北京市清华大学附属中学八年级数学下册 第17章 勾股定理单元综合测试(无答案)(新版)新人教版
- 格式:doc
- 大小:178.00 KB
- 文档页数:6
人教新版八年级下册《第17章勾股定理》单元测试卷(1)一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.54.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c26.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25 7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高米.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了米.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=,BC=,AC=;(2)试判断△ABC的形状,并说明理由.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?人教新版八年级下册《第17章勾股定理》单元测试卷(1)参考答案与试题解析一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.【考点】勾股定理.【分析】直接利用勾股定理计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为3和5,∴斜边的长为:=.故选:D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别写出各个命题的逆命题,逐项判断即可.【解答】解:①有两边相等的三角形是等腰三角形的逆命题是等腰三角形的两边相等,正确,有逆定理;②有两边相等的三角形是等腰三角形的逆命题是若两个数的奇次幂互为相反数,这两个数互为相反数,正确,有逆定理;③面积相等的长方形周长也一定相等的逆命题是周长相等的长方形面积也相等,为假命题,无逆定理;④若a=b,则a2=b2的逆命题是若a2=b2,则a=b,为假命题,无逆定理;故有逆定理的个数是2个,故选:B.3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.5【考点】勾股定理.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.4.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、【考点】勾股定理的逆定理.【分析】先找出两小边,求出两小边的平方和,求出大边的平方,再根据勾股定理的逆定理判断即可.【解答】解:A、(62)2+(82)2≠(102)2,即组成的三角形不是直角三角形,故本选项错误;B、62+82≠92,即组成的三角形不是直角三角形,故本选项错误;C、22+()2≠()2,即组成的三角形不是直角三角形,故本选项错误;D、()2+()2=()2,即组成的三角形是直角三角形,故本选项正确;故选:D.5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c2【考点】命题与定理.【分析】写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:如果a﹣b>0,那么a>b,逆命题成立;B、逆命题为:如果a2=b2,那么a+b=0,逆命题不成立;C、逆命题为:等角对等边,逆命题成立;D、逆命题为:如果三角形三边满足a2+b2=c2,那么该三角形是直角三角形,逆命题成立;故选:B.6.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:(1)92+802≠812,根据勾股定理的逆定理,故不是直角三角形;(2)102+242≠252,根据勾股定理的逆定理,故不是直角三角形;(3)152+202=252,根据勾股定理的逆定理,故是直角三角形;(4)82+152=172,根据勾股定理的逆定理,故是直角三角形.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=10.【考点】勾股定理.【分析】由勾股定理得AB2=BC2+AC2,再结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∠ACB=90°,∴AB2=BC2+AC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S3=15,S1=5,∴BC2=5,AB2=15,S3=S1+S2,则S2=S3﹣S1=15﹣5=10,故答案为:10.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高8米.【考点】勾股定理的应用.【分析】如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB,根据勾股定理求出AB即可解决问题.【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,AB===5(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故答案为:8.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了9米.【考点】勾股定理的应用.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成2个直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,∴能够组成2个直角三角形.故答案为:2.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了 2.5米.【考点】勾股定理的应用.【分析】要求小猫在木板上爬动的距离,即求木板长,可以设CD=x,AB=DE=y,则根据木板长不会变这个等量关系列出方程组,即可求BC的长度,在直角△ABC中,根据BC,AC即可求AB.【解答】解:已知AE=1.3米,AC=0.7米,BD=0.9米,设CD=x,AB=DE=y,则BC=0.9+x则在直角△ABC中,y2=(0.9+x)2+0.72,在直角△CDE中,y2=x2+(1.3+0.7)2,解方程组得:x=1.5米,y=2.5米,故答案为 2.5.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.【考点】勾股定理.【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据EC =EB+BC即可求得EC的长度,在直角三角形DEC中,已知DE,EC即可求得DC的长度,根据AD=AC﹣DC即可求得AD的长度.【解答】解:在直角△ABC中,AC==2.4(m),∴EC=BC+BE=1.5m在直角△DEC中,DC===2(m),∴AD=AC﹣DC=0.4(m),答:梯子的顶端沿墙下滑0.4m.16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?【考点】勾股定理的逆定理.【分析】(1)先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;(2)根据路程和÷速度和=相遇的时间,列式计算即可求解.【解答】解:(1)第一组的路程:30×30=900(米),第二组的路程:40×30=1200(米),∵9002+12002=15002,∴两组同学行走的夹角是直角;(2)1500÷(30+40)=1500÷70=21(分钟).