(B)直角三形的边角关系 基础训练题目2
- 格式:doc
- 大小:82.77 KB
- 文档页数:1
2021-2022学年鲁教版九年级数学上册《第2章直角三角形的边角关系》同步能力提升训练(附答案)1.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠C=90°,BC≥AC,则tan B=()A.B.C.D.2.以下说法正确的是()①当∠A从0°逐渐增大到90°时,tan A的值逐渐增大,cot A的值逐渐减小;②tan12°•tan78°=1;③在△ABC中,已知∠C=90°,如果tan(90°﹣A)=2,那么cot(90°﹣A)=2;④若∠A为锐角,则0<tan A<1.A.①②B.③④C.①②③D.③④3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.在△ABC中,∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°5.如图△ABC中,AB=AC,AD⊥BC于点D.若BC=24,cos B=,则AD的长为()A.12B.10C.6D.56.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20B.15C.D.9.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米10.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里11.如图,在Rt△ABD中,∠A=90°,点C在AD上,∠ACB=45°,tan∠D=,则=.12.用不等号“>”或“<”连接:sin50°cos50°.13.在Rt△ABC中,若∠C=90°,sin A=,则sin B=.14.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么tan∠BAH 的值是.15.如图,修建的二滩水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i =1:3,斜坡CD的坡度i=1:2.5,则坝底宽AD=m.16.如图是学生用的台灯,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是cm(用含根号的式子表示).17.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sin C=,求BC的长.18.对于同一锐角α有:sin2α+cos2α=1,现锐角A满足sin A+cos A=.试求:(1)sin A•cos A的值;(2)sin A﹣cos A的值.19.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是;(2)试用含m和α的代数式表示线段CM的长:;α的取值范围是.20.如图△ABC中,∠C=90°,∠A=30°,BC=5cm;△DEF中∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB 方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A 重合,一直移动至点F与点B重合为止).(1)当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?(2)在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD的长度;如果不存在,请说明理由.21.如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)22.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)参考答案1.解:如图,∵BC≥AC,∴只有BC边上的中线,满足条件,AD=BC,设CD=BD=a.则AD=2a,CD=a,AD=2CD,∵∠C=90°,∴∠DAC=30°,∴AC=a,∴tan B==.故选:B.2.解:①根据锐角三角函数的增减性,可知正确;②∵tan78°=cot12°,∴tan12°•tan78°=1.正确;③根据同角的正切和余切互为倒数.错误;④如tan60°=>1.错误.故选:A.3.解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.解:∵|sin A﹣|+(1﹣tan B)2=0,∴|sin A﹣|=0,(1﹣tan B)2=0,∴sin A=,tan B=1,∴∠A=30°,∠B=45°,∴∠C的度数为:180°﹣30°﹣45°=105°.故选:C.5.解:∵在△ABC中,AB=AC,AD⊥BC于点D,∴BD=BC=12.在直角△ABD中,∵cos B==,∴AB=13,∴AD===5.故选:D.6.解:“SHIET”表示使用该键上方的对应的功能.故选:D.7.解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.8.解:延长DE交BC于H.由题意BH:EH=3:1,在Rt△ABC中,AB=60,∠BAC=45°,∵BC=AC=60,∵AD=DB,DH∥AC,∴BH=CH=30,∴DH=AC=30,∴EH=10,DE=30﹣10=20,故选:A.9.解:过点E作EM⊥AB于点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.10.解:在Rt△P AB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2P A,∵P A=AB•tan60°,∴PC=2×20×=40(海里),故选:D.11.解:在Rt△ABD中,∵tan∠D==,∴设AB=2x,AD=3x,∵∠ACB=45°,∴AC=AB=2x,则CD=AD﹣AC=3x﹣2x=x,∴==,故答案为:.12.解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.13.解:Rt△ABC中,∠C=90°,sin A=,即=,设CB=2x,则AB=3x,根据勾股定理可得:AC=x.∴sin B===.故答案为:.14.解:设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,∴tan∠BAH=,故答案为:15.解:∵AB的坡度i=1:3,∴tan A=,∴=,∵BE=23,∴AE=69,∵BC=6,∴EF=6,∵CD的坡度i′=1:2.5,∴tan D==,∴=,∴DF=57.5,∴AD=AE+EF+DF=69+6+57.5=132.5(m).答:坝底宽AD的长是132.5m.故答案为:132.5.16.解:由题意得:AD⊥CE,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin30°=,∴CF=15cm,在直角三角形ABG中,sin60°=,∴,解得:BG=20,又∠ADC=∠BFD=∠BGD=90°,∴四边形BFDG为矩形,∴FD=BG,∴CE=CF+FD+DE=CF+BG+ED=15+20+2=17+20(cm).答:此时灯罩顶端C到桌面的高度CE是17+20cm.17.