高二数学平面向量的加法
- 格式:ppt
- 大小:481.50 KB
- 文档页数:18
高二数学《向量》知识点总结考点一:向量的概念、向量的大体定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的大体定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的概念、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮忙理解。
【命题规律】重点考查概念和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的普遍性,常常也会与三角函数,解析几何一并考查,若出此刻解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考常常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主如果向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示。
高二数学向量知识点1. 向量的定义和表示向量是带有方向和大小的量,通常用箭头来表示。
向量用字母加上一个箭头来表示,例如AB→表示从点A指向点B的向量。
2. 向量的加法和减法向量的加法是指将两个向量的大小和方向相加得到一个新的向量。
向量的减法是指将两个向量的大小和方向相减得到一个新的向量。
3. 向量的数量积向量的数量积也叫点积,表示为两个向量之间的乘积。
向量的数量积等于这两个向量的模长的乘积再乘以它们夹角的余弦值。
4. 向量的向量积向量的向量积也叫叉积,表示为两个向量之间的乘积。
向量的向量积等于这两个向量的模长的乘积再乘以它们夹角的正弦值,并且结果是一个新的向量。
5. 平面向量的坐标表示平面向量可以使用其在坐标系中的坐标表示。
一般情况下,平面向量的坐标表示为 (x, y),其中 x 表示向量在 x 轴上的投影,y 表示向量在 y 轴上的投影。
6. 向量的数量积的性质向量的数量积具有交换律、结合律和分配律。
即对于任意向量 a、b 和 c,有以下性质:- 交换律:a·b = b·a- 结合律:(a + b)·c = a·c + b·c- 分配律:k(a·b) = (ka)·b = a·(kb),其中 k 是一个实数7. 向量的向量积的性质向量的向量积满足反交换律和分配律。
即对于任意向量 a 和b,有以下性质:- 反交换律:a×b = -b×a- 分配律:a×(b + c) = a×b + a×c8. 向量共线与垂直的判定- 共线判定:如果两个向量的数量积为0,则它们共线。
- 垂直判定:如果两个向量的数量积为0,则它们垂直。
9. 向量的模长和单位向量向量的模长表示向量的大小,用 ||a|| 或 |a| 表示,计算方式为向量的坐标的平方和的开平方。
单位向量是模长为1的向量,可以通过将向量除以它的模长得到。
高二数学选修1知识点总结高二数学选修1是数学领域中的一门选修课程,旨在帮助学生深入了解数学的相关概念、方法和技巧。
在这门课程中,学生将学习各种各样的数学知识点,为进一步的学习和应用打下坚实的基础。
本文将对高二数学选修1中的重要知识点进行总结,以帮助学生梳理知识结构和加深对各个知识点的理解。
一、平面向量平面向量是高二数学选修1中的一个重要概念。
向量具有大小和方向两个特征,可以用有大小有方向的箭头表示。
平面向量有加法、减法和数量乘法三种运算,可以进行向量的线性组合和数乘运算。
1. 向量的表示方法:向量可以使用坐标表示方法(方向角、方向余弦)或分量表示方法(a、b、c表示)来表示。
2. 向量的运算:向量的加法和减法可以通过坐标或分量的相应运算法则进行计算。
向量的数量乘法即将向量的每个分量与一个实数相乘。
3. 向量的模和单位向量:向量的模表示向量的长度,可以通过勾股定理计算。
单位向量是模为1的向量,可以通过将向量除以其模得到。
4. 点积和叉积:向量的点积表示两个向量的数量乘积再相加,可以用于计算两个向量的夹角。
向量的叉积表示两个向量垂直的向量,可以用于计算平行四边形的面积和向量的方向。
二、立体几何立体几何是高二数学选修1中的另一个重要内容,主要涉及到空间中的图形、体积和表面积的计算。
1. 空间几何体:空间几何体包括点、线、面以及由它们组成的各种立体图形。
常见的空间几何体有球体、立方体、棱锥、棱台等。
2. 空间坐标系:空间坐标系是用来描述空间中点的位置的一种方法,常见的空间坐标系有直角坐标系和柱坐标系。
3. 空间几何体的体积和表面积:不同的空间几何体有不同的计算方法来求解其体积和表面积。
例如,球体的体积和表面积可以通过相应的公式来计算。
三、函数与导数函数与导数是高二数学选修1中的另一个重要模块,旨在帮助学生理解函数的性质和变化规律。
