万有引力2
- 格式:doc
- 大小:93.50 KB
- 文档页数:2
第2节万有引力定律学习目标核心素养形成脉络1.知道太阳与行星间存在引力.2.能利用开普勒定律和牛顿第三定律推导出太阳与行星之间的引力表达式.3.理解万有引力定律内容、含义及适用条件.4.认识万有引力定律的普遍性,能应用万有引力定律解决实际问题.一、行星与太阳间的引力1.太阳对行星的引力:太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间距离的二次方成反比,即F∝mr2.2.行星对太阳的引力:在引力的存在与性质上,太阳和行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同(设太阳质量为m太),即F′∝m太r2.3.太阳与行星间的引力:根据牛顿第三定律F=F′,所以有F∝mm太r2,写成等式就是F =Gmm太r2.二、月—地检验1.猜想:维持月球绕地球运动的力与使物体下落的力是同一种力,遵从“平方反比”的规律.2.推理:物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602.3.结论:计算结果与预期符合得很好.这表明:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比.2.表达式:F=Gm1m2r2.3.引力常量G:由英国物理学家卡文迪什测量得出,常取G=6.67×10-11N·m2/kg2.思维辨析(1)万有引力不仅存在于天体之间,也存在于普通物体之间.()(2)引力常量是牛顿首先测出的.()(3)物体间的万有引力与它们间的距离成反比.()(4)根据万有引力定律表达式可知,质量一定的两个物体若无限靠近,它们间的万有引力趋于无限大.()提示:(1)√(2)×(3)×(4)×基础理解(1)如何通过天文观测计算月球绕地球转动时的向心加速度呢?(2)如图所示,天体是有质量的,人是有质量的,地球上的其他物体也是有质量的.①任意两个物体之间都存在万有引力吗?为什么通常两个物体间感受不到万有引力,而太阳对行星的引力可以使行星围绕太阳运转?②地球对人的万有引力与人对地球的万有引力大小相等吗?提示:(1)通过天文观测我们可以获得月球与地球之间的距离以及月球的公转周期,所以我们可以利用a n=4π2T2r计算月球绕地球运动时的向心加速度.(2)①任意两个物体间都存在着万有引力.但由于地球上物体的质量一般很小(与天体质量相比),地球上两个物体间的万有引力远小于地面对物体的最大静摩擦力,通常感受不到,但天体质量很大,天体间的引力很大,对天体的运动起决定作用.②相等.它们是一对相互作用力.对太阳与行星间引力的理解问题导引如图所示,太阳系中的行星围绕太阳做匀速圆周运动.(1)为什么行星会围绕太阳做圆周运动?(2)太阳对不同行星的引力与行星的质量是什么关系?(3)行星对太阳的引力与太阳的质量是什么关系?[要点提示] (1)因为行星受太阳的引力,引力提供向心力.(2)与行星的质量成正比.(3)与太阳的质量成正比.【核心深化】1.太阳与行星间的引力是相互的,沿两个星体连线方向,指向施力星体.2.公式中G 为比例系数,与行星和太阳均没有关系.3.太阳与行星间的引力规律也适用于行星和卫星间.4.该引力规律普遍适用于任何有质量的物体之间.(多选)关于太阳与行星间的引力,下列说法正确的是( )A .神圣和永恒的天体做匀速圆周运动无需原因,因为圆周运动是最完美的B .行星绕太阳旋转的向心力来自太阳对行星的引力C .牛顿认为物体运动状态发生改变的原因是受到力的作用,行星围绕太阳运动,一定受到了力的作用D .牛顿把地面上的动力学关系应用到天体间的相互作用,推导出了太阳与行星间的引力关系[解析] 天体做匀速圆周运动时由中心天体的万有引力充当向心力,故A 错误;行星绕太阳旋转的向心力是来自太阳对行星的万有引力,故B 正确;牛顿认为物体运动状态发生改变的原因是受到力的作用,行星绕太阳运动时运动状态不断改变,一定受到了力的作用,故C 正确;牛顿把地面上的动力学关系作了推广应用到天体间的相互作用,推导出了太阳与行星间的引力关系,故D 正确.[答案] BCD(2019·陕西咸阳模拟)下列说法正确的是( )A .在探究太阳对行星的引力规律时,我们引用了公式r 3T 2=k ,这个关系式是开普勒第三定律,是可以在实验室中得到证明的B .在探究太阳对行星的引力规律时,我们引用了公式F =m v 2r,这个关系式实际上是牛顿第二定律,是可以在实验室中得到验证的C .在探究太阳对行星的引力规律时,我们引用了公式v =2πr T,这个关系式实际上是匀速圆周运动的速度定义式D .在探究太阳对行星的引力规律时,使用的三个公式,都是可以在实验室中得到证明的解析:选B.在探究太阳对行星的引力规律时,我们引用了公式r 3T 2=k ,这个关系式是开普勒第三定律,是通过研究行星的运动数据推理出的,不能在实验室中得到证明,故A 错误;在探究太阳对行星的引力规律时,我们引用了公式F =m v 2r,这个关系式是向心力公式,实际上是牛顿第二定律,是可以在实验室中得到验证的,故B 正确;在探究太阳对行星的引力规律时,我们引用了公式v =2πr T,这个关系式不是匀速圆周运动的速度定义式,匀速圆周运动的速度定义式为v =Δx Δt,故C 错误;通过A 、B 、C 的分析可知D 错误. 对万有引力定律的理解【核心深化】 内容自然界中任何两个物体都互相吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比 公式 F =G m 1m 2r 2,其中G =6.67×10-11N ·m 2/kg 2,称为引力常量,m 1、m 2分别为两个物体的质量,r 为它们之间的距离适用条件 (1)严格地说,万有引力定律只适用于质点间的相互作用(2)万有引力定律也适用于计算两个质量分布均匀的球体间的相互作用,其中r 是两个球体球心间的距离 (3)计算一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心与质点间的距离(4)两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r为两物体质心间的距离特 性普遍性 万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力相互性 两个有质量的物体之间的万有引力是一对作用力和反作用力,符合牛顿第三定律宏观性 在地面上的一般物体之间,由于质量比较小,物体间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间,或天体与其附近的物体之间,万有引力起着决定性作用特殊性 两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,与所在空间的性质无关,与周围是否存在其他物体无关关键能力1 对万有引力定律的理解(2019·河北承德期中)关于万有引力定律,下列说法中正确的是( )A .