2020年人教A版高中数学必修二课时分层训练:第四章 圆与方程 4.1 4.1.1 Word版含解析
- 格式:doc
- 大小:93.00 KB
- 文档页数:6
第四章4.3空间直角坐标系4.3.1空间直角坐标系4.3.2空间两点间的距离公式课时分层训练‖层级一‖……………………|学业水平达标|1.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,-b,c);②点P(a,b,c)关于坐标平面yOz的对称点为P2(a,-b,-c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,-b,c);④点P(a,b,c)关于坐标原点的对称点为P4(-a,-b,-c).其中正确叙述的个数为()A.3B.2C.1 D.0解析:选C对于①,点P(a,b,c)关于横轴的对称点为P1(a,-b,-c),故①错;对于②,点P(a,b,c)关于yOz坐标平面的对称点为P2(-a,b,c),故②错;对于③,点P(a,b,c)关于纵轴的对称点是P3(-a,b,-c),故③错;④正确.故选C.2.若点P(-4,-2,3)关于坐标平面xOy及y轴的对称点的坐标分别是(a,b,c),(e,f,d),则c与e的和为()A.7 B.-7C.-1 D.1解析:选D点P关于坐标平面xOy的对称点坐标是(-4,-2,-3),关于y轴的对称点坐标是(4,-2,-3),从而知c+e=1.3.在空间直角坐标系中,已知点P(1,2,3),过P点作平面xOy的垂线PQ,Q为垂足,则Q的坐标为()A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:选D点P(1,2,3)关于平面xOy的对称点是P1(1,2,-3),则垂足Q是PP1的中点,所以点Q的坐标为(1,2,0),故选D.4.已知点A(1,2,-1),点C与点A关于面xOy对称,点B与点A关于x 轴对称,则|BC|的值为()A.2 5 B.4C.2 2 D.27解析:选B点A关于面xOy对称的点C的坐标是(1,2,1),点A关于x轴对称的点B的坐标是(1,-2,1),故|BC|=(1-1)2+(2+2)2+(1-1)2=4.5.已知点A(x,1,2)和点B(2,3,4),且|AB|=26,则实数x的值是()A.-3或4 B.6或2C.3或-4 D.6或-2解析:选D∵|AB|=(x-2)2+(1-3)2+(2-4)2=(x-2)2+8=26,∴x=6或-2.6.已知A(4,3,1),B(7,1,2),C(5,2,3),则△ABC是三角形.(填三角形的形状)解析:|AB|=(4-7)2+(3-1)2+(1-2)2=14.|AC|=(4-5)2+(3-2)2+(1-3)2=6,|BC|=(7-5)2+(1-2)2+(2-3)2=6,所以|AC|=|BC|,由三边长度关系知能构成三角形,所以△ABC是等腰三角形.答案:等腰7.已知A(1-t,1-t,t),B(2,t,t),则|AB|的最小值为.解析:由两点间距离公式可得|AB |= (1-t -2)2+(1-t -t )2+(t -t )2 =5⎝ ⎛⎭⎪⎫t -152+95≥355. 答案:3558.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且|CG |=14|CD |,E 为C 1G 的中点,则EF 的长为 .解析:建立如图所示的空间直角坐标系,D 为坐标原点,由题意,得F ⎝ ⎛⎭⎪⎫12,12,0,C 1(0,1,1),C (0,1,0),G ⎝ ⎛⎭⎪⎫0,34,0,则E ⎝ ⎛⎭⎪⎫0,78,12.所以|EF |=⎝ ⎛⎭⎪⎫0-122+⎝ ⎛⎭⎪⎫78-122+⎝ ⎛⎭⎪⎫12-02=418. 答案:4189.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解:过点D 作DE ⊥BC ,垂足为E .在Rt △BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD |=1,|CD |=3,∴|DE |=|CD |sin 30°=32,|OE |=|OB |-|BE |=|OB |-|BD |cos 60°=1-12=12,∴点D 的坐标为⎝⎛⎭⎪⎫0,-12,32.10.如图所示,在长方体ABCD -A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M ,N 两点间的距离.解:如图所示,分别以AB 、AD ,AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.由题意可知C (3,3,0),D (0,3,0), ∵|DD 1|=|CC 1|=|AA 1|=2, ∴C 1(3,3,2),D 1(0,3,2). ∵N 为CD 1的中点, ∴N ⎝ ⎛⎭⎪⎫32,3,1.M 是A 1C 1的三分之一分点且靠近A 1点, ∴M (1,1,2).由两点间距离公式,得 |MN |=⎝ ⎛⎭⎪⎫32-12+(3-1)2+(1-2)2=212. ‖层级二‖………………|应试能力达标|1.点A (0,-2,3)在空间直角坐标系中的位置是( ) A .在x 轴上 B .在xOy 平面内 C .在yOz 平面内D .在xOz 平面内解析:选C ∵点A 的横坐标为0,∴点A (0,-2,3)在yOz 平面内. 2.在空间直角坐标系中,点P (2,3,4)和点Q (-2,-3,-4)的位置关系是( ) A .关于x 轴对称 B .关于yOz 平面对称 C .关于坐标原点对称D .以上都不对解析:选C 点P 和点Q 的横、纵、竖坐标均相反,故它们关于原点对称. 3.设A (1,1,-2),B (3,2,8),C (0,1,0),则线段AB 的中点P 与点C 的距离为( )A.132B.534C.532D.532解析:选D 利用中点坐标公式,得点P 的坐标为⎝ ⎛⎭⎪⎫2,32,3,由空间两点间的距离公式,得|PC |=(2-0)2+⎝ ⎛⎭⎪⎫32-12+(3-0)2=532. 4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5D .2 6解析:选B 由已知,可得C 1(0,2,3),∴|AC 1|=(0-4)2+(2-0)2+(3-0)2=29.5.已知点A (3,5,-7),B (-2,4,3),则线段AB 在yOz 平面上的射影长为 .解析:点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为A ′(0,5,-7),B ′(0,4,3),∴线段AB在yOz平面上的射影长|A ′B ′|=(0-0)2+(4-5)2+(3+7)2=101. 答案:1016.