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵AC=5,,∴AD=AC•sin C=3.∴在Rt△ACD中,.∵AB=,∴在Rt△ABD中,.∴BC=BD+CD=7.18.解:(1)∵sin A+cos A=,∴sin2A+cos2A+2sin A cos A=,即1+2sin A cos A=,∴sin A cos A=;(2)∵(sin A﹣cos A)2=sin2A+cos2A﹣2sin A cos A,=1﹣,=,∴sin A﹣cos A=±.19.解:(1)连接CD,OM.根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,∴△COM≌△DOM,∴∠COM=∠DOM,又∵OC=OD,∴CD⊥OM;(2)由(1)知∠COM=∠DOM,∴∠COM=,在Rt△COM中,CM=OC•tan∠COM=m•tan;因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.20.解:(1)AD=(10﹣3)cm时,BE∥AC.理由如下:连接EB,设EB∥AC,则∠EBD=∠A=30°,∵∠C=90°,∠A=30°,BC=5cm,∴AB=10cm,又∵∠FDE=90°,DE=3cm,∴DB=3cm∴AD=AB﹣BD=(10﹣3)cm,∴AD=(10﹣3)cm时,BE∥AC;(2)在△DEF的移动过程中,当AD=(7﹣3)cm时,使得∠EBD=22.5°.理由如下:假设∠EBD=22.5°.∵在△DEF中,∠D=90°,∠DEF=45°,DE=3cm,∴EF=3cm,∠DEF=∠DFE=45°,DE=DF=3cm.又∵∠DFE=∠FEB+∠FBE=45°,∴∠EBD=∠BEF,∴BF=EF=3,∴AD=AB﹣BF﹣DF=7﹣3(cm).∴在△DEF的移动过程中,当AD=(7﹣3)cm时,使得∠EBD=22.5°.21.解:由题意可得:tan72°===,解得:BC=,则AB=BC+AC=+2=(m),故sin35°===,解得:AE≈26.2,答:拉索AE的长为26.2m.22.解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=100,∠CAO=60°,∴CO=AO•tan60°=100(米).设PE=x米,∵tan∠P AB==,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=100﹣x,PF=OA+AE=100+2x,∵PF=CF,∴100+2x=100﹣x,解得x=(米).答:电视塔OC高为100米,点P的铅直高度为(米).。
第一章 直角三角形的边角关系本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
单元测试时间是:90分钟,满分是:100分一、选择题〔每一小题3分,一共30分,请把答案填入答卷相应的表格内〕1. 有一山坡程度方向前进了40米,就升高了20米,那么这个山坡的坡度是〔 〕A .1:2B .2:1C .D2. 假设A ∠为锐角,且1cos 3A =,那么〔 〕 A .0°< A ∠<30° B .30°<A ∠<45° C .45°<A ∠<60° D .60°<A ∠<90°3. 比拟tan 46,cos 29,sin 59︒︒︒的大小关系是〔 〕A .tan 46cos 29sin 59︒<︒<︒B .tan 46sin 59cos 29︒<︒<︒C .sin 59tan 46cos 29︒<︒<︒D .sin 59cos 29tan 46︒<︒<︒ 4. 在Rt ABC △中,90C ∠=°,假设1sin 2A =,那么A ∠的度数是〔 〕 A .60°B .45°C .30°D .无法确定5. 同一时刻,身高2.26m 的姚明在阳光下影长为1.13m ;小林浩在阳光下的影长为0.64m ,那么小林浩的身高为〔 〕6. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的程度线,∠ABC =150°,BC 的长是8 m ,那么乘电梯从点B 到点C 上升的高度h 是〔 〕 Am B .4 m C. mD .8 mAB7. tan 45sin 452sin 30cos 45tan 30︒︒-︒︒+︒=〔 〕A .12B .22C .32D .338. 如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的程度间隔 为5米,那么这两树在坡面上的间隔 AB 为〔 〕A . αcos 5B . αcos 5C . αsin 5D .αsin 59. 将宽为2cm 的长方形纸条折叠成如下图的形状,那么折痕PQ 的长是〔 〕 A .233cm B .433cm C .5cm D .2cm 10.2tan 302tan 301tan 30︒-︒++︒=〔 〕A .233 B .2313- C .231- D .1 单元测试答卷班级___________学号_________ 姓名____________〔时间是:90分钟,满分是:100分〕一、选择题〔每一小题3分,一共30分,请把答案填入相应的表格内〕 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题〔每空3分,一共30分〕 题号 11 12 13 14 15 答案题号16171819α5米AB60°P Q2cm答案11. 在Rt ABC △中,90C ∠=°,sinA=45,BC=20,那么ABC △的周长为__________ 12. 在Rt ABC △中,9032C AB BC ∠===°,,,那么cos A 的值是 .13. 如图,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,那么滑板AB 的长约为_________米〔准确到0.1〕.14. 如图,小明从A 地沿北偏30向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .15. 如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 点重合,连结B A ',那么C B A ''∠tan 的值是 .16. 某校初三〔一〕班课外活动小组为了测得旗杆的高度,他们在离旗杆6米的A B 处的仰角为60°,如下图,那么旗杆的高度为 米.〔3 1.732≈,结果准确到0.1米〕17. 如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开场时绳子与水面的夹角为30°,此人以BCAAC (B ′)BA ′C ′ACDEB60°每秒0.5米收绳.问:未开场收绳子的时候,图中绳子BC 的长度是__________米;收绳8秒后船向岸边挪动了____________米?〔结果保存根号〕18. 小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如下图,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,α=36°,那么长方形卡片的周长为________.〞〔准确到1mm 〕19. 