牛顿最早测出G 值,使万有引力定律有了真正的实用价值B .牛顿通过“月—地检验”发现地面物体、月球所受地球引力都遵从同样的规律C .由F =G Mm r 2可知,两物体间距离r 减小时,它们之间的引力增大,距离r 趋于零时,万有引力无限大D .引力常量G 值大小与中心天体选择有关[解析] 卡文迪什最早测出G 值,使万有引力定律有了真正的实用价值,选项A 错误;牛顿通过“月—地检验”发现地面物体、月球所受地球引力都遵从同样的规律,选项B 正确;当两物体间距离r 趋于零时,万有引力定律不再适用,选项C 错误;引力常量G 值大小与中心天体选择无关,选项D 错误.[答案] B关键能力2 万有引力定律的应用(2019·河北石家庄期末)已知某星球的质量是地球质量的18,直径是地球直径的12.一名宇航员来到该星球,宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的( )A.14B.12 C .2倍 D .4倍[解析] 宇航员在地球上所受的万有引力F 1=G mM 1R 21,宇航员在该星球上所受的万有引力F 2=G mM 2R 22,由题知M 2=18M 1,R 2=12R 1,解得F 2F 1=M 2R 21M 1R 22=12,故B 正确,A 、C 、D 错误. [答案] B关键能力3 “填补法”在引力求解中的应用有一质量为M 、半径为R 的密度均匀球体,在距离球心O 为2R 的地方有一质量为m 的质点,现在从M 中挖去一半径为R 2的球体,如图所示,求剩下部分对m 的万有引力F 为多大?[思路点拨] 挖去一球体后,剩余部分不再是质量分布均匀的球体,不能直接利用万有引力定律公式求解.可先将挖去部分补上来求引力,求出完整球体对质点的引力F 1,再求出被挖去部分对质点的引力F 2,则剩余部分对质点的引力为F =F 1-F 2.[解析] 完整球质量M =ρ×43πR 3 挖去的小球质量 M ′=ρ×43π⎝⎛⎭⎫R 23=18ρ×43πR 3=M 8由万有引力定律得F 1=G Mm (2R )2=G Mm 4R 2 F 2=G M ′m r ′2=G M 8m ⎝⎛⎭⎫3R 22=G Mm 18R 2 故F =F 1-F 2=G Mm 4R 2-G Mm 18R 2=7GMm 36R 2. [答案] 7GMm 36R 2【达标练习】1.(多选)关于引力常量,下列说法正确的是( )A .引力常量是两个质量为1 kg 的质点相距1 m 时的相互吸引力B .牛顿发现了万有引力定律,测出了引力常量的值C .引力常量的测定,证明了万有引力的存在D .引力常量的测定,使人们可以测出天体的质量解析:选CD.引力常量的大小等于两个质量为1 kg 的质点相距1 m 时的万有引力的数值,而引力常量不能说是两质点间的吸引力,选项A 错误;牛顿发现了万有引力,但他并未测出引力常量,引力常量是卡文迪什巧妙地利用扭秤装置在实验室中第一次比较精确地测出的,选项B 错误;引力常量的测出,不仅证明了万有引力的存在,而且也使人们可以测出天体的质量,这也是测出引力常量的意义所在,选项C 、D 正确.2.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .G m 1m 2r 2B .G m 1m 2r 21C.G m1m2(r1+r2)2D.Gm1m2(r1+r2+r)2解析:选D.两球质量分布均匀,可认为质量集中于球心,由万有引力公式可知两球间的万有引力应为F=G m1m2(r1+r2+r)2,故选项D正确.3.(2019·云南江川期末)树上的苹果落向地球,针对这一现象,以下说法正确的是() A.苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大B.地球对苹果有引力,而苹果对地球无引力C.苹果对地球的引力大小和地球对苹果的引力大小是相等的D.以上说法都不对解析:选C.地球对苹果的引力与苹果对地球的引力是一对作用力与反作用力,遵守牛顿第三定律,可知它们大小是相等的,方向相反,故C正确,A、B、D错误.1.(2019·广东珠海期中)关于行星运动定律和万有引力定律的建立过程,下列说法正确的是()A.第谷通过整理大量的天文观测数据得到行星运动定律B.哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律C.开普勒通过总结论证,总结出了万有引力定律D.卡文迪什在实验室里通过几个铅球之间万有引力的测量,测出了引力常量的数值解析:选D.开普勒对天体的运行做了多年的研究,最终得出了行星运行三大定律,故A项错误;哥白尼提出了日心说,开普勒发现了行星沿椭圆轨道运行的规律,故B项错误;牛顿通过总结论证,总结出了万有引力定律,并通过比较月球公转的周期,根据万有引力充当向心力,对万有引力定律进行了“月—地检验”,故C项错误;牛顿发现了万有引力定律之后,第一次通过实验比较准确地测出万有引力常量的科学家是卡文迪什,故D项正确.2.(2019·吉林五十五中期中)对于万有引力定律的表达式,下面正确的说法是() A.公式中的G是引力常量,它是实验测得的,不是人为规定的B.当r等于零时,万有引力为无穷大C.万有引力定律适用所有情况,没有条件限制D.r是两物体最近的距离解析:选A.公式中的G是引力常量,它是实验测得的,不是人为规定的,故A正确;万有引力公式只适用于两质点间的作用力,当r等于零时,万有引力公式已经不成立,不能由万有引力公式得出万有引力为无穷大,故B 、C 错误; r 是两质点间的距离,如果两物体是均匀的球体,r 是两球心间的距离,故D 错误.3.