浅谈数学与美
- 格式:doc
- 大小:11.00 KB
- 文档页数:1
浅谈数学与美美的事物,总是为人们所陶醉。
一提到美,大家就想到风景的美、图画的美、诗文的美、音乐的美……很少有人想到数学的美,然而,数学,这位自然科学的皇后里面,蕴含着比诗画更美丽的境界,它是人类智慧中共同美感的一部分。
“哪里有数,哪里就有美”,的确,数学,是一门独特的科学,数学中蕴藏着许多美的因素,教师要提高数学教学效率,应充分挖掘数学中的美育因素,让学生在数学的海洋中得到美的熏陶、美的享受,以便激发兴趣、净化心灵、陶冶情操,收到事半功倍的教学效果。
一、数学的简洁美爱因斯坦说过:“美,本质上终究是简单性。
”他认为,任何科学只有借助数学,才能达到简单性的美学准则。
数学的简洁美,并不是指数学内容的简单,而是指数学的表达形式、数学的证明方法和数学的理论体系的结构简洁。
圆的周长公式:C=2πR,简洁地揭示了圆的周长与其半径之间的关系,一个传奇的“π”把它们紧紧相连。
欧拉公式:V-E+F=2,简洁地概括了多面体的顶点数V、棱数E、面数F之间的特性,而且这个公式也成了近代数学两个重要分支——拓扑学与图论的基本公式,形式简洁,但内涵丰富。
数学中的概念、定义、定理是字字如金,无多余修饰累赘,简约而精练,有时甚至达到了增之一字则太多,少之一字则不妙的程度。
就像舞台上的道具,没有一项多的,也没有一项少的。
至于公理,它更是简洁漂亮,一组公理宛如几根柱石,托起一座座精美的数学楼阁,把数学园地点缀得光彩多姿。
比如,立体几何中平面的三个基本性质,也就是三个公理,它们是立体几何的基石,正是由它们才建立起了丰富多彩、纷繁复杂的立体几何知识体系。
其公理2:“如果两个平面有一个公共点,那么它们有且只有一条通过这个公共点的公共直线。
”如果我们把“两个平面”中的“平”删掉,改为“两个面”,则真理就成了谬论。
比如,一个球(面)放在一个平面上,它们就有一个公共点,而它们就没有通过这个公共点的公共直线。
二、数学的和谐美和谐美是数学美的普遍形式。
数学之美发现数学的美妙和奥秘《数学之美:发现数学的美妙和奥秘》数学,作为一门古老而又深奥的学科,承载着人类智慧的结晶,是人类对世界的认知和思维方式的具体体现。
它不仅能够解决现实生活中的问题,还能揭示自然界规律的奥秘。
本文将为您揭示数学的美妙之处和其背后的奥秘。
一、数学的美妙之处数学作为一种抽象的语言,具有独特的美感和内在的美妙。
它通过符号和公式表达,精确而简洁地描述了世界的运行方式。
数学的美妙之处体现在以下几个方面。
1.1 数学的纯粹性数学是一门纯粹的学科,不受主观感情和外在因素的影响,它的真理是自洽的、不可动摇的。
数学的公理体系和推理方法是严密的,它独立于任何时间和空间的限制。
在数学的世界里,人们能够追求绝对的真理和完美的美感。
1.2 数学的创造性数学不仅是纯粹的,同时也是富有创造力的。
数学家们创造性地提出了许多深奥的概念和理论。
例如,欧几里得几何、微积分、复数等都是数学家们在实践中获得的创造性成果。
这些创新不仅给数学界带来了新的发展,也为其他学科提供了重要的理论基础。
1.3 数学的美学价值在数学的世界里,有着许多美妙的定理和公式。
例如,费马定理、黄金分割、欧拉公式等,它们都蕴含着深刻的美学价值。
数学家们通过推理和证明,发现了这些美丽而有趣的数学规律,为人类带来了认知的愉悦和审美的享受。
二、数学的奥秘和发现数学之所以被赋予如此多的美妙和奥秘,是因为它揭示了自然界和人类思维的规律。
2.1 数学与自然界的关系自然界中充满了许多难以理解的现象和规律。
而数学正是人类解读自然界的有力工具。
事实上,自然界中的许多现象都能够用数学模型来描述和解释。
例如,物理学中的运动规律、天文学中的星体运动、生物学中的遗传规律等,都需要数学来进行分析和研究。
2.2 数学与人类思维的关系数学不仅能解释自然界的规律,也适用于人类的思维方式。
逻辑推理、抽象思维、问题解决等都是数学思维在人类认知中的体现。
通过数学学习和实践,人们能够培养自己的逻辑思维能力和创新思维能力,提高问题解决的能力和效率。
