大学物理第六章1
- 格式:ppt
- 大小:663.00 KB
- 文档页数:26
第六章 经典质点系动力学6-1.如图,半圆柱立在光滑水平面上从静止开始到下,试判断质心C 的运动方向.解 建立如图x 轴,由于水平方向外力分量之和为零0ix F =∑,所以水平方向动量守恒x P C =.因初始时静止,故 0x Cx P mv == 由d 0d C Cx x v t ==,可知C x =常量,质心C 竖直向下运动. 6-2.如图,船的质量为5000kg ,当质量为1000kg 的汽车相对船静止时,船尾螺旋桨的转动可使船以加速度20.2m s 前进.在船行进中,汽车相对于船以加速度20.5m s 沿船前进的相反方向加速运动,求此时船的加速度的大小.解 将船与汽车作为质点系.当汽车相对于船静止时,船的加速度即为质点系质心的加速度,根据质心运动定理可知船尾螺旋桨转动时的推力()=(50001000)021200(N)e C F ma .=+⨯=在船的行进过程中,以船的行进方向为x 、x '轴正方向.设船相对于岸的速度、加速度用x 、x 表示,汽车相对于船的速度、加速度用x '、x '表示,则汽车相对于岸的速度、加速度为x x '+、x x '+.根据质点系的动量定理()d [()]d e m x m x x F t'++=船车 即 ()()]e m x m x x F '++=船车500010001000051200x x .+-⨯=可求出此时船的加速度的大小2028m s x .=.6-3.三只质量均为0m 的小船鱼贯而行,速率都是v ,中间一船同时以相对本船的速率u 沿水平方向把两个质量均为m 的物体抛到前后两只船上,求两物体落入船后三只船的速率(忽略水对船的阻力).解 以船行方向为速度正方向,设两物体落入船后三只船的速率为1v 、2v 、3v . 以中间船及两物体为质点系,因为在抛出物体的过程中水平方向不受外力,所以质点系水平方向动量守恒00222(2)()()m m v m v m v u m v u +=+++-所以 2v v =以前船与抛入物体为质点系,因为在抛入物体的过程中水平方向不受外力,所以质点系水平方向动量守恒001()()m v m v u m m v ++=+所以 10mu v v m m=++ 以后船与抛入物体为质点系,同样,根据质点系水平方向动量守恒003()()m v m v u m m v +-=+30mu v v m m =-+6-4.质量为70kg 的人和质量为210kg 的小船最初处于静止,后来人从船尾向船头走了3.2m ,不计船所受阻力,问船向那个方向运动,移动了几米?(用质心运动定理求解.)解 建立与地面固连的坐标系Ox ,x 轴的方向为从船尾指向船头.人视为质点1,坐标为1x ;船视为质点2,坐标为2x ;此二质点构成质点系.质点系所受合外力为零,由质心运动定理可知质点系质心加速度为零;由于质心速度为常量,质点系初始状态静止,所以质心速度为零,即质心位置保持不变 110220112201212C C m x m x m x m x x x m m m m ++===++ 11220m x m x ∆+∆=由于123.2x x ∆=+∆,代入上式得12123.2 3.2700.8(m)70210m x m m ⨯∆=-=-=-++ 即船向后移动了0.8米.6-5.试证明质量为m ,长为l 的匀质细杆对过杆中点且与杆垂直的轴的转动惯量为2112ml . 证明 以杆中心为原点,沿杆建立坐标系Oxy 如图.杆的线密度l m lρ=(即单位长度的质量). 用一系列与杆垂直的不同x 的面,把杆分割成无限多个无限小的质元,图中画出了在~d x x x +范围内的小质元.此小质元质量d d d l m m x x lρ==,到Oy 轴的距离为||x ,对Oy 轴的转动惯量为22d d d m I x m x x l==.则整个细杆对Oy 轴的转动惯量 /223/22/2/211d 312l l l l m m I x x x ml l l --===⎰6-6.如图,半径0.1m R =的定滑轮,可绕过轮心的z 轴转动,转动惯量为20.1kg m J =⋅.一不可伸长之轻绳无滑地跨过定滑轮,一端竖直地悬一质量1kg m =的重物,另一端a 受竖直向下的力F 作用,20.8N F =.试用质点系角动量定理求a 点加速度.