(2019·北京西城区期末)两个质点之间万有引力的大小为F ,如果将这两个质点之间的距离变为原来的2倍,那么它们之间万有引力的大小变为( ) A.F 4 B .4F C.F 2 D .2F解析:选A.根据万有引力定律公式F =GMm r2得,将这两个质点之间的距离变为原来的2倍,则万有引力的大小变为原来的14,故万有引力变为F 4,选项A 正确. 4.(2019·新疆兵团期末)一个质子由两个u 夸克和一个d 夸克组成.一个夸克的质量是7.1×10-30 kg ,则两个夸克相距1.0×10-16 m 时的万有引力约为(引力常量G =6.67×10-11 N ·m 2/kg 2)( )A .2.9×10-35 N B .3.1×10-36 N C .3.4×10-37 N D .3.5×10-38N 解析:选C.两夸克间的万有引力:F =G m 1m 2r 2=6.67×10-11×7.1×10-30×7.1×10-30(1.0×10-16)2N ≈3.4×10-37 N ,故C 正确,A 、B 、D 错误.(建议用时:30分钟)A 组 学业达标练1.(2019·江西上饶期中)下面有关万有引力的说法中,不正确的是( )A .F =G m 1m 2r2中的G 是比例常数,其值是牛顿通过扭秤实验测得的 B .地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力C .苹果落到地面上,说明地球对苹果有引力,苹果对地球也有引力D .万有引力定律是牛顿在总结前人研究的基础上发现的解析:选A.G 是比例常数,其值是卡文迪什通过扭秤实验测得的,故A 错误;由万有引力定律可知,地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力,故B 正确;地球吸引苹果的力与苹果吸引地球的力是相互作用力,因此地球对苹果有引力,苹果对地球也有引力,故C 正确;万有引力定律是牛顿在总结前人研究的基础上发现的,故D正确.2.(2019·浙江杭州期末)根据万有引力定律,两个质量分别是m 1和m 2的物体,他们之间的距离为r 时,它们之间的吸引力大小为F =Gm 1m 2r 2,式中G 是引力常量,若用国际单位制的基本单位表示G 的单位应为( )A .kg ·m ·s -2B .N ·kg 2·m -2 C .m 3·s -2·kg -1 D .m 2·s -2·kg -2 解析:选C.国际单位制中质量m 、距离r 、力F 的基本单位分别是:kg 、m 、kg·m·s -2,根据牛顿的万有引力定律F =Gm 1m 2r 2,得到用国际单位制的基本单位表示G 的单位为m 3·s -2·kg -1,选项C 正确.3.下列关于万有引力的说法,正确的是( )A .万有引力只是宇宙中各天体之间的作用力B .万有引力是宇宙中具有质量的物体间普遍存在的相互作用力C .地球上的物体以及地球附近的物体除受到地球对它们的万有引力外还受到重力作用D .太阳对地球的万有引力大于地球对太阳的万有引力解析:选B.万有引力是宇宙中具有质量的物体间普遍存在的相互作用力,选项A 错误,B 正确;重力是万有引力的分力,选项C 错误;太阳对地球的万有引力与地球对太阳的万有引力大小相等,选项D 错误.4.(2019·上海浦东学考)某星球的半径与地球相同,质量为地球的一半,则物体在该星球表面所受的万有引力大小是它在地球表面所受万有引力大小的( )A.14B.12 C .2倍 D .4倍解析:选B.万有引力方程为F =G Mm R 2,星球的半径与地球相同,质量为地球的一半,所以物体在该星球表面所受的万有引力大小是它在地球表面所受万有引力大小的一半,A 、C 、D 错误,B 正确.5.(2019·江苏淮安期末)均匀小球A 、B 的质量分别为m 、6m ,球心相距为R ,引力常量为G ,则A 球受到B 球的万有引力大小是( )A .G m 2RB .G m 2R 2C .G 6m 2RD .G 6m 2R 2解析:选D.根据万有引力公式F =GMm r 2,质量分布均匀的球体间的距离指球心间距离,故两球间的万有引力F =G ·m ·6m R 2=6Gm 2R 2,故D 项正确. 6.(2019·辽宁葫芦岛期末)假设在地球周围有质量相等的A 、B 两颗地球卫星,已知地球半径为R ,卫星A 距地面高度为R ,卫星B 距地面高度为2R ,卫星B 受到地球的万有引力大小为F ,则卫星A 受到地球的万有引力大小为( )A.3F 2B.4F 9C.9F 4 D .4F解析:选C.卫星B 距地心为3R ,根据万有引力的表达式,可知受到的万有引力为F =GMm (2R +R )2=GMm 9R 2;卫星A 距地心为2R ,受到的万有引力为F ′=GMm (R +R )2=GMm 4R 2,则有F ′=94F ,故A 、B 、D 错误,C 正确. 7.火星是地球的近邻,已知火星的轨道半径约为地球轨道半径的1.5倍,火星的质量和半径分别约为地球的110和12,则太阳对地球的引力和太阳对火星的引力的比值为( ) A .10B .20C .22.5D .45解析:选C.由F =GMm r 2可得:F 地=GMm 地r 2地,F 火=GMm 火r 2火,则F 地F 火=m 地r 2火m 火r 2地=10.1×1.5212=22.5,选项C 正确.8.(多选)在书中我们了解了牛顿发现万有引力定律的伟大过程(简化版).过程1:牛顿首先证明了行星受到的引力F ∝m r 2、太阳受到的引力F ∝M r 2,然后得到了F =G Mm r 2其中M 为太阳质量,m 为行星质量,r 为行星与太阳的距离;过程2:牛顿通过苹果和月亮的加速度比例关系,证明了地球对苹果、地球对月亮的引力具有相同性质,从而得到了F =G Mm r 2 的普适性.那么( )A .过程1中证明F ∝m r 2,需要用到圆周运动规律F =m v 2r 或F =m 4π2T 2rB .过程1中证明F ∝m r 2,需要用到开普勒第三定律r 3T 2=k C .过程2中牛顿的推证过程需要用到“月球自转周期”这个物理量D .过程2中牛顿的推证过程需要用到“地球半径”这个物理量解析:选ABC.万有引力定律正是沿着这样的顺序才终于发现的:离心力概念——向心力概念——引力平方反比思想——离心力定律——向心力定律——引力平方反比定律——万有引力与质量乘积成正比——万有引力定律.