〔参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75〕20. 公园里有一块形如四边形ABCD 的草地,测得10BC CD ==米,120B C ∠=∠=°,45A ∠=°.那么这块草地的面积为__________.三、 解答题〔一共40分〕 21. 〔6分〕计算:22009(21)86sin 45(1)--+-+-°.CDABαl12mmDCBA22. 〔7分〕如图,AC 是我某大楼的高,在地面上B 点处测得楼顶A 的仰角为45º,沿BC 方向前进18米到达D 点,测得tan ∠ADC = 53.现打算从大楼顶端A 点悬挂一幅庆贺建国60周年的大型标语,假设标语底端距地面15m ,请你计算标语AE 的长度应为多少?23. 〔7分〕如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的间隔 为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进展通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin 360.59cos360.81tan 360.73===°,°,°.】23. 〔10分〕如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的间隔 为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. 〔1〕求观测点B 到航线l 的间隔 ;B〔2〕求该轮船航行的速度〔结果准确到0.1km/h 〕.1.73,sin 760.97°≈,cos 760.24°≈,tan 76 4.01°≈〕24.〔10分〕花园小区有一朝向为正南方向的居民楼〔如图〕,该居民楼的一楼是高4米的小区商场,商场以上是居民住房.在该楼的前面16米处要盖一栋高18米的办公楼.当冬季正午的阳光与程度线的夹角为35°时,问:〔1〕商场以上的居民住房采光是否有影响,为什么?〔2〕假设要使商场采光不受影响,两楼应相距多少 米?〔结果保存一位小数〕〔参考数据:sin 350.57≈°,cos350.82≈°,tan 350.70≈°〕参考答案一、选择题 1. A 2. D 3. D 4. C 5. A 6. B 7. D 8. B 9. B 10. D 二、填空题 11. 6012. 13.14. 100 15.31 16.17. 解〔1〕如图,在Rt △ABC 中,BCAC=sin30° ∴ BC =︒sin305=10米 〔2〕收绳8秒后,绳子BC 缩短了4米,只有6米,这时,船到河岸的间隔 为1125365622=-=-米.故挪动间隔为.18. 解:作BE l ⊥于点E ,DF l ⊥于点F .18018090909036.DAF BAD ADF DAF ADF αα+∠=-∠=-=∠+∠=︒∴∠==︒°°°°,,根据题意,得BE =24mm ,DF =48mm. 在Rt ABE △中,sin BEABα=, 2440sin 360.60BE AB ∴===°mm在Rt ADF △中,cos DFADF AD∠=,4860cos360.80DF AD ∴===°mm .∴矩形ABCD 的周长=2〔40+60〕=200mm .19. 解:连接BD ,过C 作CE BD ⊥于E ,10120BC DC ABC BCD ==∠=∠=,°, 123090ABD ∴∠=∠=∴∠=°,°.5CE BE ∴=∴=,452A AB BD BE ∠=∴===°,ABD BCD ABCD S S S ∴=+△△四边形CE BD BD AB •+•=21212115(15022m =⨯+⨯=+. 三、解答题 20.解:)2200916sin 45(1)--+-︒+-=21+-=21)1++--ClD CBAE 1 2=211+++-=2+21. 解:在Rt ABC △中,90ACB ∠=°,45ABC ∠=°,Rt ABC ∴△是等腰直角三角形,AC BC =.在Rt ADC △中,90ACD ∠=°,tan AC ADC DC ∠=53=, 35DC AC ∴=, BC DC BD -=,即3185AC AC -=.45AC ∴=.那么451530AE AC EC =-=-=. 答:标语AE 的长度应为30米. 22. 解:过点M 作MH OC ⊥于点H . 在Rt MOH △中,sin MHMOH OM∠= 18OM =,36MOH ∠=°,18sin 36180.5910.6210MH ∴=⨯=⨯=>°.即王警官在行进过程中不能实现与指挥中心用对讲机通话. 23. 解:〔1〕设AB 与l 交于点O .在Rt AOD △中,6024cos 60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,.在Rt BOE △中,)(360cos ,60km OB BE OAD OBE =︒=∴︒=∠=∠∴观测点B 到航线l 的间隔 为3km .〔2〕在Rt AOD △中,3260tan =︒=AD OD .B在Rt BOE △中,3360tan =︒=BE OE .DE OD OE ∴=+=.在Rt CBE △中,︒=∠=∴=︒=∠76tan 3tan ,3,76CBE BE CE BE CBE .3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈〔km/h 〕.24. 解:〔1〕如图,光线交CD 于点E ,过点E 作EF BD ∥交AB 于点F . 设DE x =米,那么(18)AF x =-米在Rt AFE △中,35AEF ∠=°,tan 35AFEF ∴=° 180.7016x-=, 6.8x = 6.84>,∴居民住房的采光有影响.〔2〕如图,在Rt ABD △中tan ABADB BD ∠= 18tan 35BD =°,1825.7125.80.70BD =≈≈ 答:两楼相距25.8米.本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
第6章 直角三角形的边角关系(易错必刷30题8种题型专项训练)➢锐角三角函数的定义 ➢锐角三角函数的增减性 ➢特殊角的三角函数值 ➢解直角三角形➢解直角三角形的应用➢解直角三角形的应用坡度坡角问题➢解直角三角形的应用仰角俯角问题➢解直角三角形的应用方向角问题一.锐角三角函数的定义(共8小题)1.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为( )A .B .C .D .2.在Rt △ABC 中,AC =8,BC =6,则cos A 的值等于( )A .B .C .或D .或3.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B ,C 在坐标轴上,若点A 的坐标为(0,3),tan ∠ABO =,则菱形ABCD 的周长为( )A .6B .6C .12D .84.已知在Rt △ABC 中,∠C =90°,AC =,AB =4,则cos B 的值是( ) A . B . C . D .5.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.186.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的正弦值是.8.