答:经过21分钟后才能相遇.17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=3,BC=2,AC=;(2)试判断△ABC的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】(1)根据勾股定理即可求得△ABC的三边的长;(2)由勾股定理的逆定理即可作出判断.【解答】解:(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=3,BC=2,AC=.故答案为3,2,;(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】根据题意结合勾股定理求出答案.【解答】解:设白杨树在离根部x米的位置断裂,根据题意可得:x2+82=(16﹣x)2,解得:x=6.答:白杨树在离根部6米的位置断裂.19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,=AC•CD=×5×12=30.∴S△ACD+S△ACD=6+30=36.∴四边形ABCD的面积=S△ABC20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?【考点】勾股定理的应用.【分析】设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?【考点】勾股定理;一元一次不等式的应用.【分析】作PH⊥l,垂足为H,由勾股定理求出MH=500,则MM'=1000,由题意可得5x≤1000,解不等式可得出答案.【解答】解:作PH⊥l,垂足为H,∵PM=1300米,PH=1200米,∠PHM=90°,∴MH===500(米),根据对称性可知,M'H=MH,∴MM'=1000米,即宣传车能够让P点有效听到的距离为1000米,设宣传车时速是x米/分钟,由题意可得5x≤1000,∴x≤200,200米/分钟=12km/h.答:宣传车最高时速是12km/h.。
第十七章勾股定理测试题1.总分120分时间120分钟一、选择题〔本大题共l0小题,每题3分.共30分〕假设直角三角形的两条直角边长分别为3cm、4cm,那么斜边上的高为()A5cm B5cmC5cmD12cm21252.在△ABC中,AB=12cm,AC=9cm,BC=15cm,那么△ABC的面积等于〔〕A108cm2B90cm2C180cm2D54cm2将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A钝角三角形B锐角三角形C直角三角形D等腰三角形4.在直角坐标系中,点P〔-2,3〕到原点的距离是〔〕A5B13C11D2如图2,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影局部的面积为S1,右边阴影局部的面积和为S2,那么〔〕AS1=S2BS1<S2CS1>S2D无法确定A AD北EA东CB BC南图4图2图3如图3,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,那么阴影局部的面积是:A16B18C19D21,如图4,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,那么两船相距〔〕A25海里B30海里C35海里D40海里8.在△ABC中,假设AB=15,AC=13,AD为△ABC边BC的高,且AD=12,那么△ABC的周长是〔〕A.42B.32C.42或32D.37或3319.2那么斜边长为〔〕一直角三角形的木版,三边的平方和为1800cm,A80cmB30cm C90cm D120cm10.在△ABC中,AC=3,BC=4,那么AB的长为〔〕.A5B10C4D大于1且小于7二、填空题〔本大题共5小题,每题3分,共15分〕11.在正方形ABCD中,对角线为22,那么正方形边长为。
12.三角形中两边的平方差恰好等于第三边的平方,那么此三角形是三角形。
飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,那么飞机每小时飞行千米。
一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .12.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .43.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 4.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对5.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =6.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .9 7.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 8.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .19.下列说法不正确的是( )A .三边分别相等的两个三角形全等B .有两边及一角对应相等的两个三角形全等C .有两角及一边对应相等的两个三角形全等D .斜边和一条直角边分别相等的两个直角三角形全等10.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDC D .ED +AC >AD11.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 12.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1213.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°14.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°15.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20°二、填空题16.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.17.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.18.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.19.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .20.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .21.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.22.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)23.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.24.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______25.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.26.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.三、解答题27.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.28.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.29.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.30.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长.。