结合题干信息可知A 、B 、C 正确.B 组 素养提升练9.大麦哲伦云和小麦哲伦云是银河系外离地球最近的星系(很遗憾,在北半球看不见).大麦哲伦云的质量为太阳质量的1010倍,即2×1040 kg ,小麦哲伦云的质量为太阳质量的109倍,两者相距4.7×1020 m ,已知万有引力常量G =6.67×10-11 N · m 2/kg 3,它们之间的万有引力约为( )A .1.2×1020 NB .1.2×1024 NC .1.2×1026 ND .1.2×1028 N 解析:选D.由万有引力公式,F =G m 1 m 2r2= 6.67×10-11×2×1040×2×1039(4.7×1020)2 N =1.2×1028 N ,故A 、B 、C 错误,D 正确. 10.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )解析:选D.设地球的质量为M ,半径为R ,探测器的质量为m .根据万有引力定律得:F =G Mm (R +h )2,可知,F 与h 是非线性关系,F -h 图像是曲线,且随着h 的增大,F 减小,故A 、B 、C 错误,D 正确.11.“月—地检验”为万有引力定律的发现提供了事实依据.已知地球半径为R ,地球中心与月球中心的距离r =60R ,下列说法正确的是( )A .卡文迪什为了检验万有引力定律的正确性首次进行了“月—地检验”B .“月—地检验”表明地面物体所受地球的引力与月球所受地球的引力是不同性质的力C.月球由于受到地球对它的万有引力而产生的加速度与月球绕地球做近似圆周运动的向心加速度相等D.由万有引力定律可知,月球绕地球做近似圆周运动的向心加速度是地面重力加速度的160解析:选C.牛顿为了检验万有引力定律的正确性,首次进行了“月—地检验”,故A错误;“月—地检验”表明地面物体所受地球的引力与月球所受地球的引力是同种性质的力,故B错误;月球由于受到地球对它的万有引力面产生的加速度与月球绕地球做近似圆周运动的向心加速度相等,所以证明了万有引力的正确性,故C正确;物体在地球表面所受的重力等于其引力,则有:mg=GMmR2,月球绕地球在引力提供向心力作用下做匀速圆周运动,则有:GMm(60R)2=ma n,联立上两式可得:a n∶g=1∶3 600,故D错误.12.物理学领域中具有普适性的一些常量,对物理学的发展有很大作用,引力常量就是其中之一.1687年牛顿发现了万有引力定律,但并没有得出引力常量.直到1798年,卡文迪什首次利用如图所示的装置,比较精确地测量出了引力常量.关于这段历史,下列说法错误的是()A.卡文迪什被称为“首个测量地球质量的人”B.万有引力定律是牛顿和卡文迪什共同发现的C.这个实验装置巧妙地利用放大原理,提高了测量精度D.引力常量不易测量的一个重要原因就是地面上普通物体间的引力太微小解析:选B.卡文迪什通过测出的万有引力常数进而测出了地球的质量,被称为“首个测量地球质量的人”,A正确;万有引力定律是牛顿发现的,B错误;实验利用了放大的原理,提到了测量的精确程度,C正确;引力常量不易测量的一个重要原因就是地面上普通物体间的引力太微小,D正确.13.如图所示,一个质量为M的匀质实心球,半径为R.如果从球的正中心挖去一个直径为R的球,放在相距为d的地方.求两球之间的引力大小.解析:根据匀质球的质量与其半径的关系M =ρ×43πR 3∝R 3 两部分的质量分别为m =ρ×43π⎝⎛⎭⎫R 23=M 8M ′=M -m =7M 8根据万有引力定律,这时两球之间的引力为F =G M ′m d 2=7GM 264d 2. 答案:7GM 264d 2。
2.万有引力定律课标要求1.知道太阳对行星的引力供应了行星做圆周运动的向心力,能利用开普勒第三定律、牛顿运动定律推导出太阳与行星之间引力的表达式.2.了解月-地检验的内容和作用.3.理解万有引力定律的内容、含义及适用条件.4.相识引力常量测定的物理意义,能应用万有引力定律解决实际问题.思维导图必备学问·自主学习——突出基础性素养夯基一、万有引力定律的建立1.行星绕太阳运动的缘由猜想:太阳对行星的________.2.模型建立:行星以太阳为圆心做________运动,太阳对行星的引力供应了行星做匀速圆周运动的向心力.3.太阳对行星的引力:引力供应行星做匀速圆周运动的向心力:F=________,行星绕太阳运行的线速度:v =________,行星轨道半径r与周期T的关系:________=k.于是得出:F=4π2k,即F∝________.4.行星对太阳的引力:由牛顿第三定律可得行星对太阳的引力F也应与太阳的质量m 太成________.5.行星与太阳间的引力:由F∝,F∝m太,可得F∝,可写成F=________.[导学1]任何两个有质量的物体之间都存在万有引力,由于地球上的物体质量一般很小(与天体质量相比),地球上的两个物体之间的引力远小于地面对物体的最大静摩擦力,通常感受不到,但天体质量很大,天体间的引力很大,对天体的运动起着确定性的作用.二、月-地检验1.理论分析:对月球绕地球做匀速圆周运动,由F=G和a月=,可得:a月=,对苹果自由落体,由F=G和a苹=得:a苹=,由r=60R,可得:=.2.天文观测:已知自由落体加速度g=9.8 m/s2,月地中心间距r月地=3.8×108 m,月球公转周期T月=2.36×106 s,可求得月球绕地球做匀速圆周运动的加速度a月=·r月地≈2.7×10-3 m/s2,≈.3.检验结果:地球对月球的引力、地球对地面上物体的引力、太阳与行星间的引力,遵从________的规律.三、万有引力定律1.内容:任何两个物体之间都存在相互作用的________,引力的大小与这两个物体的质量的________成正比,与这两个物体之间距离的________成反比.2.公式:F=________.3.引力常量:式中G叫作________,大小为6.672×10-11________,它是由英国物理学家________在试验室里首先测出的,该试验同时也验证了万有引力定律.[导学2]万有引力定律适用条件:(1)相距很远的天体,这时可以将其看成质点.(2)一个质量分析匀称的球体与球外质点间的万有引力,可用此公式计算,r为球心到质点间的距离.(3)适用于质量匀称分布的球体,这时r指球心间的距离.