如图,在△ABC中,∠C=90°,AC=6,若cos A=,则BC的长为.二.锐角三角函数的增减性(共1小题)9.若∠A是锐角,且sin A=,则()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°三.特殊角的三角函数值(共2小题)10.在△ABC中,如果∠A、∠B满足|tan A﹣1|+(cos B﹣)2=0,那么∠C=.11.计算:(1)tan45°﹣sin30°cos60°﹣cos245°;(2)3tan30°﹣tan245°+2sin60°.四.解直角三角形(共5小题)12.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan∠OBD的值是()A.B.2C.D.13.将一副三角板如图摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值等于()A.B.C.D.14.阅读理解:为计算tan15°三角函数值,我们可以构建Rt△ACB(如图),使得∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,可得到∠D=15°,所以tan15°====2﹣.类比这种方法,请你计算tan22.5°的值为()+1B.﹣1C.D.A.15.四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变边长为2的正方形ABCD的内角,变为菱形ABC'D',若∠D'AB=45°,则阴影部分的面积是()A.B.5﹣C.D.5﹣216.我们给出定义:如果两个锐角的和为45°,那么称这两个角互为半余角.如图,在△ABC中,∠A,∠B互为半余角,且,则tan A=.五.解直角三角形的应用(共3小题)17.如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm18.如图2,有一块四边形的铁板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tan B=tan C =,若要从这块余料中裁出顶点M、N在边BC上且面积最大的矩形PQMN,则该矩形的面为cm2.19.胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C 之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:≈1.41,≈1.73).六.解直角三角形的应用坡度坡角问题(共2小题)20.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.21.为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)七.解直角三角形的应用仰角俯角问题(共6小题)22.荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).23.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)24.在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处,在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比),求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)25.如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成.如图2,AB是灯杆,CD是灯管支架,灯管支架CD与灯杆间的夹角∠BDC=60°.综合实践小组的同学想知道灯管支架CD的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得AE=3m,EF=8m(A,E,F在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD的长(结果保留根号);(2)求灯管支架CD的长度(结果精确到0.1m,参考数据:≈1.73).26.小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)(1)求小明此时与地面的垂直距离CD的值;(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588cos15°≈0.9659tan15°≈0.2677)27.《海岛算经》是中国古代测量术的代表作,原名《重差》.这本著作建立起了从直接测量向间接测量的桥梁.直至近代,重差测量法仍有借鉴意义.如图2,为测量海岛上一座山峰AH的高度,直立两根高2米的标杆BC和DE,两杆间距BD相距6米,D、B、H三点共线.从点B处退行到点F,观察山顶A,发现A、C、F三点共线,且仰角为45°;从点D处退行到点G,观察山顶A,发现A、E、G三点共线,且仰角为30°.(点F、G都在直线HB上)(1)求FG的长(结果保留根号);(2)山峰高度AH的长(结果精确到0.1米).(参考数据:≈1.41,≈1.73)八.解直角三角形的应用方向角问题(共3小题)28.如图,湖心岛上有一凉亭B,在凉亭B的正东湖边有一棵大树A,在湖边的C处测得B在北偏西45°方向上,测得A在北偏东30°方向上,又测得A、C之间的距离为100米,则A、B之间的距离是米(结果保留根号形式).29.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)30.如图,B地在A地的北偏东56°方向上,C地在B地的北偏西19°方向上,原来从A地到C地的路线为A→B→C,现在沿A地北偏东26°方向新修了一条直达C地的分路,路程比原来少了20千米.求从A地直达C地的路程(结果保留整数.参考数据:≈1.41,≈1.73)。
九年级数学《直角三角形的边角关系》测试题(一)班级:_______ 姓名:_________组名_________审核人_______ 1.如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =___ ___.2.支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5 那么旗杆的有为 米(用含α的三角比表示).3.甲、乙、丙三个梯子斜靠在一堵墙上(梯子顶端靠墙), 小明测得 甲与地面的夹角为603米,且顶端距离墙脚3米;丙的坡31。