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且点M 到点A ,B 的距离相等,则点M 的坐标是 .解析:因为点M 在y 轴上,所以可设点M 的坐标为(0,y,0).由|MA |=|MB |,得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,解得y =-1,即点M 的坐标为(0,-1,0).答案:(0,-1,0)7.对于任意实数x,y,z则(x+1)2+(y-2)2+(z-1)2+x2+y2+z2的最小值为.解析:设P(x,y,z),M(-1,2,1),则(x+1)2+(y-2)2+(z-1)2+x2+y2+z2=|PM|+|PO|.由于x,y,z是任意实数,即点P是空间任意一点,则|PM|+|PO|≥|OM|=1+4+1=6,故所求的最小值为 6.答案: 68.在空间直角坐标系中,解答下列各题.(1)在x轴上求一点P,使它与点P0(4,1,2)的距离为30;(2)在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最短.解:(1)设P(x,0,0).由题意,得|P0P|=(x-4)2+1+4=30,解得x=9或x=-1.所以点P的坐标为(9,0,0)或(-1,0,0).(2)由已知,可设M(x0,1-x0,0).则|MN|=(x0-6)2+(1-x0-5)2+(0-1)2=2(x0-1)2+51.所以当x0=1时,|MN|min=51.此时点M的坐标为(1,0,0).。
学业分层测评(二十三)(建议用时:45分钟)[达标必做]一、选择题1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是() A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心【解析】易知直线过定点(0,1),且点(0,1)在圆内,但是直线不过圆心(0,0).【答案】 C2.若PQ是圆x2+y2=9的弦,PQ的中点是A(1,2),则直线PQ的方程是() A.x+2y-3=0 B.x+2y-5=0C.2x-y+4=0 D.2x-y=0【解析】结合圆的几何性质知直线PQ过点A(1,2),且和直线OA垂直,故其方程为:y-2=-12(x-1),整理得x+2y-5=0.【答案】 B3.(2015·安徽高考)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12 B.2或-12C.-2或-12 D.2或12【解析】法一:由3x+4y=b得y=-34x+b4,代入x2+y2-2x-2y+1=0,并化简得25x2-2(4+3b)x+b2-8b+16=0,Δ=4(4+3b)2-4×25(b2-8b+16)=0,解得b=2或12.法二:由圆x2+y2-2x-2y+1=0可知圆心坐标为(1,1),半径为1,所以|3×1+4×1-b|32+42=1,解得b=2或12.【答案】 D4.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为22,则实数a的值为()A.-1或 3 B.1或3C.-2或6 D.0或4【解析】由弦长公式l=2r2-d2,可知圆心到直线的距离d=2,即|a-2|12+-12=2,解得a=0或4.【答案】 D5.圆x2+y2-4x+6y-12=0过点(-1,0)的最大弦长为m,最小弦长为n,则m-n=()A.10-27 B.5-7C.10-3 3 D.5-32 2【解析】圆的方程可化为(x-2)2+(y+3)2=25,圆心(2,-3)到(-1,0)的距离为0+32+-1-22=32<5.∴最大弦长为直径,即m=10,最小弦长为以(-1,0)为中点的弦,即n=225-322=27.∴m-n=10-27.【答案】 A二、填空题6.直线x-y=0与圆(x-2)2+y2=4交于点A、B,则|AB|=________.【导学号:09960140】【解析】圆心到直线的距离d=|2-0|2=2,半径r=2,∴|AB|=2r2-d2=2 2.【答案】2 27.(2015·烟台高一检测)圆x2+y2+2x+4y-3=0上到直线x+y+1=0的距离为2的点有________个.【解析】圆的方程可化为(x+1)2+(y+2)2=8,所以弦心距为d=|-1-2+1|2= 2.又圆的半径为22,所以到直线x+y+1=0的距离为2的点有3个.【答案】 3三、解答题8.过点A(1,1),且倾斜角是135°的直线与圆(x-2)2+(y-2)2=8是什么位置关系?若相交,试求出弦长.【解】因为tan 135°=-tan 45°=-1,所以直线方程为y-1=-(x-1),即x+y-2=0.圆心到直线的距离d=|2+2-2|2=2<r=22,所以直线与圆相交.弦长为2r2-d2=28-2=2 6.9.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程.【解】(1)设圆A的半径为r,∵圆A与直线l1:x+2y+7=0相切,∴r=|-1+4+7|5=25,∴圆A的方程为(x+1)2+(y-2)2=20.(2)当直线l与x轴垂直时,则直线l的方程x=-2,此时有|MN|=219,即x=-2符合题意.当直线l与x轴不垂直时,设直线l的斜率为k,则直线l的方程为y=k(x+2),即kx-y+2k=0,∵Q是MN的中点,∴AQ⊥MN,∴|AQ|2+12|MN|2=r2,又∵|MN|=219,r=25,∴|AQ|=20-19=1,解方程|AQ|=|k-2|k2+1=1,得k=34,∴此时直线l的方程为y-0=34(x+2),即3x-4y+6=0.综上所述,直线l的方程为x=-2或3x-4y+6=0.[自我挑战]10.直线y=x+b与曲线x=1-y2有且仅有一个公共点,则实数b的取值范围是()A.b= 2 B.-1<b≤1或b=- 2C.-1≤b≤1 D.以上都不正确【解析】如图,作半圆的切线l1和经过端点A,B的直线l3,l2,由图可知,当直线y=x+b为直线l1或位于l2和l3之间(包括l3,不包括l2)时,满足题意.∵l1与半圆相切,∴b=-2;当直线y=x+b位于l2时,b=-1;当直线y=x+b位于l3时,b=1.∴b的取值范围是-1<b≤1或b=- 2.【答案】 B11.(1)圆C与直线2x+y-5=0切于点(2,1),且与直线2x+y+15=0也相切,求圆C的方程;(2)已知圆C和y轴相切,圆心C在直线x-3y=0上,且被直线y=x截得的弦长为27,求圆C的方程.【导学号:09960141】【解】(1)设圆C的方程为(x-a)2+(y-b)2=r2.∵两切线2x+y-5=0与2x+y+15=0平行,∴2r=|15--5|22+12=45,∴r=25,∴|2a+b+15|22+1=r=25,即|2a+b+15|=10,①|2a+b-5|22+1=r=25,即|2a+b-5|=10,②又∵过圆心和切点的直线与过切点的切线垂直,∴b-1a-2=12,③由①②③解得a=-2,b=-1.∴所求圆C的方程为(x+2)2+(y+1)2=20.(2)设圆心坐标为(3m,m).∵圆C和y轴相切,得圆的半径为3|m|,∴圆心到直线y=x的距离为|2m|2=2|m|.由半径、弦心距、半弦长的关系得9m2=7+2m2,∴m=±1,∴所求圆C的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.。