关键实力·合作探究——突出综合性素养形成探究点一万有引力定律的理解归纳总结1.万有引力定律的特性:(1)普遍性:万有引力存在于宇宙中任何有质量的物体之间(天体间、地面物体间、微观粒子间).(2)相互性:两个物体间相互作用的引力是一对作用力和反作用力,符合力的相互作用.(3)宏观性:天体间万有引力较大,它是支配天体运动的缘由.地面物体间、微观粒子间的万有引力微小,不足以影响物体的运动,故常忽视不计.(4)特别性:两个物体间的万有引力只与它们本身的质量有关,与它们之间的距离有关,与所在空间的性质无关.2.万有引力定律的适用条件:(1)万有引力定律公式适用于质点之间的引力大小的计算.(2)对于实际物体间的相互作用,当两个物体间的距离远远大于物体本身的大小(物体可视为质点)时也适用.(3)两个质量分布匀称的球体间的引力大小可用万有引力定律公式求解,公式中的r为两球心之间的距离.(4)一个质量分布匀称的球体与球外一质点之间的引力大小也可用万有引力定律公式求解,公式中的r为质点到球心之间的距离.典例示范例1 (多选)对于万有引力定律的表达式F=G,下列说法中正确的是( )A.公式中G为引力常量,与两个物体的质量无关B.当r趋近于零时,万有引力趋近于无穷大C.m1与m2受到的引力大小总是相等的,方向相反,是一对平衡力D.m1与m2受到的引力大小总是相等的,而与m1、m2是否相等无关素养训练1 火星的质量约为地球质量的,半径约为地球半径的1/2,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A.0.2 B.0.4C.2.0 D.2.5素养训练2 地球质量大约是月球质量的81倍,一飞行器位于地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,飞行器距月球球心的距离与月球球心距地球球心的距离之比为( )A.1∶9 B.9∶1 C.1∶10D.10∶1探究点二万有引力与重力的关系归纳总结1.万有引力和重力的关系设地球的质量为M,半径为R,A处物体的质量为m,则物体受到地球的引力为F=G,方向指向地心O,如图所示.万有引力F可分解为两个分力:(1)物体随地球自转做圆周运动的向心力F n:方向垂直于自转轴.(2)物体的重力mg:方向竖直向下,但不肯定指向地心:①在赤道上、两极点的重力方向指向地心;②在其他位置的重力方向均不指向地心.2.重力与纬度的关系地面上物体的重力随纬度的上升而变大.(1)赤道上:重力和向心力在一条直线上F=F+mg,即G=mRω2+mg,所以mg=G-mRω2.(2)地球两极处:向心力为零,所以mg=F=G.(3)其他位置:重力是万有引力的一个分力,重力的大小mg<G,重力的方向偏离地心.3.重力与高度的关系由于地球的自转角速度很小,故地球自转带来的影响很小.(1)在地面旁边:mg=G.(2)距离地面h高度处:mg h=G(R为地球半径,g h为离地面h高度处的重力加速度).所以距地面越高,物体的重力加速度越小,则物体所受的重力也越小.典例示范例 2 用传感器测量一物体的重力时,发觉在赤道测得的读数与其在北极的读数相差大约3‰.如图所示,假如认为地球是一个质量分布匀称的标准球体,下列说法正确的是( ) A.在北极处物体的向心力为万有引力的3‰B.在北极处物体的重力为万有引力的3‰C.在赤道处物体的向心力为万有引力的3‰D.在赤道处物体的重力为万有引力的3‰素养训练3 地球半径为R,地球表面的重力加速度为g,若高空中某处的重力加速度为g,则该处距地球表面的高度为( )A.(-1)R B.RC.R D.2R素养训练4 假设地球可视为质量匀称分布的球体,已知地球表面的重力加速度在两极的大小为g0,在赤道的大小为g;地球自转的周期为T,引力常量为G,则地球的密度为( )A. B.C. D.随堂演练·自主检测——突出创新性素养达标1.要使相距较远的两物体间的万有引力增加到原来的4倍,下列方法不行行的是( ) A.使两物体的质量各变成原来的2倍,距离不变B.使其中一个物体的质量增加到原来的4倍,距离不变C.使两物体间的距离削减为原来的,质量不变D.使两物体间的距离和两个物体质量都削减原来的2.两个相距为r的小物体,它们之间的万有引力为F,若保持距离不变,将它们的质量都增大3倍,那么它们之间万有引力的大小将变为( )A.9F B.3F C. D.3.如有两艘轮船,质量都是1.0×107 kg,相距10 km,已知引力常量G=6.67×10-11 N·m2/ kg2,重力加速度g=9.8 m/s2,则它们之间的万有引力的大小为( ) A.6.67×10-5 N,相比于船自身的重力,该引力可忽视B.6.67×10-5 N,相比于船自身的重力,该引力不能忽视C.6.67×106 N,相比于船自身的重力,该引力可忽视D.6.67×106 N,相比于船自身的重力,该引力不能忽视4.2024珠峰高程测量登山队于北京时间5月27日上午11时整,胜利登顶珠峰,人类首次在珠峰峰顶开展重力测量.假如忽视地球自转的影响,测得一个物体在峰底的重力为G1,在峰顶的重力为G2,峰底离地心的距离为R,则峰顶到峰底的高度为( )A.(1-)R B.(-1)RC.(-1)R D.(1-)R5.牛顿在发觉万有引力定律后曾思索过这样一个问题:假设地球是一个质量匀称分布的球体,已知质量分布匀称的球壳对球壳内物体的引力为零.沿地球的南北极打一个内壁光滑的洞,在洞的上端无初速度释放一个小球(小球的直径略小于洞的直径),在小球向下端运动的过程中,你可能不会推导小球速度随时间改变的表示式,但是你可以用所学过的物理学问定性画出小球的速度与时间图像,取向下为正方向,则下列图像中正确的是( )2.万有引力定律必备学问·自主学习一、1.引力2.匀速圆周3.m4.正比5.G二、3.相同三、1.引力乘积平方2.G3.引力常量N·m2/kg2卡文迪许关键实力·合作探究探究点一【典例示范】例1 解析:公式中的G为比例系数,称作引力常量,与两个物体的质量无关,A对;当两物体表面距离r越来越小,直至趋近于零时,物体不能再看作质点,表达式F=G已不再适用于计算它们之间的万有引力,B错;m1与m2受到彼此的引力为作用力与反作用力,此二力总是大小相等、方向相反,与m1、m2是否相等无关,C错,D对.答案:AD素养训练1解析:设物体的质量为m,地球的质量为M地,地球半径为R地,地球对该物体的引力大小为F地,火星的质量为M火,火星半径为R火,火星对该物体的引力大小为F火.