1. 函数的定义和性质:函数是一种映射关系,可以将自变量的取值域映射到因变量的值域。
平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。
平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。
本文将介绍平面向量的基本概念和运算规则。
一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。
可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。
二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。
具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。
三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。
对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。
四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。
设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。
五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。
设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。
高二数学平面向量知识点一、向量的表示与运算平面向量是具有大小和方向的量,常用箭头表示。
向量AB的起点为A,终点为B。
向量的表示可以用坐标形式,也可以用向量符号表示。
1. 向量的坐标表示:设向量AB的起点为A(x₁, y₁),终点为B(x₂, y₂),则向量AB的坐标表示为AB = (x₂ - x₁, y₂ - y₁)。
2. 向量的向量符号表示:设向量AB的起点为A,终点为B,向量AB的向量符号表示为→AB。
3. 向量的加法与减法:向量的加法满足三角形法则,即将两个向量的起点连接起来,然后连接两个向量的终点,所得向量为其和向量。
向量的减法即为加法的逆运算。
二、向量的数量运算向量的数量运算包括向量的数乘和向量的数量积。
1. 向量的数乘:向量的数乘即将一个向量与一个实数相乘,结果是一个新的向量,其大小为原向量的大小与实数的乘积,方向与原向量相同(当实数为正数时)或相反(当实数为负数时)。
若向量a = (x, y),实数k,则向量ka = (kx, ky)。
2. 向量的数量积:向量的数量积又称为点积,用符号·表示。
设向量a = (x₁, y₁),向量b = (x₂, y₂),则向量a与b的数量积为a·b = x₁x₂ + y₁y₂。
数量积的性质:- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb) (k为实数)- 分配律:(a + b)·c = a·c + b·c三、向量的模与单位向量向量的模即为向量的大小,用符号|a|表示。
设向量a = (x, y),则向量a的模为|a| = √(x² + y²)。
单位向量是模等于1的向量。
设向量a = (x, y),则向量a的单位向量为a/|a| = (x/|a|, y/|a|)。
四、向量的夹角设向量a与向量b的夹角为θ,则有以下公式成立:cosθ = (a·b) / (|a|·|b|)- 若cosθ = 0,则称向量a与向量b垂直。
专题6.2 平面向量的加法、减法、数乘运算知识储备一.向量加法的法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任意向量a,规定a+0=0+a=a以同一点O为起点的两个已知向量a,b为邻边作▱OACB,则以O为起点的对角线OC就是a与b的和.把这种作两个向量和的方法叫做向量加法的平行四边形法则有什么关系?【答案】(1)当向量a与b不共线时,a+b的方向与a,b不同,且|a+b|<|a|+|b|.(2)当a与b同向时,a+b,a,b同向,且|a+b|=|a|+|b|.(3)当a与b反向时,若|a|>|b|,则a+b的方向与a相同,且|a+b|=|a|-|b|;若|a|<|b|,则a+b的方向与b相同,且|a+b|=|b|-|a|.二.向量的减法1.定义:向量a加上b的相反向量,叫做a与b的差,即a-b=a+(-b),因此减去一个向量,相当于加上这个向量的相反向量,求两个向量差的运算,叫做向量的减法.2.几何意义:在平面内任取一点O,作OA=a,OB=b,则向量a-b=BA,如图所示.3.