数学之美学习数学的乐趣与收获数学之美学习数学的乐趣与收获数学,作为一门抽象而精确的学科,常常被人们认为是一种枯燥乏味的学习内容。
然而,深入学习数学的人们往往会发现,数学不仅仅是一种学科,更是一门美学。
学习数学不仅可以享受到它带来的乐趣,还能从中获得很多的收获。
一、数学的乐趣数学在表达抽象概念、解决问题时的美感令人陶醉。
数学的逻辑性与严密性让人着迷,它不受主观感情的干扰,只遵循其自身的规律。
同时,数学也具备普适性,不受时间、空间和文化差异的限制,这使得数学成为一种可以让不同背景的人们产生共鸣的学科。
在学习数学的过程中,我们还能够培养一种严密而系统的思维方式。
数学问题往往需要我们将复杂的情况进行简化,运用逻辑推理和精确的符号计算,通过不懈的努力,找到解决问题的方法。
这种思维方式的培养不仅有助于我们解决数学问题,还能在日常生活中起到引导作用,帮助我们更好地分析和解决问题。
二、数学的收获学习数学不仅可以让我们享受到乐趣,还能够带来很多实际的收获。
首先,数学的学习可以培养我们的逻辑思维能力和分析问题的能力。
数学的推理过程需要我们善于观察问题的本质,分析问题的关键点,运用逻辑推理进行思考,这些能力在我们日常生活和工作中都是非常重要的。
其次,学习数学可以培养我们的创造力。
数学中经常需要我们找到不同的解决方法,甚至创造新的数学理论来解决问题。
这种创造力的培养可以让我们在其他学科和工作中也更具创新性和独立思考能力。
另外,学习数学可以提高我们的问题解决能力。
数学中的问题往往需要我们从不同的角度思考,并找到最优的解决方案。
通过数学的学习,我们可以逐渐培养出对问题分析和解决的敏锐度,使我们在面对实际问题时更加得心应手。
最后,学习数学还可以培养我们的耐心和毅力。
数学中的一些问题需要反复的推敲和尝试,而不是一蹴而就。
通过坚持不懈地解题,我们可以培养出耐心和毅力,这些品质在我们的学习和生活中都是宝贵的财富。
综上所述,学习数学不仅可以带来乐趣,还能够给我们带来很多实际的收获。
浅谈数学之美美是人类创造性实践活动的产物,是人类本质力量的感性显现。
通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。
数学美是自然美的客观反映,是科学美的核心。
简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。
一、数学美的性质1、数学美的客观性:即指客观存在于数学领域中的审美对象是不以审美主体是否承认、是否意识到为转移的,尽管因审美主体的主观条件的不同,并不是所有的或特定的数学美都能为审美主体所感知,但这并不能改变这数学美的存在。
2、数学美的社会性:数学美是一种社会现象,因为数学美是对人而言的。
数学家通过数学实践活动(特别是数学理论创造的实践活动),使自己的本质力量“对象化”了,或者说“自然人化”了。
所谓的“人化”就是人格化,即自然物具有人的本质的印记,实质上就是社会化。
这种社会化的内容正是数学美的内容,它是数学美产生的本原。
3、数学美的物质性:数学美的内容人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。
二、数学美的表现形式1、简单性,是数学美的基本表现形式之一。
作为反映现实世界量及其关系规律的数学来说,那种最简洁的数学理论最能给人以美的享受。
简单性又是数学发现与创造中的美学因素之一。
最简单的例子便是代数运算中之乘法与幂的运算的引进是源于避免重复的加法运算和重复的乘法运算。
2、统一性,是指部分与部分,部分与整体之间的内在联系或共同规律所呈现出来的和谐、协调、一致。
数学美中的统一性在数学中有很多体现。
数学推理的严谨性和矛盾性体现了和谐;表现在一定意义上的不变性,反映了不同对象的协调一致。
例如,数的概念的一次次扩张和数系的统一,运算法则的不变性;几何中的圆幂定理是相交弦定理、切、割线定理的统一形式。
3、对称性,是指组成某一事物或对象的两个部分的对等性。