依据万有引力定律得F地=,F火=,依据题意知,R地=2R火,M地=10M火,联立解得=0.4,故B正确,A、C、D项错误.答案:B素养训练2解析:设月球质量为m,地球与月球球心间距离为r,飞行器质量为m0,则地球质量为81m,当飞行器距月球球心的距离为r′时,月球对它的引力等于地球对它的引力,则G=G,所以=9,r=10r′,r′∶r=1∶10,故C正确.答案:C探究点二【典例示范】例2 解析:在北极处,F引=G,没有向心力,重力等于万有引力,故A、B错误.在赤道处,F引-G′=F向,再结合题意=3‰知,在赤道处:===3‰,故C 正确.赤道处:==1-=997‰,故D错误.答案:C素养训练3 解析:设地球质量为M,则质量为m的物体在地球表面上重力mg=G,在高度为h处的重力mg=G,解以上两式得:h=(-1)R,A正确.答案:A素养训练4 解析:在地球的两极处有G=mg0;在赤道处有G-mg=m()2R,又地球质量与地球半径的关系M=πR3ρ,联立三式可得ρ=,故B正确.答案:B随堂演练·自主检测1.解析:依据万有引力定律公式F=可知,使两物体的质量各变成原来的2倍,距离不变,两物体间的万有引力增加到原来的4倍,故可行,A不符合题意;依据万有引力定律公式F=可知,使其中一个物体的质量增加到原来的4倍,距离不变,两物体间的万有引力增加到原来的4倍,故可行,B不符合题意;依据万有引力定律公式F=可知,使两物体间的距离削减为原来的,质量不变,两物体间的万有引力增加到原来的4倍,故可行,C不符合题意;依据万有引力定律公式F=可知,使两物体间的距离和两个物体质量都削减原来的,两物体间的万有引力不变,故不行行,D符合题意.答案:D2.解析:甲、乙两个质点相距为r时,它们之间的万有引力大小为F=,若保持它们各自的距离不变,将它们之间的质量增大3倍,则甲、乙两个质点间的万有引力大小为F′==9=9F,故A正确,B、C、D错误.答案:A3.解析:依据万有引力定律F== N=6.67×10-5N,相比自身重力G=Mg=1.0×107×9.8 N =9.8×107 N,该引力完全可以忽视,A正确,B、C、D错误.答案:A4.解析:假如忽视地球自转的影响,在峰底时满意G1=G,在峰顶时满意G2=G,联立解得h=( -1)R,B正确.答案:B5.解析:由题意可知,小球在光滑的洞中运动时,所受万有引力的合力先变小后变大,速度先增大后减小,在地心处时速度最大,加速度为零,B正确.答案:B。
1. 双星众多的天体中如果有两颗恒星,它们靠得较近,在万有引力作用下绕着它们连线上的某一点共同转动,这样的两颗恒星称为双星。
2. 双星问题特点如图所示为质量分别是m 1和m 2的两颗相距较近的恒星。
它们间的距离为L .此双星问题的特点是:(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某一点。
(2)两星的向心力大小相等,由它们间的万有引力提供。
(3)两星的运动周期、角速度相同。
(4)两星的运动半径之和等于它们间的距离,即r 1+r 2=L . 3. 双星问题的处理方法双星间的万有引力提供了它们做圆周运动的向心力,即 Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2。
4. 双星问题的两个结论(1)运动半径:m 1r 1=m 2r 2,即某恒星的运动半径与其质量成反比。
(2)质量之和:由于ω=2πT ,r 1+r 2=L ,所以两恒星的质量之和m 1+m 2=4π2L3GT2。
【典例1】在天体运动中,将两颗彼此相距较近的行星称为双星。
它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。
如果双星间距为L ,质量分别为M 1和M 2,试计算:(1)双星的轨道半径; (2)双星的运行周期; (3)双星的线速度。
【解析】双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。
但两者做匀速圆周运动的半径不相等。
设行星转动的角速度为,周期为。
(1)如图,对星球,由向心力公式可得:同理对星球有:两式相除得:(即轨道半径与质量成反比)又因为所以,,(2)因为,所以(3)因为,所以【答案】见解析【名师点睛】处理双星问题必须注意两点(1)两颗星球运行的角速度、周期相等;(2)轨道半径不等于引力距离(这一点务必理解)。
弄清每个表达式中各字母的含义,在示意图中相应位置标出相关量,可以最大限度减少错误。
【典例2】2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋转的超大质量双黑洞系统,如图所示。
四、万有引力定律专题万有引力定律与牛顿三定律,并称经典力学四大定律,可见万有引力定律的重要性。
万有引力定律定律已成为高考和各地模拟试卷命题的热点。
此部分内容在《考纲》中列为Ⅱ级要求。
随着我国载人飞船升空和对空间研究的深入,高考对这部分内容的考查将会越来越强。
一、对万有定律的理解1.万有引力定律发现的思路、方法开普勒解决了行星绕太阳在椭圆轨道上运行的规律,但没能揭示出行星按此规律运动的原因.英国物理学家牛顿(公元1642~1727)对该问题进行了艰苦的探索,取得了重大突破.首先,牛顿论证了行星的运行必定受到一种指向太阳的引力.其次,牛顿进一步论证了行星沿椭圆轨道运行时受到太阳的引力,与它们的距离的二次方成反比.为了在中学阶段较简便地说明推理过程,课本中是将椭圆轨道简化为圆形轨道论证的.第三,牛顿从物体间作用的相互性出发,大胆假设并实验验证了行星受太阳的引力亦跟太阳的质量成正比.因此得出:太阳对行星的行力跟两者质量之积成正比.最后,牛顿做了著名的“月一地”检验,将引力合理推广到宇宙中任何两物体,使万有引力规律赋予普遍性.2.万有引力定律的检验牛顿通过对月球运动的验证,得出万有引力定律,开始时还只能是一个假设,在其后的一百多年问,由于不断被实践所证实,才真正成为一种理论.其中,最有效的实验验证有以下四方面.⑴.地球形状的预测.牛顿根据引力理论计算后断定,地球的赤道部分应该隆起,形状像个橘子.