那么,这三张梯子的倾斜程度( )A.甲较陡 B .乙较陡 C .丙较陡 D .一样陡4.如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一边同时施工,现在从AC 上取一点B ,使得∠ABD =145°,BD =500米,∠D =55°,要使A 、C 、E 在一条直线上,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米;D .o55tan 500米5.如图,北部湾海面上,一艘解放军军舰正在基地A 的正东方向且距A 地40海里的B 地训练.突然接到基地命令,要该军舰前往C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在A 的北偏东60°方向,且在B 的北偏西45°方向,军舰从B 处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院?(精确到0.1小时)αP oy34第4题图︒60︒45A B北北6.(2012•陕西)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)7.如图是使用测角仪测量一幅壁画高度的示意图,已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画底端的俯角∠BDF=30°,且点距离地面的高度DE=2m,求壁画AB的高度.九年级数学《直角三角形的边角关系》测试题(二)班级:_______ 姓名:_________组名_________审核人_______一、选择题1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )。
2023年九年级数学下册第一章《直角三角形的边角关系》复习题一、单选题1.如图,在ABC ∆中,AC =3,BC =4,AB =5,则tan B 的值是()A .34B .43C .35D .452.定义:圆心在原点,半径为1的圆称为单位圆.如图,已知点()(),0,0P x y x y >>在单位圆上,则sin POA ∠等于()A .x B .yC .x y D .y x 3()A .3B .1C .2D .124.在Rt △ABC 中,∠C =90°,如果∠A =α,AB =3,那么AC 等于()A .3sinαB .3cosαC .3sin αD .3cos α5.tan60°的值等于()A .1BC .D .26.在Rt △ABC 中,∠C=90°,∠A=α,BC=m ,则AB 的长为()A .m sinαB .C .m cosαD .7.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为()A .12B .5C .35D .108.在Rt △ABC 中,∠C=90°,BC=6,sinA=35,则AB=()A .8B .9C .10D .129.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为()米.A .100cos 20︒B .100cos 20︒C .100sin 20︒D .100sin 20︒10.在平面直角坐标系xOy 中,已知点P (1,2),点P 与原点O 的连线与x 轴的正半轴的夹角为α(0°<α<90°),那么tanα的值是()A .2B .12C .2D 二、填空题11.计算:012⎛⎫ ⎪⎝⎭–2cos60°=.12.cos30°+sin45°=13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,AD=95,BD=165,则sinB=.14.如图,已知斜坡AC 的坡度i =1:2,小明沿斜坡AC 从点A 行进10m 至点B ,在这个过程中小明升高m.三、计算题15.计算:0(3)4sin601π-+--16.计算:0(3)22cos30π---︒.四、解答题17.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东60 的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东30 的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A 处?请说明理由.(参1.732=)18.如图,升国旗时,某同学站在离国旗20m 的E 处行注目礼(即BE=20m ),当国旗升至旗杆顶端A 时,该同学视线的仰角∠ADC=42°,已知他的双眼离地面的高度DE=1.60m .求旗杆AB 的高度(结果精确到0.01m ).参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9004.19.如图,小明站在A 处,准备测量教学楼CD 的高度.此时他看向教学楼CD 顶部的点D ,发现仰角为45°.他向前走30m 到达A '处,测得点D 的仰角为67.5°.若小明的身高AB 为1.8m (眼睛与头顶的距离忽略不计),则教学楼CD 的高度为多少?(计算结果精确到0.1m ,参考数据:67.50.924sin ︒≈,67.50.383cos ︒≈,67.5 2.414tan ︒≈,1.414≈)20.先化简,再求代数式262393a a a a -÷+--的值,其中a =tan60°﹣6sin30°.21.先化简,再求代数式23211m m m m m m-+-÷-的值,其中60230m tan sin =︒-︒五、综合题22.五一期间,数学兴趣小组的几位同学到公园游玩,看到公园内宝塔耸立,几人想用所学知识测量宝塔的高度.为此,他们在距离宝塔中心18m 处(AC =18m )的一个斜坡CD 上进行测量.如图,已知斜坡CD 的坡度为i =1斜坡CD 长12m ,在点D 处竖直放置测角仪DE ,测得宝塔顶部B 的仰角为37°,量得测角仪DE 的高为1.5m ,点A 、B 、C 、D 、E 在同一平面内.(1)求点D 距地面的高度;(2)求宝塔AB 的高度.(结果精确到0.1,参考数据;sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)23.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(参考数据:40400.766sin ︒︒≈≈,,400.839tan ︒≈,26.60.448sin ≈ ,26.60.89426.60.500cos tan ︒︒≈≈,3 1.732≈)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10 后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.答案解析部分1.【答案】A【解析】【解答】解:在△ABC 中,∵AC=3,BC=4,AB=5,又因32+42=52,即AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°,∴tanB=34AC BC =.故答案为:A.【分析】首先根据勾股定理的逆定理判断出△ABC 是直角三角形,再根据正切函数的定义即可得出答案.2.【答案】B【解析】【解答】解:过P 作PE OA ⊥于E ,则PO=1,PE=y,OE=x,∴sin 1PE yPOA y PO ∠===,故答案为:B.【分析】过P 作OA 的垂线构造直角三角形,利用正弦的定义可得答案.3.【答案】C 【解析】【解答】解:∵sin45°=2.故答案为:C.【分析】根据特殊角的三角函数值即可求得答案.4.【答案】B 【解析】【解答】解:如图,∵ACcosαAB=,∴AC=3cosα.故答案为:B.【分析】根据余弦等于邻边比斜边即可求解.5.【答案】C 【解析】【解答】C 。