文字叙述:如果把两个向量的起点放在一起,那么这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量.【思考】若a ,b 是不共线向量,|a +b |与|a -b |的几何意义分别是什么?【答案】如图所示,设OA =a ,OB =b .根据向量加法的平行四边形法则和向量减法的几何意义,有OC =a +b ,BA =a -b .因为四边形OACB 是平行四边形,所以|a +b |=|OC |,|a -b |=|BA |,分别是以OA ,OB 为邻边的平行四边形的两条对角线的长.三 向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下:(1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎪⎩⎪⎨⎧<>.00的方向相反时,与当的方向相同;时,与当a a λλ 特别地,当λ=0时,λa =0.当λ=-1时,(-1)a =-a .四 向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .【思考】向量共线定理中为什么规定a ≠0?【答案】若将条件a ≠0去掉,即当a =0时,显然a 与b 共线.(1)若b ≠0,则不存在实数λ,使b =λa .(2)若b =0,则对任意实数λ,都有b =λa .能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·江西高一期末(理))下列四式不能化简为AD 的是( )A .MB AD BM +- B .()()AD MB BC CM +++C .()AB CD BC ++D .OC OA CD -+【答案】A 【解析】对B ,()()AD MB BC CM AD MB BC CM AD +++=+++=,故B 正确; 对C ,()AB CD BC AB BC CD AD ++=++=,故C 正确;对D ,OC OA CD AC CD AD -+=+=,故D 正确;故选:A.2.(2021·北京市第四中学顺义分校高一期末)在平行四边形ABCD 中,设对角线AC 与BD 相交于点O ,则AB CB +=( )A .2BOB .2DOC .BD D .AC【答案】B 【解析】因为四边形ABCD 为平行四边形,故0AO CO +=,故22AB CB AO OB CO OB OB DO +=+++==,故选B.3.(2020·莆田第七中学高二期中)在五边形ABCDE中(如图),AB BC DC+-=()A.AC B.AD C.BD D.BE【答案】B【解析】AB BC DC AB BC CD AD+-=++=.故选B4.(2020·全国高二单元测试)如图所示,已知空间四边形ABCD,连接AC,BD,M,G分别是BC,CD的中点,则AB+12BC+12BD等于()A.AD B.GA C.AG D.MG 【答案】C【解析】∵四面体A-BCD中,M、G为BC、CD中点,∵12BC BM=,12BD MG=,∵1122AB BC BD AB BM MG AM MG AG ===+++++.故选C 5.(2021·江苏高一)八卦是中国文化中的哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形 ABCDEFGH ,其中1OA =,则给出下列结论:①0BF HF HD -+=;①2OA OC OF +=-;①AE FC GE AB +-=.其中正确的结论为( )A .①①B .①①C .①①D .①①①【答案】C 【解析】对于∵:因为BF HF HD BF FH HD BH HD BD -+=++=+=,故∵错误; 对于∵:因为3602908AOC ︒∠=⨯=︒,则以,OA OC 为邻边的平行四边形为正方形, 又因为OB 平分AOC ∠,所以22OA OC OB OF +==-,故∵正确;对于∵:因为AE FC GE AE FC G EG A FC +-=++=+,且FC GB =,所以AE FC GE AG GB AB +-=+=,故∵正确,故选:C.6.(2019·天津市南开区南大奥宇培训学校高三月考)如图,在四边形ABCD 中,设,,AB a AD b BC c ===,则DC =( )A .a b c -++B .a b c -+-C .a b c ++D .a b c -+【答案】D 【解析】由题意,在四边形ABCD 中,设,,AB a AD b BC c ===,根据向量的运算法则,可得DC DA AB BC b a c a b c =++=-++=-+.故选D.7.