解 用滑轮、绳、重物构成质点系,质点系所受外力为F 、重物重力mg 和轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理2d d ()()d d J Rmv J mR FR mgR t tωω+=+=- 所以2d d FR mgR t J mR ω-=+,a 点加速度为 22d d F mg a R i R i t J mR ω-==+ 220.819.80.01 1.0(m s )0.110.01i i -⨯==+⨯6-7.可利用阿特伍德机(例题6-3-4)测滑轮转动惯量.设10.46kg m =,20.50kg m =,滑轮半径0.05m R =.由静止开始释放重物测得2m 在5.0s 内下降0.75m .求滑轮转动惯量J .解 (因为不要求求出绳内张力,故可用质点系角动量定理求解.)用滑轮、绳、重物构成质点系,质点系所受外力为重物和滑轮的重力、以及轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理1122d ()d J Rm v Rm v t ω++ 21221d [()]d J m m R m gR m gR tω=++=- 所以21212()d d ()m m gR t J m m Rω-=++,2m 下降加速度的大小为 212212()d d m m g a R t m m J R ω-==++ 可见质点2m 作匀加速直线运动.由2212x a t ∆=,求出220.060m s a =.由上式可知 221122()[]m m g J R m m a -=-- 222(050046)98005[050046]13910kg m 006........--⨯=⨯--=⨯⋅6-8.匀质细杆长2l ,质量为0m ,杆上穿有两个质量均为m 的小球.初始时杆以角速度0ω绕过杆中点O 且与杆垂直的光滑竖直轴转动,两小球均位于距O 点2l 处.求当两个小球同时滑动到杆的两端点时杆的角速度的大小.解 将杆和两个小球作为质点系.由于竖直轴光滑,轴受到的约束力对竖直转动轴力矩为零;细杆和小球的重力与竖直转动轴平行,对竖直转动轴力矩为零.由于质点系所受外力对竖直转动轴合力矩为零,所以质点系对竖直转动轴角动量守恒,设末态角速度为ω,则002222l l J m J ml l ωωωω+⋅=+⋅ 由于220011(2)123J m l m l ==,所以000(23)2(6)m m m m ωω+=+.6-9.工程上常用摩擦啮合器使两个飞轮以相同的转速转动,如图,飞轮A 、B 可绕同一固定轴转动,C 为啮合器.设飞轮A 、B 对轴的转动惯量210kg m A J =⋅,220kg m B J =⋅,开始A 轮转速600r min A n =(转每分),B 轮静止,求两轮啮合后的转速.解 将二飞轮A 、B 作为质点系.由于二飞轮所受重力和支撑力对固定轴力矩均为零,飞轮所受外阻(动)力矩比二飞轮啮合时飞轮间的相互作用力矩小得多,故啮合过程中质点系对固定轴的角动量近似守恒,有2()2A A A B J n J J n ππ⋅=+10600200(r min )1020A A A B J n n J J ⨯===++6-10.有两根原长为0l 、劲度系数为k 的轻弹簧串接于O 点,另两端各系一质量为m 的滑块,置于光滑水平面上.现将两滑块拉开,使其相距2l (0l l >),从静止放手,求两弹簧恢复原长时,弹簧弹性力对两滑块做功之和.(用三种方法求解)解法一 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用弹簧弹性势能求解.弹簧弹性力对两滑块做功之和等于两弹簧弹性势能增量的负值220012[0()]()2W k l l k l l =-⨯--=- 解法二 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.在惯性系中积分求功.以弹簧自由伸长处为原点、沿弹簧建立x 轴,则00220012()d 2()()2l l W kx x k l l k l l -=⨯-=⨯-=-⎰ 解法三 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用求一对力做功之和的方法,在与一个滑块相对静止的参考系中积分求功.