第一章回顾与思考1、等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为( ) A 030 B 060 C 090 D 01202、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( )A 090 B 060 C 075 D01053、如图,在矩形ABCD 中,DE⊥AC 于E ,设∠ADE=α,且53c o s =α, AB = 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )5164、在课外活动上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为4502cm ,则对角线所用的竹条至少需( ). (A )cm 230 (B )30cm (C )60cm (D )cm 260 5、如果α是锐角,且135cos sin 22=︒+α,那么=α º. 6、如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米. 7、如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =______.8、支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米.那么旗杆的有为 米(用含α的三角比表示).9、在Rt ABC ∆中∠A<∠B,CM 是斜边AB 上的中线,将ACM ∆沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.10、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).11、“曙光中学”有一块三角形形状的花圃ABC ,现可直接测量到,A ︒=∠30AC = 40米,αPoyx34ABCDE︒555.8m10mBC = 25米,请你求出这块花圃的面积.12、如图,在小山的东侧A 处有一热气球,以每分钟28米的速度沿着与垂直方向夹角为︒30的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5分钟后,在D 处测得着火点B 的俯角是︒15,求热气球升空点A 与着火点B 的距离.13、如图,一勘测人员从B 点出发,沿坡角为︒15的坡面以5千米/时的速度行至D 点,用了12分钟,然后沿坡角为︒20的坡面以3千米/时的速度到达山顶A 点,用了10分钟.求山高(即AC 的长度)及A 、B 两点的水平距离(即BC 的长度)(精确到0.01千米).14、为申办2010年冬奥会,须改变哈尔滨市的交通状况。
专题训练(二) 解直角三角形应用中的六种基本模型►模型一“独立”型1.如图2-ZT-1,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好遇见渔船,那么救援船航行的速度为( )图2-ZT-1A.10 3海里/时B.30海里/时C.20 3海里/时D.30 3海里/时2.2017·台州如图2-ZT-2是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)图2-ZT-2►模型二“背靠背”型3.如图2-ZT-3,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为( )图2-ZT-3A.160 3 m B.120 3 mC.300 m D.160 2 m4.如图2-ZT-4,湖中的小岛上有一标志性建筑物,其底部有一点A,某人在岸边的点B处测得点A在点B的北偏东30°的方向上,然后沿岸边直行4千米到达点C处,再次测得点A在点C的北偏西45°的方向上(其中点A,B,C在同一平面上).求这个标志性建筑物底部上的点A到岸边BC的最短距离.图2-ZT-4►模型三“母抱子”型5.如图2-ZT-5,某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在点C 处仰望建筑物顶端A处,测得仰角为48°,再往建筑物的方向前进6米到达点D处,测得建筑物顶端A的仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:sin48°≈710,tan48°≈1110,sin64°≈910,tan64°≈2)图2-ZT-56.2017·内江如图2-ZT-6,某人为了测量小山顶上的塔ED的高,他在山下的点A 处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)图2-ZT-6►模型四“拥抱”型7.如图2-ZT-7,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1 m(即BD=1 m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)图2-ZT-7►模型五梯形类8.如图2-ZT-8,梯形ABCD是拦水坝的横断面示意图,图中i=1∶3是指坡面的铅直高度DE与水平宽度CE的比,∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积.(结果精确到0.1.参考数据:3≈►模型六“斜截”型9.“蘑菇石”是贵州省著名自然保护区梵净山的标志,小明从山脚点B处先乘坐缆车到达与BC平行的观景平台DE处观景,然后再沿着坡角为29°的斜坡由点E步行到达“蘑菇石”点A处,“蘑菇石”点A到水平面BC的垂直距离为1790 m.如图2-ZT-9,DE∥BC,BD=1700 m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1 m,参考数据:sin80°≈0.9848,sin29°≈0.4848)详解详析1.[解析] D 由“B 在海岛A 的南偏东20°方向”和“海岛C 在海岛A 的南偏西10°方向”得∠BAC =30°,同理得∠ABC =60°,∴∠ACB =90°.∵AB =20海里,∴BC =10海里,AC =10 3海里,再由“救援船由海岛A 开往海岛C 用时20分钟”可求得救援船航行的速度为30 3海里/时.故选D.2.解:车门不会碰到墙.理由如下:如图,过点A 作AC ⊥OB ,垂足为C .在Rt △ACO 中,∵∠AOC =40°,AO ∴AC =AO ·sin∠AOC ≈1.2×0.64=0.768(米).∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,0.8>0.768, ∴车门不会碰到墙.3.[解析] A 过点A 作AD ⊥BC 于点D , 则∠BAD =30°,∠CAD =60°,AD =120 m. 在Rt △ABD 中,BD =AD ·tan30°=120×33=40 3(m). 在Rt △ACD 中,CD =AD ·tan60°=120×3=120 3(m), ∴BC =BD +CD =40 3+120 3=160 3(m).4.解:过点A 作AD ⊥BC 于点D ,则AD 的长度就是点A 到岸边BC 的最短距离.在Rt △ACD 中,∠ACD =45°,设AD =x 千米,则CD =AD =x 千米. 在Rt △ABD 中,∠ABD =60°, 因为tan ∠ABD =AD BD ,即tan60°=x BD,所以BD =x tan60°=33x 千米.又因为BC =4千米, 所以BD +CD =4千米,即33x +x =4, 解得x =6-2 3,所以这个标志性建筑物底部上的点A 到岸边BC 的最短距离为(6-2 3)千米. 5.