而笛卡尔根据旋涡假设作出的预言,地球应该是两极伸长的扁球体,像个柠檬.1735年,法国科学院派出两个测量队分赴亦道地区的秘鲁(纬度φ=20°)和高纬度处的拉普兰德(φ=66°),分别测得两地1°纬度之长为:赤道处是110600m,两极处是111900m.后来,又测得法国附近纬度1°的长度和地球的扁率.大地测量基本证实了牛顿的预言,从此,这场“橘子与柠檬”之争才得以平息.⑵.哈雷彗星的预报.英国天文学家哈雷通过对彗星轨道的对照后认为,1682年出现的大彗星与1607年、1531年出现的大彗星实际上是同一颗彗星,并根据万有引力算出这个彗星的轨道,其周期是76年.哈雷预言,1758年这颗彗星将再次光临地球.于是,预报彗星的回归又一次作为对牛顿引力理论的严峻考验.后来,彗星按时回归,成为当时破天荒的奇观,牛顿理论又一次被得到证实.⑶.海王星的发现.⑷.万有引力常量的测定.由此可见,一个新的学说决不是一蹴而就的,也只有通过反复的验证,才能被人们所普遍接受.3.万有引力定律的适用条件例1、如下图所示,在半径R=20cm、质量M =168kg 的均匀铜球中,挖去一球形空穴,空穴的半径为要,并且跟铜球相切,在铜球外有一质量m =1kg 、体积可忽略不计的小球,这个小球位于连接铜球球心跟空穴中心的直线上,并且在空穴一边,两球心相距是d =2m ,试求它们之间的相互吸引力.4.注意领会卡文迪许实验设计的巧妙方法.由万有引力定律表达式221r m m G F =可知,212m m Fr G =,要测定引力常量G ,只需测出两物体m 1、m 2间距离r 及它们间万有引力F 即可.由于一般物体间的万有引力F 非常小,很难用实验的方法显示并测量出来,所以在万有引力定律发现后的百余年间,一直没有测出引力常量的准确数值.卡文迪许巧妙的扭秤实验通过多次“放大”的办法解决了这一问题.图是卡文迪许实验装置的俯视图.首先,图中固定两个小球m 的r 形架,可使m 、m’之间微小的万有引力产生较大的力矩,使金属丝产生一定角度的偏转臼,这是一次“放大”效应.其次,为了使金属丝的微小形变加以“放大”,卡文迪许用从1发出的光线射到平面镜M 上,在平面镜偏转θ角时,反射光线偏转2θ角,可以得出光点在刻度尺上移动的弧长s =2θR ,增大小平面镜M 到刻度尺的距离R ,光点在刻度尺上移动的弧长S 就相应增大,这又是一次“放大”效应.由于多次巧妙“放大”,才使微小的万有引力显示并测量出来.除“放大法”外,物理上观察实验效果的方法,还包括“转换法”、“对比法”等.深刻认识卡文迪许实验的意义(1)卡文迪许通过改变质量和距离,证实了万有引力的存在及万有引力定律的正确性. (2)第一次测出了引力常量,使万有定律能进行定量计算,显示出真正的实用价值. (3)标志着力学实验精密程度的提高,开创了测量弱力的新时代.(4)表明:任何规律的发现总是经过理论上的推理和实验上的反复验证才能完成.5.物体在地面上所受的引力与重力的区别和联系地球对物体的引力是物体具有重力的根本原因.但重力又不完全等于引力.这是因为地球在不停地自转,地球上的一切物体都随着地球自转而绕地轴做匀速圆周运动,这就需要向心力.这个向心力的方向是垂直指向地轴的,它的大小是2ωr m f =,式中的r 是物体与地轴的距离,ω是地球自转的角速度.这个向心力来自哪里?只能来自地球对物体的引力F ,它是引力F 的一个分力如右图,引力F 的另一个分力才是物体的重力mg .在不同纬度的地方,物体做匀速圆周运动的角速度ω相同,而圆周的半径r 不同,这个半径在赤道处最大,在两极最小(等于零).纬度为α处的物体随地球自转所需的向心力αωcos 2R m f = (R 为地球半径),由公式可见,随着纬度升高,向心力将减小,在两极处Rcos α=0,f =0.作为引力的另一个分量,即重力则随纬度升高而增大.在赤道上,物体的重力等于引力与向心力之差.即.2RMm Gmg =.在两极,引力就是重力.但由于地球的角速度很小,仅为10-5rad /s 数量级,所以mg 与F 的差别并不很大.在不考虑地球自转的条件下,地球表面物体的重力.R MmGmg 2=这是一个很有用的结论.从图中还可以看出重力mg 一般并不指向地心,只有在南北两极和赤道上重力mg 才能向地心.同样,根据万有引力定律知道,在同一纬度,物体的重力和重力加速度g 的数值,还随着物体离地面高度的增加而减小.若不考虑地球自转,地球表面处有.2RMmGmg =,可以得出地球表面处的重力加速度.2RMGg =. 在距地表高度为h 的高空处,万有引力引起的重力加速度为g ',由牛顿第二定律可得:2)(h R Mm G g m +=' 即g h R R h R M G g 222)()(+=+=' 如果在h =R处,则g '=g /4.在月球轨道处,由于r =60R,所以重力加速度g '= g /3600.重力加速度随高度增加而减小这一结论对其他星球也适用.例2、某行星自转一周所需时间为地球上的6h ,在这行星上用弹簧秤测某物体的重量,在该行量赤道上称得物重是两极时测得读数的90%,已知万有引力恒量G =6.67×10-11N·m 2/kg 2,若该行星能看做球体,则它的平均密度为多少?二、万有引力定律在天文学上的应用1. 万有引力定律提供天体做圆周运动的向心力⑴人造地球卫星的绕行速度、角速度、周期与半径的关系①由r v m rMm G 22=得r GM v = r 越大,v 越小②由22ωmr r Mm G=得3r GM =ω r 越大,ω越小③由r T m r Mm G 2224π=得GMr T 324π= r 越大,T 越大例3、计划发射一颗距离地面高度为地球半径R 0的圆形轨道地球卫星,卫星轨道平面与赤道平面重合,已知地球表面重力加速度为g, (1)求出卫星绕地心运动周期T(2)设地球自转周期T 0,该卫星绕地旋转方向与地球自转方向相同,则在赤道上一点的人能连续看到该卫星的时间是多少?例4、土星外层上有一个环。
万有引力定律-2万有引力定律万有引力定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适万有引力定律表示如下:任意两个质点通过连心线方向上的力相互吸引。
该引力的大小与它们的质量乘积成正比,与它们距离的平方成反比,与两物体的化学本质或物理状态以及中介物质无关。
万有引力定律是解释物体之间的相互作用的引力的定律。
是物体(质点)间由于它们的引力质量而引起的相互吸引力所遵循的规律。