4.1.2圆的一般方程基础达标1.将圆x2+y2-2x-4y+1=0平分的直线是().A.x+y-1=0 B.x+y+3=0C.x-y+1=0 D.x-y+3=02.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,则必有().A.D=E B.D=FC.E=F D.D=E=F3.在△ABC中,若顶点B、C的坐标分别是(-2,0)和(2,0),中线AD的长度是3,则点A 的轨迹方程是().A.x2+y2=3 B.x2+y2=4C.x2+y2=9(y≠0) D.x2+y2=9(x≠0)4.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.5.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心为________.6.已知圆x2+y2-4x+3=0则x2+y2的最大值是________.7.(1)定长为4的线段AB的两个端点A,B分别在x轴和y轴上滑动,求线段AB的中点M 的轨迹.(2)如图所示,两根杆分别绕着定点A和B(AB=2a)在平面内转动,并且转动时两杆保持互相垂直,求杆的交点P的轨迹方程.能力提升8.(天津高一检测)设A为圆(x-1)2+y2=1上的动点,P A是圆的切线且|P A|=1,则P点的轨迹方程是().A.(x-1)2+y2=4 B.(x-1)2+y2=2C.y2=2x D.y2=-2x9.已知两定点A(-2,0),B(1,0),如果动点P满足|P A|=2|PB|,则点P的轨迹所包围的图形的面积等于________.10.自点A(4,0)引圆x2+y2=4的割线ABC,求弦BC中点P的轨迹方程.4.3空间直角坐标系4.3.1空间直角坐标系基础达标1.空间两点A,B的坐标分别为(x,-y,z),(-x,-y,-z),则A,B两点的位置关系是().A.关于x轴对称B.关于y轴对称C.关于z轴对称D.关于原点对称2.设z是任意实数,相应的点P(2,2,z)运动的轨迹是().A.一个平面B.一条直线C.一个圆D.一个球3.(吉林高一检测)若点P(-4,-2,3)关于坐标平面xOy及y轴的对称点的坐标分别是(a,b,c),(e,f,d),则c与e的和为().A.7 B.-7 C.-1 D.14.已知A(3,2,-4),B(5,-2,2),则线段AB中点的坐标为________.5.棱长为2的正方体ABCD-A1B1C1D1在如图所示的空间直角坐标系中,则体对角线的交点O的坐标是________.6.(北京东城高一检测)在空间直角坐标系中,点M(-2,4,-3)在xOz平面上的射影为M1点,则M1关于原点的对称点坐标是________.7.四面体P-ABC是一个正方体截下的一角,且满足|P A|=a,|PB|=b,|PC|=c,建立如图所示的空间直角坐标系,求△ABC的重心G的坐标.能力提升8.在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴的对称点在坐标平面xOz 上的射影的坐标为().A.(4,0,6) B.(-4,7,-6)C.(-4,0,-6) D.(-4,7,0)9.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,-b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,-b,-c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,-b,c);④点P(a,b,c)关于坐标原点的对称点为P4(-a,-b,-c).其中正确的叙述是________.10.如图,有一个棱长为1的正方体ABCD-A1B1C1D1,以点D为坐标原点,分别以射线DA,DC,DD1的方向为正方向,以线段DA,DC,DD1的长度为单位长,建立三条数轴:x轴,y轴,z轴,从而建立起一个空间直角坐标系O-xyz.一只小蚂蚁从点D出发,不返回地沿着棱爬行了2个单位长.请用坐标表示小蚂蚁现在爬到了什么位置.的距离的最大值和最小值.的标准方程为(x-3)2+y2=4. 能力提升在平面内转动,15=0也相切,求圆C的方y=x截得的弦长为27,交于点P′,与圆C交于点Q′,当点P在r1-r2=1.答案 1x2+y2=5的公共弦长为________.②-①得两圆的公共弦所在的直线方程为x-y-3=0,|-3|3 22________.关于原点的对称点坐标是(2,0,3).,|PC|,DD1的长度为单位轴,从而建立起一个空间直角坐标系O-xyz.一只小蚂请用坐标表示小蚂蚁现在爬到了什么x=________.=(x-2)2+(0-1)2+(1-为坐标原点,分别以AB,0,0),设B(a,0,0),。
学业分层测评(二十三)(建议用时:45分钟)一、选择题1.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心 【解析】 易知直线过定点(0,1),且点(0,1)在圆内,但是直线不过圆心(0,0).【答案】 C2.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是A (1,2),则直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =0 【解析】 结合圆的几何性质知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.【答案】 B3.圆心为(3,0)且与直线x +2y =0相切的圆的方程为( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9【解析】 由题意知所求圆的半径r =|3+2×0|1+2=3,故所求圆的方程为(x -3)2+y 2=3,故选B. 【答案】 B4.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( )A .-1或 3B .1或3C .-2或6D .0或4【解析】 由弦长公式l =2r2-d2,可知圆心到直线的距离d =2,即|a -2|12+-=2,解得a =0或4.