解:根据题意,得∠ADB =64°,∠ACB =48°. 在Rt △ADB 中,tan64°=AB BD ,则BD =AB tan64°≈12AB ,在Rt △ACB 中,tan48°=AB CB,则CB =ABtan48°≈1011AB ,∴CD =CB -BD ,即6=1011AB -12AB ,解得AB =1329≈14.7(米),∴建筑物的高度约为14.7米.6.[解析] 先求出∠DBE =30°,∠BDE =30°,得出BE =DE ,设EC =x ,则BE =2x ,DE =2x ,DC =3x ,BC =3x ,再根据∠DAC =45°,可得AC =DC ,列出方程求出x 的值,即可求出塔DE 的高度.解:由题意知,∠DBC =60°,∠EBC =30°, ∴∠DBE =∠DBC -∠EBC =60°-30°=30°. 又∵∠BCD =90°,∴∠BDC =90°-∠DBC =90°-60°=30°, ∴∠DBE =∠BDE ,∴BE =DE .设EC =x m ,则DE =BE =2EC =2x m ,DC =EC +DE =3x m , BC =BE 2-EC 2=3x m.由题意可知,∠DAC =45°,∠DCA =90°,AB =60 m , ∴△ACD 为等腰直角三角形,∴AC =DC , ∴3x +60=3x . 解得x =30+10 3.答:塔ED 的高度为(30+10 3)m. 7.解:设梯子的长为x m.在Rt △ABO 中,cos ∠ABO =OBAB,∴OB =AB ·cos∠ABO =x ·cos60°=12x m.在Rt △CDO 中,cos ∠CDO =OD CD, ∴OD =CD ·cos∠CDO =x ·cos51°18′≈0.625x m. ∵BD =OD -OB ,∴0.625x -12x =1,解得x =8.答:梯子的长约为8 m.8.解:过点A 作AF ⊥BC ,垂足为F . 在Rt △ABF 中,∠B =60°,AB =6, ∴AF =AB sin B =6sin60°=3 3, BF =AB cos B =6cos60°=3. ∵AD ∥BC ,AF ⊥BC ,DE ⊥BC , ∴四边形AFED 是矩形,∴DE =AF =3 3,FE =AD =4.在Rt △CDE 中,i =DE CE =13,∴CE =3DE =3×3 3=9,∴BC =BF +FE +CE =3+4+9=16, ∴S 梯形ABCD =12(AD +BC )·DE=12×(4+16)×3 3 ≈52.0.答:拦水坝的横断面ABCD 的面积约为52.0.9.解:过点D 作DF ⊥BC 于点F ,延长DE 交AC 于点M ,由题意,得EM ⊥AC , ∴四边形DMCF 为矩形, ∴DF =MC .在Rt △DFB 中,sin80°=DF BD ,则DF =BD ·sin80°=1700×sin80°(m), ∴AM =AC -MC =AC -DF =(1790-1700×sin80°)m. 在Rt △AME 中,sin29°=AM AE, 则AE =AMsin29°=1790-1700×sin80°sin29°≈238.9(m).答:斜坡AE 的长度约为238.9 m.。
北师大版九年级数学下册第一章直角三角形的边角关系综合压轴题专项训练试题1、如图,MN是表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500 米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?2、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D 是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE,EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F.求支架DE的长.3、如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.4、小红家的阳台上放置了一个晒衣架(如图∶),图∶是晒衣架的侧面示意图,立杆AB,CD相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm (参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC ∶BD .(2)求扣链EF 与立杆AB 的夹角∶OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.5、如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的点B 处安置测角仪,在点A 处测得电线杆上C 处的仰角为30°.已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).6、如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin360.59cos360.81tan360.73===°,°,°.】7、在建筑楼梯时,设计者要考虑楼梯的安全程度和占地面积,如图1—136(1)所示,虚线为楼梯的斜度线,斜度线与地板的夹角为锐角θ,一般情况下,锐角θ愈小,楼梯的安全程度愈高,但占地面积较多,如图l—136(2)所示,为提高安全程度,把倾角由θ1减至θ2,这样楼梯占用地板的长度由d1增加到d2,已知d1=4 m,θ1=40°,θ2=36°,求楼梯占用地板的长度增加了多少.(精确到0.01 m,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan 36°≈0.7265,sin 40°≈0.6428,cos 40°≈0.7660,tan 40°≈0.8391)8、在旧城改造中,要拆除一烟囱AB,如图1—137所示,在地面上事先划定以B为圆心,半径与AB等长的圆形区域为危险区,现在从与B地水平距离相距(BD=21米)21米远的建筑物CD的顶端C点测得A点的仰角为45°,B点的俯角为30°,现在离B点25米远的地方有一受保护的文物,则该文物是否在危险区内?试说明理由.,精确到0.01米)9、通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1,在∶ABC中,AB =AC ,顶角A 的正对记作sadA ,这时sadA =底边腰=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=____________;(2)对于0°<∶A <180°,∶A 的正对值sadA 的取值范围是____________;(3)如图2,已知sinA =35,其中∶A 为锐角,试求sadA 的值. 10、根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M 距离羲皇大道l (直线)的距离MN 为30米(如图8所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从点A 行驶到点B 所用时间为6秒,∠AMN =60°,∠BMN =45°.