以一个滑块为原点、沿弹簧建立x 轴,当另一滑块位于x 处时,每个弹簧的伸长量为02x l - 00220022[()]d 2()d()222l l l l x x x W k l x k l =--=--⎰⎰ 022202012()|()22l l x k l k l l =--=-6-11.两个滑冰运动员质量均为70kg ,均以6.5m s 速率沿相反方向滑行,滑行路线间的垂直距离为10m .当彼此相错时,各抓住10m 长绳的一端,然后开始旋转.(1)在抓住绳端之前,各自对绳中点的角动量多大?抓住后又为多大?(2)他们各自收绳,到绳长5m 时,各自速率多大?(3)绳长5m 时绳内张力多大?(4)收绳过程中二人总动能如何变化?(5)二人共做多少功?解 (1)抓绳之前,每个运动员对绳中心角动量均为570 6.5L =⨯⨯22275(kg m s)=⋅. 抓绳之后,视两个运动员和绳为质点系,所受外力矢量和为零,所以质点系质心(绳中心)位置不变,绳中心仍为固定点,每个运动员对绳中心的角动量仍为22275kg m s ⋅.(2)绳的张力T F 为质点系内力.收绳过程中质点系所受外力对绳中心的力矩为零,所以质点系的角动量守恒,设收绳后运动员速率为v ,则 2 2.57022275v ⨯⨯⨯=⨯ 所以13m s v =.(3)当绳长5m 时,对每一个运动员,由牛顿第二定律可得2T 70134732(N)2.5F ⨯== (4)质点系总动能的增量等于组成质点系的每个质点动能增量之和22k k01270(13 6.5)8873(J)2E E -=⨯⨯⨯-= (5)根据质点系的动能定理,二运动员总共做功等于质点系动能增量,k k08873(J)W E E =-=6-12.匀质细杆长7m 5l =,质量为m ,可绕过其一端的光滑水平轴在竖直平面内转动,在杆自由下垂时有一质量为6m 的黏性小球沿水平方向飞来并黏附于杆的中点,使杆摆动的最大角度为60ο.求小球飞来时的速率.(210m g =)解 在小球与杆的碰撞过程中,以小球和杆为质点系.质点系所受外力中,杆的重力mg 和杆所受轴的支撑力N F 对轴O 的力矩为零;小球重力m g '对轴O 的力矩近似为零;所以质点系的角动量近似守恒221[()]262362l m l m l m v v ml ω'==+ 故92v l ω=.在小球和杆一起上摆的过程中,以小球和杆为质点系,仅有小球和杆所受重力做功,而重力为保守力,所以机械能守恒22211[()]()cos60236262m l m l ml m g ωο+=+ 因此2149g lω=.根据以上结果即可求出9146321(m s)292g v l gl l ===.6-13.在光滑水平桌面上,有一质量为m 的滑块,滑块与一弹簧相连,弹簧另一端固定于O 点,劲度系数为k .当弹簧处于原长0l 时,一质量为0m 的子弹以速度0v 垂直于弹簧地射入滑块,并嵌在其中.之后当滑块运动到B 点时,弹簧长度为l ,如图所示.求滑块于B 时的速度v .解 在子弹射入滑块的过程中,由子弹和滑块构成质点系.因质点系在0v 方向不受外力,故质点系沿0v 方向动量守恒000()m v m m v '=+所以000()v m v m m '=+.在子弹和滑块由A B →的过程中,视子弹和滑块为一个质点.由于过程中只有弹簧弹性力做功,弹簧弹性力为保守力,故质点机械能守恒;又因质点受力对过O 点的竖直轴力矩为零,所以质点对过O 点的竖直轴角动量守恒.222000111()()()222m m v m m v k l l '+=++- 000()()sin m m v l m m vl θ'+=+所以 22212000200()[]()m v k l l v m m m m -=-++ 000222120000arcsin [()()]m v l l m v m m k l l θ=-+-6-14.大容器内水的自由表面的高度为0h ,放在水平地面上,离自由表面h 深处有一小孔A ,小孔横截面积远小于容器横截面积.求:(1)由小孔A 流出的水流到达地面的水平射程x ;(2)与小孔A 在同一竖直线上,距自由表面多深处再开一孔,可使水流的水平射程与前者相等?(3)在多深处开孔,可使水流具有最大水平射程?最大水平射程是多少?解 (1)由于容器横截面积远大于小孔横截面积,水流稳定后可认为容器中水面高度不变.认为水是理想流体.