数学形式和结构的对称性、数学命题关系中的对偶性、数学方法中的对偶原理方法都是对称美的自然表现。
数学的美与理心得体会篇一:浅谈数学与美浅谈数学与美[摘要]数学是我们从小就接触的一门学科,它在我们的学生生涯中占了很重的位置.我们往往把数学理解成很枯燥乏味的东西,对它丝毫没有兴趣,但是事实并非如此.数学本身包含着很多很多的美,只要我们细心体会,数学的美无处不在.本文主要从五个方面阐述数学与各种美之间的联系和区别,让我们发现数学的各种美,从而提升我们学数学的兴趣,使之符合新课标标准和要求,使感觉乏味的数学学习起来轻松愉快! [关键词] 毕达哥拉斯;简洁美;对称美;和谐美;奇异美.[ABSTRACT] Mathematics is a subject that we contact a discipline from the young age, it's in our students career of the heavy position. We tend to mathematical understanding into a boring thing, we have no interests in it, but that's not the case. Math’s itself contains a lot of beauty, as long as we experience, mathematical beauty is around us. This paper mainly have five aspects of mathematics and explain the relation and difference between beauty, let us find all kinds of mathematicalbeauty, so as to enhance we learning mathematics of interest, it is to point to xxply with the new course of standard and requirement, which makes boring mathematics happy and easy![KEY WORDS] Pythagoras; Concise beauty; Symmetrical beauty; Harmonious beauty; Singular beauty.1.数学的美与毕达哥拉斯哪里有数学,哪里就有美;人类对数学的认识最早是从自然数开始的,这看似极普通的自然数里面,其实就埋藏着数不尽的奇珍异宝.古希腊的毕达哥拉斯学派对自然数很有研究,当他们将这数不尽的奇珍异宝的一部分挖掘出来并呈现于世人面前时,人们就为这数的美丽震颤了.毕达哥拉斯将自然界和和谐统一于数,他认为,数本身就是世界的秩序.他的名言是:“凡物皆数”.在一次集会上,一位学者提出了他的疑问:在我结交朋友时,也存在着数的作用吗?“朋友是你灵魂的倩影,要像220与284一样亲密.”望着困惑不解的人们,毕达哥拉斯解释道:神暗示我们,220的全部真因子1、2、4、5、10、11、20、22、44、、551102471、142之和为284;而284的全部真因子1、、、之和又恰为220,这就是亲密无间的亲和数.真正的朋友也象它们那样.学者们为毕达哥拉斯的妙喻折服了,更为这“你中有我,我中有你”的美妙的亲和数惊呆了,震撼了.2.数学与简洁美爱因期坦说过:“美,本质上终究是简单性.”他还认为,只有借助数学,才能达到简单性的美学准则.朴素,简单,是其外在形式.只有既朴实清秀,又底蕴深厚,才称得上简洁美;欧拉给出的公式:V+E+F=2,堪称“简单美”的典范.世间的多面体有多少?没有人能说清楚.但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹?在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多,比如:圆的周长公式C=2πR 222 勾股定理:直角三角形两直角边的平方和等于斜边平方 a?b?c.abc???2R. 