(1)计算AB 的长;(2)通过计算判断此车是否超速.11、如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.12、如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C 在AB 的延长线上,设想过C 点作直线AB 的垂线l ,过点B 作一直线(在山的旁边经过),与l 相交于D 点,经测量∶ABD =135°,BD =800米,求直线l 上距离D 点多远的C 处开挖?(2≈1.414,结果精确到1米)13、已知:如图,在山脚的C 处测得山顶A 的仰角为 45°,沿着坡度为30°的斜坡前进400米到D 处(即 ∠,CD =400米),测得A 的仰角为,求山的高度AB .14、如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B 两船相距1003+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号).(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在23≈1.73)6015、如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1∶,且AB=30 m,李亮同学在大堤上A点处用高1.5 m的测量仪测出高压电线杆CD顶端D的仰角为30°,已知地面BC宽30 m,求高压电线杆CD的高度.(结果保留三位有效数字,≈1.732)16、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1∶的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).17、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BP Q的度数;(2)求该电线杆PQ的高度(结果精确到1 m).(参考数据:≈1.7,≈1.4)18、乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示).建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处的俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P,D的连线与水平方向的夹角为30°,求引桥BC的长度.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)。
直角三角形的边角关系练习题1、已知,AD 为等腰三角形ABC 底边上的高,且tanB=34,AC 上有一点E,满足AE:EC=2:3,那么tan ∠ADE 等于( ) A 53 B 32 C 21 D 312、直线4-=kx y 与y 轴相交所成的锐角的正切值为21,则K 的值为3、如图,拦水坝的横断而为梯形ABCD ,坝顶宽BC=6米,高3.2米,了提高水能力,需将水坝加高2米,并且保持顶宽度不变,迎水坡CD 坡度不变,但是背水坡坡度由原来i=1:2变成i′=1:2.5(有关数据在图上已注明),求加高后底HD 长多少?3、如图,小明将一张矩形纸片ABCD 沿CD 折叠,B 点恰好落在AD 边上,设此为F ,若AB :BC=4:5,则cos ∠DCF 的值为 。
5、山脚下有一棵树AB ,小华从点B 沿山坡向上走50米到达点D ,用高为1.5米的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高.(精确到0.1米)(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)6.如图,一游人由山脚A沿坡角为30°的山坡AB行走600m,到达一个景点B,再由B沿山坡BC行走200m到达山顶C,若在山顶C处观测到景点B的俯角为45°,则山高CD为()A,3003+1002 B 300+1003 C 300+1002 D 4008、我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD的度数(精确到1°);(2)装饰画顶部到墙壁的距离DC(精确到0.01米).的长方体台阶来铺,需要铺几级台阶?11、旗杆、树和竹杆都垂直于地面且一字排列,在路灯下树和竹杆的影子的方位和长短如图所示.请根据图上的信息标出灯泡的位置(用点P 表示),再作出旗杆的影子(用线段字母表示).(不写作法,保留作图痕迹)A 213-B 63C 6132-D 813+14.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED=2∠CED ,点G 是DF 的中点,若BE=1,AG=4,则AB 的长为15、在等边三角形ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADC =60°,BD=4,CE=34 2,则△ABC 的面积( )16、在正方形网格中,sin ∠ABC=18、如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB 的值为( )A 、43 B 、34 C 、45D 、3519、如图,A 、B 、C 、三点在正方形网格线的交点处.若将△ACB 绕着点A 逆时针旋转到如图位置,得到△AC ′B ′,使A 、C 、B ′三点共线。
(B)直角三形的边角关系 基础训练题目2
1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosB 的值是( )
A.4/5
B.3/5
C.3/4
D.4/3
2、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( )
A.扩大2倍
B.缩小2倍
C.扩大4倍
D.没有变化
3、等腰三角形的底角为30°,底边长为23,则腰长为( )
A .4
B .23
C .2
D .22
4、如图1,在菱形ABCD 中,∠ABC =60°,AC =4,则BD 长为( )
A .83
B .43
C .23
D .8
5、在△ABC 中,∠C =90°,下列式子一定能成立的是( )
A .sin a c
B = B .cos a b B =
C .tan c a B =
D .tan a b A =
6、△ABC 中,∠A ,∠B 均为锐角,且有2|tan 3|2sin 30B A -+
-=(),则△ABC 是( )
A .直角(不等腰)三角形
B .等腰直角三角形
C .等腰(不等边)三角形
D .等边三角形 7、已知tan 1α=,那么
2sin cos 2sin cos αααα-+的值等于( ) A .13 B .12 C .1 D .16
8.等腰直角三角形的一个锐角的余弦值等于 9、在△ABC 中,∠C =90°,sinA=
35,cosA 10、比较下列三角函数值的大小:sin400 sin500
11、化简:sin 30tan 60sin 60︒-︒=︒
12、在ABC ∆,︒=∠90C ,5,3==AB BC ,求A A A tan ,cos ,sin 的值。
13、如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,5,4BC CD ==,求AC 的长。
A
B C D。