【答案】 D5.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m -n =( )A .10-27B .5-7C .10-3 3D .5-322【解析】 圆的方程可化为(x -2)2+(y +3)2=25,圆心(2,-3)到(-1,0)的距离为++-1-=32<5.∴最大弦长为直径,即m =10,最小弦长为以(-1,0)为中点的弦, 即n =225-2=27. ∴m -n =10-27.【答案】 A二、填空题6.直线x -y =0与圆(x -2)2+y 2=4交于点A 、B ,则|AB |=________.【解析】 圆心到直线的距离d =|2-0|2=2,半径r =2,∴|AB |=2r2-d2=2 2. 【答案】 2 27.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点有________个.【解析】 圆的方程可化为(x +1)2+(y +2)2=8,所以弦心距为d =|-1-2+1|2= 2. 又圆的半径为22,所以到直线x +y +1=0的距离为2的点有3个.【答案】 3三、解答题8.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.【解】 将圆C 的方程x 2+y 2-8y +12=0配方,得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a|a2+1=2.解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧ |CD|=|4+2a|a2+1,|CD|2+|DA|2=|AC|2=22,|DA|=12|AB|= 2.解得a =-7或a =-1. 故所求直线方程为7x -y +14=0或x -y +2=0.9.在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线:x -3y =4相切.(1)求圆O 的方程;(2)若圆O 上有两点M 、N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.【解】 (1)依题意,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2. 所以圆O 的方程为x 2+y 2=4.(2)由题意,可设直线MN 的方程为2x -y +m =0.则圆心O 到直线MN 的距离d =|m|5. 由垂径分弦定理得:m25+(3)2=22,即m =± 5. 所以直线MN 的方程为:2x -y +5=0或2x -y -5=0.10.直线y =x +b 与曲线x =1-y2有且仅有一个公共点,则实数b 的取值范围是( )A .b = 2B .-1<b ≤1或b =- 2C .-1≤b ≤1D .以上都不正确【解析】 如图,作半圆的切线l 1和经过端点A ,B 的直线l 3,l 2,由图可知,当直线y =x +b 为直线l 1或位于l 2和l 3之间(包括l 3,不包括l 2)时,满足题意.∵l 1与半圆相切,∴b =-2;当直线y =x +b 位于l 2时,b =-1;当直线y =x +b 位于l 3时,b =1.∴b 的取值范围是-1<b ≤1或b =- 2.【答案】 B11.已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0.(1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长.【解】 (1)证明:直线的方程可化为y +3=2m (x -4),由点斜式可知,直线过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P 在圆内,故直线l 与圆C 总相交.(2)圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--4-3=3,所以直线l 的斜率为-13, 则2m =-13,所以m =-16. 在Rt △APC 中,|PC |=10,|AC |=r =5.所以|AB |=2|AC2|-|PC|2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.。
第四章4.2直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用课时分层训练‖层级一‖……………………|学业水平达标|1.已知0<r<2+1,则两圆x2+y2=r2与(x-1)2+(y+1)2=2的位置关系是()A.外切B.相交C.外离D.内含解析:选B设圆(x-1)2+(y+1)2=2的圆心为O′,则O′(1,-1).圆x2+y2=r2的圆心O(0,0),圆心距|OO′|=12+(-1)2=2.显然有|r-2|<2<2+r.所以两圆相交.2.圆C1:x2+y2=1与圆C2:x2+(y-3)2=1的内公切线有且仅有() A.1条B.2条C.3条D.4条解析:选B因为两圆的圆心距为3,半径之和为2,故两圆外离,所以内公切线的条数为2条.3.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则实数m等于()A.21 B.19C.9 D.-11解析:选C圆C2的标准方程为(x-3)2+(y-4)2=25-m.又圆C1:x2+y2=1,∴|C1C2|=5.又∵两圆外切,∴5=1+25-m,解得m=9.4.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车蓬蓬顶距离地面的高度不得超过( )A .1.4米B .3.0米C .3.6米D .4.5米解析:选C 可画出示意图,如图所示,通过勾股定理解得OD =OC 2-CD 2=3.6(米),故选C.5.过点P (2,3)向圆C :x 2+y 2=1作两条切线P A ,PB ,则弦AB 所在的直线方程为( )A .2x -3y -1=0B .2x +3y -1=0C .3x +2y -1=0D .3x -2y -1=0解析:选B 弦AB 可以看作是以PC 为直径的圆与圆x 2+y 2=1的交线,而以PC 为直径的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=134.根据两圆的公共弦的求法,可得弦AB 所在的直线方程为:(x -1)2+⎝ ⎛⎭⎪⎫y -322-134-(x 2+y 2-1)=0,整理可得2x+3y -1=0,故选B.6.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则实数a = .