是牛顿在前人(开普勒、胡克、雷恩、哈雷)研究的基础上,凭借他超神的数学能力证明,在1687年于《自然哲学的数学原理》上发表的。
在高中阶段主要是用了简化的思想,把行星运动轨道由椭圆简化为圆下证明。
具体证明可以参考《普通高中课程标准实验教科书》物理高一第六章万有引力定律p97-107或《普通高中课程标准实验教科书》物理高一必修2教材p39-40。
万有引力定律的发现,是17世纪自然科学最伟大的成果之一。
2 公式表示(G=6.67×10^-11 N·m^2/kg^2)F: 两个物体之间的引力G: 万有引力常量M1: 物体1的质量M2: 物体2的质量最伟大的成果之一。
它把地面上物体运动的规律和天体运动的规律统一了起来,对以后物理学和天文学的发展具有深远的影响。
它第一次解释了(自然界中四种相互作用之一)一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。
万有引力定律揭示了天体运动的规律,在天文学上和宇宙航行计算方面有着广泛的应用。
它为实际的天文观测提供了一套计算方法,可以只凭少数观测资料,就能算出长周期运行的天体运动轨道,科学史上哈雷彗星、海王星、冥王星的发现,都是应用万有引力定律取得重大成就的例子。
利用万有引力公式,开普勒第三定律等还可以计算太阳、地球等无法直接测量的天体的质量。
牛顿还解释了月亮和太阳的万有引力引起的潮汐现象。
他依据万有引力定律和其他力学定律,对地球两极呈扁平形状的原因和地轴复杂的运动,也成功的做了说明。
万有引力与航天
一、选择题
1.第一次通过实验比较准确的测出引力常量的科学家是 A . 牛顿 B . 伽利略 C .胡克 D . 卡文迪许
2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是
A .b 、c 的线速度大小相等,且大于a 的线速度;
B .b 、c 的向心加速度大小相等,且大于a 的向心加速度;
C .c 加速可追上同一轨道
上的b ,b 减速可等候同一轨道上的c ;
D .a 卫星由于某种原因,轨道半径变小,其线速度将变大
3.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A .卫星在轨道3上的速率大于在轨道1上的速率。
B .卫星在轨道3上的角速度小于在轨道1上的角速
度。
C .卫星在轨道1上经过Q 点时的速度大于它在轨道2上经过Q 点时的速度。
D .卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 4.如图所示,有A 、B 两个行星绕同一恒星O 作圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星第一次相遇(即两行星距离最近),则 (A )经过时间t =T 1+ T 2,两行星将第二次相遇
(B )经过时间t =T 1T 2/(T 1-T 2),两行星将第二次相遇
(C )经过时间t =(T 1+ T 2)/2,两行星第一次相距最远
(D )经过时间t =T 1T 2/2(T 1-T 2),两行星第一次相距最远
5.某星球质量为地球质量的9倍,半径为地球半径的一半,
在该星球表面从某一高度以10 m/s 的初速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2) A .1s
B .
91s C .181s D .36
1
s 6 设地球表面的重力加速度为0g ,物体在距离地球表面
高度为R 3(R 是地球半径)处,由于地球的作用产生的加速度为g ,则0/g g 为
A.1
B.1/2
C.1/4
D.1/16
7设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 A.零 B.无穷大 C.2
GMm
R D.无法确定
8地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物体“飘”起来,则地球的转速应为原来转速的
A g
a 倍 B
g a
a +倍
C
g a
a - 倍 D g a 倍 9.关于地球同步通讯卫星,下列说法中正确的是 A.它一定在赤道上空运行 B.各国发射的这种卫星轨道半径都一样 C.它运行的线速度一定小于第一宇宙速度 D.它运行的线速度介于第一和第二宇宙速度之间 10.由于地球的自转,地球表面上各点均做匀速圆周运动,所以
A.地球表面各处具有相同大小的线速度
B.地球表面各处具有相同大小的角速度
C.地球表面各处具有相同大小的向心加速度
D.地球表面各处向心加速度方向都指向地球球心 二.填空题
11.火星的半径是地球半径的一半,火星质量约为地球质量的1/9,那么地球表面质量为50Kg 的物体受到地
球的吸引力约是火星表面同质量的物体受到火星吸引力的___________倍。
12.两个行星的质量分别为m 1、m 2,绕太阳运行的轨道半径是r 1和r 2,若它们只受太阳引力作用,那么这两颗行星的向心加速度之比为__________;它们与太阳之间的万有引力之比为_______;它们的公转周期之比为____________。
13.已知月球的半径为r ,月球表面的重力加速度为g 0,万有引力常量为G ,若忽略月球的自转,则月球的平
b a c
地球
图1
均密度表达式为___________________。
14.一颗以华人物理学家“吴健雄”命名的小行星,半径约为16 km,密度与地球相近.若在此小行星上发射一颗绕其表面运行的人造卫星,它的发射速度约为___________.(已知地球的半径R=6.4×103 km,取g=10 m/s2)
三.计算题
15、两颗人造地球卫星质量的比2:1,轨道半径之比3:1。
求这两颗卫星运行的周期之比;线速度之比;角速度之比;向心加速度之比;向心力之比。
16.天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L,质量分别为M1、M2,试计算(1)双星的轨道半径(2)双星运动的周期。
17.宇航员站在某一星球距离表面h高度处,以初速度v0沿水平方向抛出一个小球,经过时间t后小球落到星球表面,已知该星球的半径为R,引力常量为G,求:⑴该星球表面的重力加速度g的大小;⑵小球落地时的速度大小;⑶该星球的质量;。