正弦定理:?ABC的外接圆半径R,则sinAsinBsinC数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁.正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”. 3.数学与对称美对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,对称美是数学美的又一大特点.数学的对称美分为两种:一种是数(式)的对称性美,主要体现在数(式)的结构上,例如:加法的交换律a?b?b?a,乘法的交换律ab?ba,a与b的位置具有对称关系,另一种是图形的对称性,整体美、简洁美,图形的对称是指组成图形的部分与部分之间、整体与整体之间的一种统一和谐关系.例如轴对称图形和中心对称图形等,这些图形匀称美观,所以在日常生活中用途非常广泛,许多建筑师和美术工作者常常采用一些对称图形,设计出美丽的装饰图案.对称的建筑物,对称的图案,是随处可见的,绘画中利用对称,文学作品中也有对称手法;在数学中则表现在几何图形中有点对称、线对称、面对称;在几何图形中对称的图形给人以美的享受,而不对称的现象中同样存在着美,这就是黄金分割的美或者更深层次的对称美.如:一条线段关于它的中点对称,这条线段若左端点的坐标为0,右端点的坐标为1,那么中点在处.又如:似乎黄金分割点不是对称点,但若将左端记为A,右端记为B,黄金分割点记为C,则AC?AB?BC而且C关于中点的对称点D也是AB的黄金分割点,因为,再进一层看,D又是AC的黄金分割点;C 是DB的黄金分割点.类似地一直讨论下去,这可视为一种连环对称.如今,设计师和艺术家们已经利用这一规律创造出了许多令人心碎的建筑和无价的艺术珍宝,在古代“对称”一词的含义是“和谐”、“美观”.毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形.圆是中心对称圆形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴.梯形的面积公式: S??a?b2h?an?bn?nS?,等差数列的前n项和公式:n,其中a 是上底边长,2b是下底边长,其中a1是首项,an是第n项,这两个等式中,a与a1是对称的。
浅谈数学在美术中的应用
数学在美术中的应用是极其重要的,它不仅可以帮助艺术家创作出更加精美的作品,而且还可以提高艺术家的创作效率。
首先,数学可以帮助艺术家创作出更加精美的作品。
数学可以帮助艺术家创作出更加完美
的线条,更加精确的比例,更加精致的色彩,以及更加精美的图案。
例如,在绘画中,艺术家可以利用数学原理来控制线条的弧度,控制图案的比例,以及控制色彩的深浅。
其次,数学还可以提高艺术家的创作效率。
数学可以帮助艺术家快速地完成作品,而不用
花费大量的时间。
例如,在绘画中,艺术家可以利用数学原理来快速地构建出精确的比例,以及快速地构建出精美的图案。
总之,数学在美术中的应用是极其重要的,它不仅可以帮助艺术家创作出更加精美的作品,而且还可以提高艺术家的创作效率。
因此,艺术家应该加强对数学的学习,以便更好地利
用数学在美术中的应用。
发现数学的美妙之处数学作为一门科学,一直以来都被视为枯燥难懂的学科。
然而,当我们深入探索数学世界的时候,我们会惊讶地发现,数学背后蕴含着许多美妙之处。
本文将带领读者一起探索数学中的美妙之处,从数学的美学角度出发,欣赏数学在生活中的应用以及数字之间的奇妙关系。
一、数学中的美学数学中的美学是指其独特的纯粹性和结构性。
与其他学科不同,数学并不依赖于现实世界的概念,而是通过抽象的符号、公理和推理来展示其内在的美。
通过数学本身的结构和逻辑,我们能够感受到数学的优雅和美丽。
典型的数学美学可以从几何学中观察到。
一方面,欧几里得几何学所展示的平面图形、立体体积等有序而完美的结构,给人一种和谐美。