解析:由已知,两个圆的方程作差可以得到相应弦的直线方程为y =1a ,利用圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1=22-(3)2=1,解得a =1.答案:17.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为 .解析:AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2,又C 1(3,0),C 2(0,3),C 1C 2的方程为x +y -3=0,即线段AB 的中垂线方程为x +y -3=0.答案:x +y -3=08.点P 在圆O :x 2+y 2=1上运动,点Q 在圆C :(x -3)2+y 2=1上运动,则|PQ |的最小值为 .解析:如图所示.设连心线OC 与圆O 交于点P ′,与圆C 交于点Q ′,圆O 的半径为r 1,圆C 的半径为r 2,当点P 在P ′处,点Q 在Q ′处时|PQ |最小,最小值为|P ′Q ′|=|OC |-r 1-r 2=1.答案:19.已知圆C 1:x 2+y 2+4x +1=0和圆C 2:x 2+y 2+2x +2y +1=0,求以圆C 1与圆C 2的公共弦为直径的圆的方程.解:由两圆的方程相减,得公共弦所在直线的方程为x -y =0. ∵圆C 1:(x +2)2+y 2=3,圆C 2:(x +1)2+(y +1)2=1, 圆心C 1(-2,0),C 2(-1,-1), ∴两圆连心线所在直线的方程为y -0-1-0=x +2-1+2,即x +y +2=0.由⎩⎨⎧x -y =0,x +y +2=0,得所求圆的圆心为(-1,-1). 又圆心C 1(-2,0)到公共弦所在直线x -y =0的距离d =|-2-0|2=2, ∴所求圆的半径r =(3)2-(2)2=1, ∴所求圆的方程为(x +1)2+(y +1)2=1.10.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.解:以O 为坐标原点,过OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1.因为点B (8,0),C (0,8),所以直线BC 的方程为x 8+y8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆的切点处时,DE 为最短距离.此时DE 长的最小值为|0+0-8|2-1=(42-1)km.‖层级二‖………………|应试能力达标|1.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 利用圆的几何性质,将题目转化为求两圆相交的公共弦所在直线的方程.设点P (3,1),圆心C (1,0),又切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆圆心的坐标为⎝ ⎛⎭⎪⎫2,12,半径长为12(3-1)2+(1-0)2=52,∴此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54 ①.又圆C :(x -1)2+y 2=1 ②,①-②得2x +y -3=0,此即为直线AB 的方程.2.若圆x 2+y 2=r 2与圆x 2+y 2+2x -4y +4=0有公共点,则r 满足的条件是( )A .r <5+1B .r >5+1C .|r -5|<1D .|r -5|≤1解析:选D 由x 2+y 2+2x -4y +4=0,得(x +1)2+(y -2)2=1,圆心距(-1)2+22= 5.∵两圆有公共点,∴|r -1|≤5≤r +1,∴5-1≤r ≤5+1,即-1≤r -5≤1,∴|r -5|≤1.3.圆(x +2)2+y 2=5关于直线x -y +1=0对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x -1)2+(y -1)2=5D .(x +1)2+(y +1)2=5解析:选D 由圆(x +2)2+y 2=5,可知其圆心为(-2,0),半径为 5.设点(-2,0)关于直线x -y +1=0对称的点为(x ,y ),则⎩⎪⎨⎪⎧y -0x +2=-1,x -22-y +02+1=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,∴所求圆的圆心为(-1,-1).又所求圆的半径为5,∴圆(x +2)2+y 2=5关于直线x -y +1=0对称的圆的方程为(x +1)2+(y +1)2=5.4.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是( )A .5B .1C .35-5D .35+5解析:选C 圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2),半径长r 1=3;圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1),半径长r 2=2,两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.5.若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长为 .解析:连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A 中,|OA |=5,|O 1A |=25, ∴|OO 1|=5, ∴|AC |=5×255=2, ∴|AB |=4. 答案:46.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是 .解析:设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0,则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝ ⎛⎭⎪⎪⎫21+λ,λ-11+λ代入l :2x +4y -1=0的方程,可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0.答案:x 2+y 2-3x +y -1=07.台风中心从A 地以每小时20 km 的速度向东北方向移动,离台风中心30 km 内的地区为危险地区,城市B 在A 地正东40 km 处,B 城市处于危险区内的时间为 .解析:如图所示,以A 为原点,正东和正北方向为x 轴、y 轴正方向,则B (40,0).台风中心在直线y =x 上移动.则问题转化成以点B 为圆心,30 km 为半径的圆与直线y =x 相交的弦长就是B 处在危险区内台风中心走过的距离.则圆B 的方程为(x -40)2+y 2=302,直线y =x 被圆B 截得弦长为CD =2·302-⎝ ⎛⎭⎪⎫4022=20(km).