堵塞。
此外,胶质、沥青等重质烃组分沉积也将堵塞裂缝及附近地层。
由于重复压裂裂缝长度、砂量不足,原裂缝未能得到有效扩展,裂缝导流能力变化不大,原裂缝内石英砂破碎产生的堵塞不能得到解除;油井必须具有足够的剩余储量和地层能量。
一般油井静压应在7MPa以上。
Fouling and chemical vapor deposition (cause blockage. Moreover, colloid, asphalt and other heavy hydrocarbon component deposition will jam, fissure and nearby. Caused by a lack of repeated fracturing fracture length, amount of sand, the fracture failure to effectively extend fracture diverting capacity change is not big, the original cracks in quartz sand and broken the plug cannot be lifted; The well must have enough remaining reserves and strata energy. General oil well static pressure should be more than 7 mpa.5 / 8优先选择前次压裂由于施工原因造成施工失败(如早期脱砂)井;前次改造规模不够的压裂井;前次改造对裂缝支撑不够的井;改造后支撑剂破碎的井。
有足够的地层系数。
地层系数过低,地层供油能力弱,必须加大施工规模,增加裂缝长度;喷灌设备地层系数过大,必须有很高的裂缝导流能力,宜采用端部脱砂压裂技术。
一般要求kh0.5×10-3μm2。
选井要注意井况,应选择套管状况及强度具备条件,最好距边底水、气顶有一定距离,有较好遮挡层的井层。
Prefer the previous fracturing due to construction caused the failure (e.g., early sand-out) well; Previous transform diseconomies of fracturing Wells; The previous modification of propping fracture well enough; After transforming proppant broken well. Have enough formation coefficient. Stratigraphic coefficient is low, oil supply ability is weak, must strengthen the construction scale and increase the crack length; Formation coefficient is too big, must have high fracture diverting capacity, appropriate USES end to take off the sand fracturing technology. General requirements kh0.5x 10-3 mu m2. Selecting well pay attention to the well conditions, should choose casing condition and strength requirements, the best is apart from the edge of bottom water and gas cap has a certain distance, have a good shade of well layers.用模糊识别原理进行定量选井选层。