另一方面,非欧几里得几何学中的曲率和拓扑学中的奇异形状,又给人一种出人意料的美感。
二、数学在生活中的应用尽管数学被认为是一门纯粹的学科,但实际上它在我们的日常生活中无处不在。
数学在科学、工程、金融等领域都扮演着重要的角色。
在自然科学中,数学为我们提供了解释自然现象的工具。
物理学中的运动学和力学,化学中的化学方程式和反应速率,生物学中的遗传学和进化论,都离不开数学的描述和计算。
在工程领域,数学常常用于设计和优化各种项目。
建筑师使用几何学和静力学来设计稳定的建筑物,电气工程师使用电路分析和微积分来设计电子设备,航空工程师使用数值模拟和动力学来设计飞机。
在金融领域,数学为投资和风险管理提供了基础。
金融学家使用概率论和统计学来分析市场的波动性,数值分析用于计算金融衍生品的价格和风险。
三、数字之间的奇妙关系数字是数学的基本元素,数字之间的关系构成了数学的基础。
而在这些数字之间,我们可以观察到一些奇妙的关系。
例如,斐波那契数列是一个非常著名的数列,它的每一项都是前两项之和。
这个数列在自然界中也有广泛的应用,如植物的叶子排列、蜂巢的构造等,展现了自然界中数字之间的奇妙关系。
另一个例子是π和黄金分割。
π是一个无理数,它的小数部分无限不循环。
数学之美欣赏数学的美妙与深奥之处数学之美:欣赏数学的美妙与深奥之处数学是一门既古老又现代的学科,其美妙与深奥之处令人惊叹。
正如爱因斯坦所说:“数学是宇宙的语言”。
在这篇文章中,我们将一同探索数学的美丽之处,并且欣赏数学的魅力。
一、对称美:数学的几何形式在数学中,对称美是一种无处不在的美。
数学中的对称性,不仅仅存在于几何图形中,还存在于方程的形式和等式的复杂性中。
正如迪斯东所说:“对称是真实世界美的显现”。
1.1 几何美几何学是数学中最直观且最引人入胜的分支之一,它探讨了空间中的形状、大小和相对位置等概念。
几何图形的对称性给人一种和谐和平衡的感觉。
在平面几何中,我们熟悉的圆、矩形、正方形等形状,无论从哪个角度看都具有对称性。
例如,圆和正方形都是对称的,无论你如何旋转它们,它们看起来都相同。
然而,几何学不仅仅局限于平面图形,还包括立体几何。
例如,多面体如正四面体和正八面体,它们具有各种对称性质,给我们带来视觉上的愉悦和美感。
另外,对称性不仅存在于形状上,还存在于对称变换中。
例如,平移、旋转和翻转等变换保持了图形的对称性。
这些变换不仅在几何学中有意义,也在其他数学分支、物理学和艺术中扮演着重要的角色。
1.2 方程美数学中的对称性不仅停留在几何形状上,还存在于方程的形式中。
例如,平方和立方等特殊的数学函数具有对称性,它们在自变量取正数和负数时具有同样的性质。
这种对称性使我们能够推导出一些重要的等式和恒等式,从而更好地理解数学中的关系和规律。
在代数学中,方程的对称性也是一种美妙的存在。
例如,二次方程的对称轴是一个重要的概念,它将二次曲线分成两个对称的部分。
对称轴不仅在数学中有重要作用,还在物理学中的摆动、光学和电磁学等领域中具有深远的影响。
二、逻辑美:数学的思维方式除了几何美,数学还有着独特的逻辑美。
数学的思维方式注重严密的推理和清晰的逻辑,这使得数学成为一门深奥又美丽的学科。
2.1 推理的美数学中的推理是一种基于逻辑思维的过程,它通过严格的证明来建立数学结论。
数学数学之美数学,是一门研究数量、结构、空间以及变化的学科,被誉为“科学之王”。
它的美不仅体现在它的创新性和深度上,更体现在它对现实世界的解释和应用中。
本文将讨论数学之美的几个方面,包括数学的逻辑美、形式美以及实用美。
1. 数学的逻辑美数学是一门严谨的学科,它追求准确性和逻辑性。
数学中的每个定理和推理都经过严格的证明和推导,不容忽视任何细节。
这种严谨性使得数学具有独特的美感,让人感受到逻辑的严密和真理的美妙。
数学的逻辑美可以通过各种公式、定理和证明来展示。
例如,费马定理的证明以及勾股定理的几何证明都展现出了数学中的逻辑美。
2. 数学的形式美数学具有独特的形式美,其美感来自于数学中的符号、图形和模式。
数学中的符号和公式可以简洁地表达复杂的概念和关系,让人们可以通过简单的方式处理复杂的问题。