故B 城市处于危险区的时间为t =2020=1(h). 答案:1 h8.已知圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1). (1)若圆O 1与圆O 2外切,求圆O 2的方程;(2)若圆O 1与圆O 2交于A ,B 两点,且|AB |=22,求圆O 2的方程. 解:(1)设圆O 1、圆O 2的半径分别为r 1,r 2, ∵两圆外切,∴|O 1O 2|=r 1+r 2,∴r 2=|O 1O 2|-r 1=(0-2)2+(-1-1)2-2 =2(2-1),∴圆O 2的方程是(x -2)2+(y -1)2=12-8 2.(2)由题意,设圆O 2的方程为(x -2)2+(y -1)2=r 23,圆O 1,O 2的方程相减,即得两圆公共弦AB 所在直线的方程,为4x +4y +r 23-8=0.∴圆心O 1(0,-1)到直线AB 的距离为|0-4+r 23-8|42+42=4-⎝⎛⎭⎪⎫2222=2,解得r 23=4或20.∴圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。
新课标人教A版高中数学必修二第四章《圆与方程》课后训练题1.1.圆x2+y2+x-3y-=0的半径是________________【答案】2【解析】【分析】将圆的一般方程化为标准方程,从而可得结果.【详解】将圆的一般,化为标准方程为,可得圆的半径,故答案为2.【点睛】本题主要考查圆的一般方程化为标准方程,以及根据圆的标准方程求圆的半径,属于简单题.2.2.点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值范围是_________【答案】【解析】【分析】由不等式,即可得结果.【详解】在圆内,所以,,,,故答案为.【点睛】本题主要考查点与圆的位置关系,意在考查灵活运用所学知识解决问题的能力,属于简单题.3.3.直线5x+12y-8=0和圆(x-1)2+(y+3)2=8的位置关系是_______________【答案】相离.【解析】【分析】利用点到直线距离公式求出圆心到直线的距离,与半径比较即可得结果.【详解】由可得,圆的圆心坐标为,圆的半径为,到直线的距离为,因为,所以直线与圆的位置关系是相离.故答案为相离.【点睛】本题主要考查直线与圆的位置关系,属于中档题. 解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,利用判别式来解答.4.4.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C 的方程为_____________【答案】x2+y2-4x=0.【解析】设圆心坐标为,则圆方程为:(x−a)2+y2=4,根据点到直线的距离公式,得,解得a=2或(舍去),所以圆C的方程为:(x−2)2+y2=4,整理为一般方程为:.5.5.能够使得圆x2+y2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为( )A. 2B.C. 3D. 3【答案】C【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程,可得圆心为,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线的距离为1,由可得,经验证,,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.6.6.若x2+y2+(λ-1)x+2λy+λ=0表示圆,则λ的取值范围为___________________【答案】λ>1或【解析】【分析】根据二元二次方程表示圆的条件可得,从而可得结果.【详解】根据二元二次方程表示圆的条件可得,,化为解得或,故答案为或.【点睛】本题主要考查圆的一般方程,属于基础题. 二元二次方程表示圆的充要条件是:.7.7.直线y=kx+2与圆x2+y2+2x=0只在第二象限有公共点,则k的取值范围是___________【答案】【解析】【分析】先作出圆的图象,再由直线过定点,根据两者交点只在第二象限,结合图象可得结论.【详解】画出直线与圆的图象,如图所示:直线与圆相切时,直线过时,,直线与圆只在第二象限有公共点,实数的取值范围是,故答案为.【点睛】本题主要考查直线与圆的位置关系,直线过定点问题、点到直线距离公式的应用以及数形结合思想的应用,属于中档题.8.8.圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差为____【答案】6.【解析】试题分析:将圆的方程变形为,可知圆心,半径.圆心到直线的距离,所以圆上的点到直线的最大距离与最小距离的差为.故C正确.考点:1点到线的距离;2圆的简单性质.【思路点睛】本题主要考查圆上的点到线的距离的最大最小值问题,难度一般.圆上的点为动点,到圆心的距离均等于半径,所以应将圆上的动点到定直线的距离问题先转化为圆心到定直线的距离的问题.由数形结合分析可知圆上的点到直线的最大距离为,最小距离为.9.9.两圆C1:x2+y2+4x-4y+7=0,C2:x2+y2-4x-10y+13=0的公切线的条数为____条【答案】3【解析】试题分析:圆O1:x2+y2+4x-4y+7=0可变为,圆心为,半径为;圆O2:x2+y2-4x-10y+13=0可变为,圆心为,半径为;所以,,所以两圆相切;所以与两圆都相切的直线有3条.故选B.考点:圆与圆的位置关系.10.10.已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程是__________【答案】【解析】【分析】设圆心关于直线对称点,根据垂直和中点在对称轴上这两个条件列方程求出的值,即得对称圆的圆心,再由半径等于1,求出圆的标准方程.【详解】圆圆心为,半径等于1,设圆心关于直线对称点,则有,且,解得,故点,由于对称圆的半径与圆的半径相等,故圆的方程为,故答案为.【点睛】本题主要考查圆的方程与性质解析几何中的轴对称问题,属于中档题. 解析几何中对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.11.11.已知动点M到定点(8,0)的距离等于M到(2,0)的距离的2倍,那么点M的轨迹方程___________________________【答案】x2+y2=16【解析】【分析】设,由化简即可得结果.【详解】设,因为到定点的距离等于到的距离的2倍,所以,化简可得,故答案为.【点睛】本题主要考查直接法求轨迹方程、两点间的距离公式,属于难题. 求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法①求的轨迹方程的.12.12.