(2020·陕西宝鸡市·高三二模(文))点P 是ABC ∆所在平面内一点且PB PC AP +=,在ABC ∆内任取一点,则此点取自PBC ∆内的概率是( )A .12B .13C .14D .15【答案】B【解析】设D 是BC 中点,因为PB PC AP +=,所以2PD AP =,所以A 、P 、D 三点共线且点P 是线段AD 的三等分点, 故13PBC ABC S S ∆∆=,所以此点取自PBC ∆内的概率是13.故选B. 8.(2020·自贡市田家炳中学高二开学考试)P 是ABC 所在平面内一点,若CB PA PB λ=+,其中R λ∈,则P 点一定在( )A .ABC 内部B .AC 边所在直线上 C .AB 边所在直线上D .BC 边所在直线上【答案】B【解析】根据题意,CB PA PB CB PB PA CP PA λλλ=+⇔-=⇔=,∴点P 在AC 边所在直线上,故选B.二、多项选择题:本题共4小题,每小题5分,共20分。
高二必修二数学知识点总结高二必修二数学主要包括以下几个知识点:一、平面向量和解析几何1. 平面向量的定义和性质,平面向量的加减法和数量积。
2. 平面向量的数量积的性质和运算定律。
3. 平面向量的夹角和垂直关系,等腰三角形和平行四边形等几何应用。
4. 平面向量的叉积及其几何应用。
5. 直线方程的一般式、斜截式和点斜式。
6. 圆的一般方程、标准方程、参数方程和切线方程。
二、三角函数1. 弧度制和角度制的互相转化。
2. 各三角函数的定义和性质。
3. 三角函数的图像及其变换。
4. 三角函数的和、差、积与商的公式及其应用。
5. 三角函数的反函数与反三角函数。
三、数列与数学归纳法1. 数列基本概念,通项公式和递推公式。
2. 常数列和特殊数列,等差数列和等比数列。
3. 数列极限的概念和性质。
4. 数列极限的运算法则和计算方法。
5. 数学归纳法及其应用。
四、函数与方程1. 一次函数和二次函数的基本性质和图像。
2. 一次函数和二次函数的最值和增减性。
3. 二次函数的判别式和根的性质。
4. 一次函数和二次函数的应用问题。
5. 指数函数、对数函数和幂函数的性质和图像。
6. 指数函数、对数函数和幂函数的运算法则。
7. 指数函数、对数函数和幂函数的应用问题。
8. 解一元二次方程和一元二次不等式的方法。
五、立体几何1. 空间向量及其运算定律。
2. 空间中两点间的距离和线段的中点坐标。
3. 空间中点到直线的距离和直线的方向向量。
4. 空间中两直线的位置关系和两平面的位置关系。
5. 空间直线与平面的位置关系和平面与平面的位置关系。
6. 空间图形的投影和旋转。
六、概率与统计1. 概率的基本概念和性质。
2. 随机事件和样本空间的概念。
3. 概率计算中的加法规则和乘法规则。
4. 条件概率和贝叶斯定理。
5. 排列和组合的基本概念和计算方法。
6. 随机变量的基本概念和性质。
7. 离散型随机变量的分布律和分布函数。
8. 连续型随机变量的密度函数和分布函数。
数学高二必修2知识点总结高二数学必修2是数学学习的重要阶段,其中包含了多个重要而深入的数学知识点。
本文将对高二数学必修2的知识点进行总结,帮助同学们复习和巩固相关知识。
一. 二次函数1. 二次函数的定义和性质二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。
二次函数的图像为抛物线,其开口方向由a的正负决定。
2. 二次函数的图像特征- 当a>0时,抛物线开口朝上,最低点坐标为(-b/2a, -(△-4ac)/4a) - 当a<0时,抛物线开口朝下,最高点坐标为(-b/2a, -(△-4ac)/4a)其中△ = b^2-4ac 为二次函数的判别式,根据△的值可判断二次函数的图像与x轴的交点情况。
3. 二次函数的性质- 零点和因式分解:当二次函数图像与x轴相交时,对应的x值即为二次函数的零点。
二次函数也可根据因式分解的方法进行求解。
- 对称轴和对称性:二次函数的对称轴为x = -b/2a,图像关于对称轴对称。
- 单调性和极值点:当a>0时,二次函数是开口朝上的抛物线,函数在对称轴两侧单调递增;当a<0时,二次函数是开口朝下的抛物线,函数在对称轴两侧单调递减。
- 最值和最值点:当a>0时,二次函数有最小值,最小值即为最低点的纵坐标;当a<0时,二次函数有最大值,最大值即为最高点的纵坐标。
二. 平面向量1. 平面向量的定义和表示平面向量是具有大小和方向的量,并可用有序数对表示。
常用的表示方法有向量符号、坐标表示和使用始点与终点的表示形式。
2. 平面向量的基本运算平面向量的基本运算包括加法、数乘和减法。
- 加法:平面向量的加法满足三角形法则,即两个向量相加的结果是以它们为边的一个三角形的对角线。
- 数乘:数与向量的乘积,结果是将向量的长度等比例扩大或缩小。
- 减法:向量的减法可看作是加法的逆运算,即将减数取负后与被减数相加。
3. 平面向量的数量积平面向量的数量积又称为点积或内积,结果是一个实数。