数学中的图形可以展示出数学中的对称性和几何结构,例如,圆的完美形状以及分形图形的奇特之美。
数学中的模式则是一种重复出现的规律,让人们感受到宇宙中数学的普遍性。
所有这些形式美共同构成了数学的美妙之处。
3. 数学的实用美数学不仅有理论上的美,还有实际应用上的美。
数学通过建立模型和推导规律,为解决现实问题提供了有力的工具。
无论是物理学中的数学模型,经济学中的数学预测,还是工程学中的数值计算,数学都发挥着不可替代的作用。
数学的实用美体现在它能够解决实际问题、优化决策,并推动科技的发展。
没有数学的支持,现代社会的许多成就将无法实现。
综上所述,数学之美体现在它的逻辑美、形式美和实用美上。
数学追求严谨的逻辑性,让人们感受到真理的美妙;数学的符号、图形和模式展示了独特的形式美;数学的应用使得它在实际问题的解决中发挥出实用美。
正是数学的美妙之处,让人们对这门学科充满了无尽的探索与热爱。
数学之美探索数学中的美丽和奥秘数学之美:探索数学中的美丽和奥秘数学是一门充满美丽和奥秘的学科,它在我们的生活中无处不在,却常常被人们忽略。
数学之美不仅仅体现在它的应用领域,更是隐藏在它的原理和规律之中。
本文将从几个角度探索数学中的美丽和奥秘。
数学的美丽首先体现在它的基本运算和几何形状上。
加法、减法、乘法和除法,这些简单而基础的运算符号,尽管简单却蕴含着无限的可能性。
通过运算,我们可以解决各种问题,揭示事物之间的关系。
同时,数学中的各种几何形状,如圆、三角形、椭圆等,都具有独特的美感和几何特性。
它们的对称性、比例关系以及无限逼近的思想,都展示了数学的美丽。
在数学的世界中,数列和数学函数也是不可忽视的美丽存在。
数列是由一系列有序的数字按照一定规律排列而成的序列,如斐波那契数列、调和数列等,它们呈现出迷人的规律和神奇的性质。
数学函数则是数学中的一种映射关系,通过自变量和因变量的变化规律,可以揭示事物之间的内在联系。
例如,正弦函数、指数函数等,它们的图像形态多样,每一种函数都呈现出自己独特的特点和美感。
数学的美丽还体现在它的代数和统计学中。
代数是研究数与符号之间关系的数学分支,它通过符号运算和方程求解,揭示了事物之间普遍存在的规律和特性。
代数的美丽在于它的简洁和普适性,通过运用代数方法,我们可以解决各种实际问题。
统计学则是关于数据收集、分析和解释的学科,通过统计方法,我们可以总结和归纳数据的规律,同时揭示数据的背后隐藏的信息。
统计学的美丽在于它可以帮助我们理解和预测现象,为决策提供依据。
数学之美还体现在它与其他学科的交叉融合中。
数学与自然科学、工程学、经济学、计算机科学等学科密切相关,为这些学科提供了基础和支持。
在自然科学中,数学通过物理方程、微积分等工具揭示了自然界的规律和运动原理。
在经济学中,数学通过数理经济学、优化理论等方法,帮助经济学家解决各种经济问题。
在计算机科学中,数学是计算机算法和数据结构的基础,为计算机的发展和应用提供了理论支持。
浅谈数学与美
经过八周课程的学习,总共十讲的内容,使我对美产生新的了解与认识。
爱因期坦说过:“美,本质上终究是简单性.”他还认为,只有借助数学,才能达到简单性的美学准则.朴素,简单,是其外在形式.只有既朴实清秀,又底蕴深厚,才称得上简洁美。
首先说数学与对称美的存在形式,对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,对称美是数学美的又一大特点.数学的对称美分为两种:一种是数(式)的对称性美,主要体现在数(式)的结构上,例如:加法的交换律a+b=b+a,乘法的交换律ab=ba,a与b的位置具有对称关系,另一种是图形的对称性,整体美、简洁美,图形的对称是指组成图形的部分与部分之间、整体与整体之间的一种统一和谐关系.例如轴对称图形和中心对称图形等,这些图形匀称美观,所以在日常生活中用途非常广泛,许多建筑师和美术工作者常常采用一些对称图形,设计出美丽的装饰图案.对称的建筑物,对称的图案,是随处可见的,绘画中利用对称,文学作品中也有对称手法;在数学中则表现。