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m 的距离为________【答案】4【解析】【分析】判断在圆上,求出直线的斜率,确定出切线的斜率,求出的方程,得出,根据直线与直线平行,利用平行线的距离公式求出与的距离即可.【详解】将代入圆方程左边得:,左边=右边,即在圆上,直线的斜率为,切线的斜率为,即直线的方程为,整理得:,直线与直线平行,,即,直线方程为,即,直线与的距离为,故答案为4.【点睛】本题主要考查直线与圆的位置关系,直线与直线的位置关系以及两平行线的距离公式,属于中档题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1);(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.13.13.圆O1:x2+y2-2x=0与圆O2:x2+y2-4y=0的位置关系是_______【答案】相交.【解析】【分析】把两圆的方程化为标准方程后,分别找出两圆心坐标和两半径与,然后利用两点间的距离公式求出两圆心间的距离,比较与与和与差的大小,即可得到两圆的位置关系.【详解】由圆与圆,分别得到标准方程和,则两圆坐标分别为和,半径分别为,则两圆心之间的距离,则,即,故两圆的位置关系是相交,故答案为相交.【点睛】本题主要考查圆与圆的位置关系,属于简单题.若两圆半径为,两圆心间的距离,比较与及与的大小,即可得到两圆的位置关系.14.14.方程x2+y2+ax+2ay+a2+a-1=0表示圆,则a的取值范围是_____【答案】a<1.【解析】【分析】根据二元二次方程能够表示圆的充要条件,得到关于的一元二次不等式,解不等式即可得到结果.【详解】方程表示圆,,化为,解得,故答案为.【点睛】本题主要考查圆的一般方程,属于基础题. 二元二次方程表示圆的充要条件是:.15.15.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为___________【答案】(x-2)2+(y+1)2=9【解析】【分析】根据点到直线的距离公式,求出点到直线的距离,可得圆的半径,再由圆的标准方程,即可得到满足条件的圆的方程.【详解】因为圆以点(为圆心且与直线相切,所以圆心到直线的距离等于半径,即,所求圆的方程为,故答案为.【点睛】本题主要考查圆的方程和性质,属于中档题.求圆的方程常见思路与方法有:①直接设出动点坐标,根据题意列出关于的方程即可;②根据几何意义直接找到圆心坐标和半径,写出方程;③待定系数法,可以根据题意设出圆的标准方程或一般式方程,再根据所给条件求出参数即可.本题是利用方法②解答的.16.16.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______【答案】m<.【解析】由D2+E2-4F>0,得(-1)2+12-4m>0,即m<.17.17.若圆C:x2+y2-4x-5=0,则过点P(1,2)的最短弦所在直线l的方程是_________【答案】x-2y+3=0.【解析】【分析】由圆的几何性质可得圆心与点的连线与垂直时,所截的弦长最短,利用直线垂直的充要条件及点斜式求解即可.【详解】将圆的一般方程化成标准方程为,所以,由题意知,过点的最短弦所在的直线应与垂直,所以,由,得,所以直线的方程为,即,故答案为.【点睛】本题主要考查圆的方程与性质,以及两直线垂直的充要条件,对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1);(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.18.18.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是_____【答案】【解析】【分析】设直线方程为,由圆心到直线距离等于半径列方程求解即可.【详解】圆方程。
第四章4.1圆的方程
4.1.1圆的标准方程
课时分层训练
‖层级一‖……………………|学业水平达标|
1.已知点P(3,2)和圆的方程(x-2)2+(y-3)2=4,则它们的位置关系为() A.在圆心B.在圆上
C.在圆内D.在圆外
解析:选C∵(3-2)2+(2-3)2=2<4,
∴点P在圆内.
2.圆(x+1)2+(y-2)2=4的圆心、半径分别是()
A.(1,-2),4 B.(1,-2),2
C.(-1,2),4 D.(-1,2),2
答案:D
3.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()
A.x2+(y-2)2=1 B.x2+(y+2)2=1
C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1
解析:选A解法一(直接法):设圆心坐标为(0,b),则由题意知(0-1)2+(b-2)2=1,解得b=2,
故圆的方程为x2+(y-2)2=1.
解法二(数形结合法):根据点(1,2)到圆心的距离为1,易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.
解法三(验证法):将点(1,2)代入四个选择项,排除B、D,又由于圆心在y 轴上,排除C,故选A.
4.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是()
A.(x-1)2+(y-2)2=10
B .(x -1)2+(y -2)2=100
C .(x -1)2+(y -2)2=5
D .(x -1)2+(y -2)2=25
解析:选D 圆心坐标为(1,2),半径r =(5-1)2+(5-2)2=5,故所求圆的
方程为(x -1)2+(y -2)2=25.
5.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:选D 由题意得,(-a ,-b )为圆的圆心,由直线经过第一、二、四象限,得到a <0,b >0,即-a >0,-b <0.再由各象限内点的坐标的性质,得圆心位于第四象限.
6.圆心为直线x -y +2=0与直线2x +y -8=0的交点,且过原点的圆的标准方程是 .
解析:由⎩⎪⎨
⎪⎧
x -y +2=0,
2x +y -8=0,
可得⎩⎪⎨
⎪⎧
x =2,
y =4,
即圆心为(2,4),从而r =
(2-0)2+(4-0)2=25,故圆的标准方程为(x -2)2+(y -4)2=20. 答案:(x -2)2+(y -4)2=20
7.点(5a +1,a )在圆(x -1)2+y 2=26的内部,则a 的取值范围是 . 解析:由于点在圆的内部,所以(5a +1-1)2+(a )2<26,即26a <26,又a ≥0,解得0≤a <1.