水流稳定后,取一条从容器中水自由表面到小孔的流线,以容器底为重力势能零点,由伯努利方程200001()2gh p g h h v p ρρρ+=-++所以小孔流速2v gh =.流体微团从流出小孔到落地降落的高度2012h h gt -=,可知降落时间02()h h t g-=,因此水平射程02()x vt h h h ==-. (2)在h '深处另开一孔而水平射程相同,则由002()2()h h h h h h ''-=-可求出0h h h '=-.(略去h h '=.)(3)根据(1)02()x h h h =-,由002(2)d 0d 2()h h x h h h h -==-,有唯一极值点012h h =使水流具有最大射程.当012h h =时,max 0x x h ==.6-15.如图是测量液体流量的流量计原理图.已知细管和粗管的横截面积为1S 、2S ,使用时把它串接在水平液流管道中,稳定流动时两竖直管内液体自由表面高度差为h .求流量表达式.解 沿管道中心轴取一流线,对该流线上1、2两点,根据伯努利方程,因12h h =,故2211221122v p v p ρρ+=+ (1) 连续性方程 1122v S v S = (2) 1、2两点压强差 21p p gh ρ-= (3) 由(1)、(3)式,可得22122v v gh -=由(2)式,得1122v S v S =,代入上式 221122(1)2S v gh S -= ,即1222212gh v S S S =- 所以 11221222212gh Q v S v S S S S S ===-6-16.如图装置,出口处堵塞时,注满可视为理想流体的水.水平细管横截面积处处相等,其直径远小于大容器直径.打开塞子在水流稳定后,求两竖直细管内水面高度.解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点,根据伯努利方程22201223304111222p gh p v p v p v ρρρρ+=+=+=+ 因为234S S S ==,根据连续性方程223344S v S v S v ==可得 234v v v ==所以 230p p p ==两竖直细管内为静止流体,根据2002p p p gh ρ==+3003p p p gh ρ==+所以230h h ==.6-17.如题6-16图,若其中装有密度为31000kg m 的黏性流体,流动稳定后10.18m h =,20.1m h =,30.05m h =.求出口流速.(不计大容器内内能量损失)解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点.根据连续性方程,因为水平细管横截面处处相等,故水平细管中的2、3、4点流速相等,以v 表示其流速.根据不可压缩黏性流体作稳定流动时的功能关系式,对3、4点,有2230341122p v p v W ρρ+=++ 竖直细管内为静止流体,可知303p p gh ρ=+,所以 343W gh ρ=根据不可压缩黏性流体作稳定流动时的功能关系式,对1、4点,有20101412p gh p v W ρρ+=++ 由于水平细管横截面处处相等,不计大容器内内能量损失,故可知34143W W =,所以132(3)298(0183005)0767(m s)v g h h ....=-=⨯⨯-⨯=(第六章题解结束)。
第六章 真空中的静电场一、 基本要求1.掌握静电场的电场强度和电势的概念以及电场强度的叠加原理和电势的叠加原理。
掌握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
2.理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和方法。
3.了解电偶极矩的概念。
能计算电偶极子在均匀电场中所受的力和力矩。
二、 基本内容1.点电荷当带电体的形状和大小与它们之间的距离相比可以忽略时,可以把带电体看作点电荷。
对点电荷模型应注意:(1)点电荷概念和大小具有相对意义,即它本身不一定是很小的带电体。
只要两个带电体的线度与它们之间距离相比可忽略,就可把它们简化为点电荷,另外,当场点到带电体的距离比带电体的线度大得多时也可以把带电体简化为点电荷。
(2)点电荷是由具体带电体(其形状没有限制)抽象出来的理想化模型,所以不能把点电荷当作带电小球。