答案:[0,1)
8.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且与直线x +2y =0相切,则圆C 的方程是 .
解析:如图所示,设圆心C (a,0),则圆心C 到直线x +2y =0
的距离为|a +2×0|
12+2
2=5,
解得a =-5,a =5(舍去),
∴圆心是(-5,0).故圆的方程是(x +5)2+y 2=5. 答案:(x +5)2+y 2=5
9.求经过A (-1,4),B (3,2)两点且圆心在y 轴上的圆的方程. 解:解法一:设圆心坐标为(a ,b ). ∵圆心在y 轴上,∴a =0. 设圆的标准方程为x 2+(y -b )2=r 2. ∵该圆过A ,B 两点,
∴⎩⎨⎧ (-1)2+(4-b )2=r 2,32+(2-b )2=r 2.解得⎩⎨⎧
b =1,r 2=10. ∴所求圆的方程为x 2+(y -1)2=10.
解法二:∵线段AB 的中点坐标为(1,3),k AB =2-43-(-1)=-12,
∴弦AB 的垂直平分线方程为y -3=2(x -1), 即y =2x +1.
由⎩⎨⎧ y =2x +1,x =0,解得⎩⎨⎧
x =0,y =1.∴点(0,1)为所求圆的圆心. 由两点间的距离公式,得圆的半径r =10, ∴所求圆的方程为x 2+(y -1)2=10.
10.求过点A (1,2)和B (1,10)且与直线x -2y -1=0相切的圆的方程. 解:圆心在线段AB 的垂直平分线y =6上,设圆心为(a,6),半径为r ,则圆的方程为(x -a )2+(y -6)2=r 2.将点(1,10)代入得(1-a )2+(10-6)2=r 2,①
而r =|a -13|5
,
代入①,得(a -1)2
+16=(a -13)2
5
,
解得a =3,r =25或a =-7,r =4 5.
故所求圆为(x -3)2+(y -6)2=20,或(x +7)2+(y -6)2=80.
‖层级二‖………………|应试能力达标|
1.点P (a,10)与圆(x -1)2+(y -1)2=2的位置关系是( ) A .在圆内 B .在圆上 C .在圆外
D .不确定
解析:选C ∵(a -1)2+(10-1)2=81+(a -1)2>2,∴点P 在圆外. 2.若点A (a ,a -1)在圆(x -3)2+(y -2)2=2的外部,则实数a 的取值范围是( )
A .(2,4)
B .(-∞,2)
C .(4,+∞)
D .(-∞,2)∪(4,+∞)
解析:选D 由题意得(a -3)2+(a -3)2>2,即a >4或a <2.
3.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( )
A .6
B .4
C .3
D .2
解析:选B 画出已知圆,利用数形结合的思想求解.如图,圆心M (3,-1)与定直线x =-3的最短距离为|MQ |=3-(-3)=6.因为圆的半径为2,所以所求最短距离为6-2=4.
4.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( ) A .(x +1)2+y 2=1 B .x 2+y 2=1 C .x 2+(y +1)2=1
D .x 2+(y -1)2=1
解析:选C 由已知圆(x -1)2+y 2=1得圆心C 1(1,0),半径长r 1=1.设圆心C 1(1,0)关于直线y =-x 对称的点为(a ,b ),
则⎩⎨⎧
b a -1
·(-1)=-1,-a +12=b 2,
解得⎩⎪⎨⎪⎧
a =0,
b =-1.
所以圆C 的方程为x 2+(y +1)2=1.
5.若圆C 与圆M :(x +2)2+(y -1)2=1关于原点对称,则圆C 的标准方程是 .
解析:圆(x +2)2+(y -1)2=1的圆心为M (-2,1),半径r =1,则点M 关于原点的对称点为C (2,-1),圆C 的半径也为1,则圆C 的标准方程是(x -2)2+(y +1)2=1.
答案:(x -2)2+(y +1)2=1
6.已知圆O 的方程为(x -3)2+(y -4)2=25,则点M (2,3)到圆上的点的距离的最大值为 .
解析:由题意,知点M 在圆O 内,MO 的延长线与圆O 的交点到点M (2,3)的距离最大,最大距离为
(2-3)2+(3-4)2+5=5+ 2. 答案:5+ 2
7.已知实数x ,y 满足y =9-x 2,则t =y +3
x +1
的取值范围是 . 解析:y =
9-x 2表示上半圆,t 可以看作动点(x ,y )与定
点(-1,-3)连线的斜率.如图:
A (-1,-3),
B (3,0),
C (-3,0), 则k AB =34,k AC =-3
2, ∴t ≤-32或t ≥34.
答案:⎩
⎨⎧⎭
⎬⎫
tt ≤-32或t ≥34
8.已知圆C 的圆心为C (x 0,x 0),且过定点P (4,2). (1)求圆C 的标准方程;
(2)当x 0为何值时,圆C 的面积最小?求出此时圆C 的标准方程. 解:(1)设圆C 的标准方程为(x -x 0)2+(y -x 0)2=r 2(r ≠0).
∵圆C过定点P(4,2),
∴(4-x0)2+(2-x0)2=r2(r≠0).
∴r2=2x20-12x0+20.
∴圆C的标准方程为(x-x0)2+(y-x0)2=2x20-12x0+20.
(2)∵(x-x0)2+(y-x0)2=2x20-12x0+20=2(x0-3)2+2,∴当x0=3时,圆C的半径最小,即面积最小.
此时圆C的标准方程为(x-3)2+(y-3)2=2.。