(3)点电荷不同于微小带电体。
因带电体再小也有一定的形状和电荷分布,还可以绕通过自身的任意轴转动,点电荷则不同。
(4)一个带电体在一些问题中可简化为点电荷,在另一些问题中则不可以。
如讨论带电体表面附近的电性质时就不能把带电体简化为点电荷。
2.库仑定律02qq kr 0F r 其中,0r 由施力电荷指向受力电荷的单位矢量。
适用条件:真空中点电荷之间(相对观察者静止的电荷)的相互作用。
当空间有两个以上的点电荷同时存在时,作用在某一点电荷上的总静电力等于其它各点电荷单独存在时对该电荷所施静电力的矢量和——电场力的叠加原理。
3.电场强度矢量0q =E F ,电场中某点的电场强度等于单位电荷在该点所受的电场力。
0q 为正时,E 和电场力F 同方向,0q 为负时,E 的方向和F 方向相反。
(1)E 反映电场的客观性质,E 与试验电荷0q 的大小,电荷正负无关,也与0q 的存在与否无关。
(2)E 是一个矢量,一般地说,电场空间不同点处的场强不同,即()r =E E 。
第六章 磁场通过复习后,应该:1.掌握磁感应强度、毕奥-萨伐尔定律、洛伦兹力、霍尔效应、安培力、磁场对载流线圈的作用、物质的磁性和磁化、电磁感应定律;2.理解几种电流的磁场、安培环路定理、质谱仪、超导体及其抗磁性、感生电动势、自感现象;3.了解磁场中的高斯定理、电磁流量计、超导磁体、人体生物磁场、涡旋电场。
6-1 一个半径为0.2m 、阻值为200Ω的圆形电流回路,接12V 的电压,求回路中心处的磁感应强度。
解: 已知半径r =0.2m ,电源电压U =12V ,圆形回路的电阻R =200Ω,根据欧姆定律,可求得回路的电流为I =U / R =12/200 A=0.06 A由圆形电流磁场公式,可得回路中心处的磁感应强度为T 10881T 2020601042770--⨯=⨯⨯⨯==...r IB πμ6-2 一根长直导线上载有电流100A ,把它放在50G 的均匀外磁场之中,并使导线与外磁场正交,试确定合成磁场为零的点到导线的距离。
解: 长直载流导线产生的磁场,其磁感线是一些围绕导线的同心圆,在导线周围总有一点A ,其磁感强度与外磁场的磁感应强度大小相等、方向相反,该点的合磁场为零。
已知I =100A ,B = 50G = 5.0×10-3 T ,根据长直载流导线磁场公式aI B πμ20=,可得A 点离导线的距离a 为mm 04m 1004m 1005210010423370...B I a =⨯=⨯⨯⨯⨯==---πππμ6-3 0.4m 长的细管上绕有100匝导线,其电阻为3.14Ω,欲在螺线管内获得200G 的磁感应强度,需外加电压多少伏?解: 已知螺线管单位长度上的线圈匝数n =100/0.4=250匝·米-1,B =200G =2×10-2 T ,根据螺线管电流磁场公式B = μ0nI ,可得螺线管通过的电流为A 763A 102A 2501041022720.nB I ≈⨯=⨯⨯⨯==--ππμ 已知线圈电阻R =3.14Ω,根据欧姆定律可计算出需加的外电压为U =IR =2/π×102×3.14V=200V6-4 一平面上有两个同心的圆形回路,用相同电动势的电池(内阻忽略不计),通过相反方向的电流,使在中心处产生的磁感应强度为零,已知外圆用铜线,其电阻率为1.7×10-6Ω·cm ,内圆用铝线,电阻率为2.8×10-6Ω·cm ,这些导线的截面积相同,外圆直径为200cm ,求内圆的直径。
物理第六章知识点总结
1. 什么是静电现象?
静电现象是指物体在摩擦或接触后带有正电荷或负电荷,从而产生静电引力或斥力的现象。
2. 什么是导体和绝缘体?
导体是指能够良好传导电荷的物质,如金属。
绝缘体是指不易传导电荷的物质,如塑料、橡胶等。
3. 什么是电场?
电场是带电体周围存在的一种特殊场,它描述了电荷在空间各点受到的电场力。
4. 什么是场强?
场强是描述电场强弱的物理量,定义为单位正电荷在该点所受电场力的大小。
5. 什么是等势面和等势线?
等势面是空间中所有具有相同电位的点所组成的曲面。
等势线是等势面在某一平面上的投影。
6. 电容器的基本知识?
电容器是用来存储电荷的元件,电容量描述了电容器贮存电荷的能力。
并联电容器容量相加,串联电容器则为等效容量。
以上是本章的一些基本概念和知识点总结,对于具体公式、定理等还需结合教材课本进行详细学习。