2021-2022学年八年级数学下册第17章《勾股定理》单元测试卷一、选择题(每小题3分,共30分)1.(3分)三角形的三边a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c=5:4:3B.a2=b2=c2C.a2=(b+c)(b﹣c)D.a:b:c=13:5:122.(3分)下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1:√3:23.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.104.(3分)已知a,b,c是三角形的三边长,如果满足(a﹣5)2+√b−12+|c﹣13|=0,则三角形为()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形5.(3分)如图,△ABC的三边BC,CA,AB分别用a,b,c表示,下列说法错误的是()A.若a2+b2=c2,则∠C=90°B.若a2﹣b2=c2,则∠A=90°C.若c2+a2=b2,则∠B=90°D.若a2﹣b2+c2=0,则∠A=90°6.(3分)在如图的网格中,每个小正方形的边长为1,A、B、C三点均在正方形格点上,则下列结论错误的是()A.AB=2√5B.∠BAC=90°C.S△ABC=10D.点A到直线BC的距离是27.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,DE=3,BD=2CD,则BE=()A.6B.7C.3√3D.2√68.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.√3B.√5C.√6D.√79.(3分)直角三角形斜边的平方等于两直角边乘积的2倍,这个三角形有一个锐角是()A.15度B.30度C.60度D.45度10.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S9的值为()A.(12)6B.(12)7C.(12)8D.(12)9二、填空题(每小题3分,共15分)11.(3分)命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题是.12.(3分)如图,三个正方形中的两个的面积分别为S1=25cm2,S2=144cm2,则第三个正方形的面积S3=cm2.13.(3分)如图,在四边形ABCD中,∠A=90°,AD∥BC,BC=BD,CE⊥BD,垂足为E.若AD=4,CE=3,则DE的长为.14.(3分)在△ABC中,AB=10,AC=2√10,BC边上的高AD=6,则另一边BC等于.15.(3分)如图所示的一段楼梯,BC=2m,AB=4m,每层楼梯的宽均为√3m,若在楼梯上铺地毯,则至少要用地毯m2.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,已知某山的高度AC为800米,在山上A处与山下B处各建一个索道口,且BC=1500米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能到达山顶?17.(9分)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.18.(9分)一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边长如图2所示.(1)你认为这个零件符合要求吗?为什么?(2)求这个零件的面积.19.(9分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米?(假设绳子是直的,结果保留根号)20.(9分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.21.(10分)如图,在正方形ABCD纸片上有一点P,P A=1,PD=2,PC=3.现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合).求:(1)线段PG的长;(2)∠APD的度数.22.(10分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿BC方向移动.已知AD⊥BC且AD=12AB,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.(11分)已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动的时间为t秒,(1)当△ABP为直角三角形时,求t的值:(2)当△ABP为等腰三角形时,求t的值.(本题可根据需要,自己画图并解答)2021-2022学年八年级数学下册第17章《勾股定理》单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)三角形的三边a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c=5:4:3B.a2=b2=c2C.a2=(b+c)(b﹣c)D.a:b:c=13:5:12【解答】解:A、∵32+42=25=52,∴此三角形是直角三角形,故本选项正确;B、∵a2=b2=c2,∴不符合勾股定理的逆定理,故本选项错误;C、∵a2=(b+c)(b﹣c),∴a2=b2﹣c2,即a2+c2﹣=b2,∴此三角形是直角三角形,故本选项正确;D、∵52+122=132,∴此三角形是直角三角形,故本选项正确.故选:B.2.(3分)下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1:√3:2【解答】解:A、∵x+2x=3x,∴三条线段不能组成三角形,不能组成直角三角形,故A 选项错误;B、∵(2x)2+(3x)2≠(4x)2,∴三条线段不能组成直角三角形,故B选项错误;C、∵(3x)2+(4x)2≠(6x)2,∴三条线段不能组成直角三角形,故C选项错误;D、∵x2+(√3x)2=(2x)2,∴三条线段能组成直角三角形,故D选项正确;故选:D.3.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.10【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD=√AB2−AD2=4,∴BC=2BD=8,故选:C.4.(3分)已知a,b,c是三角形的三边长,如果满足(a﹣5)2+√b−12+|c﹣13|=0,则三角形为()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形【解答】解:∵(a﹣5)2+√b−12+|c﹣13|=0,∴a﹣5=0,b﹣12=0,c﹣13=0,∴a=5,b=12,c=13,∵52+122=132,即a2+b2=c2,∴此三角形是直角三角形.故选:A.5.(3分)如图,△ABC的三边BC,CA,AB分别用a,b,c表示,下列说法错误的是()A.若a2+b2=c2,则∠C=90°B.若a2﹣b2=c2,则∠A=90°C.若c2+a2=b2,则∠B=90°D.若a2﹣b2+c2=0,则∠A=90°【解答】解:A、若a2+b2=c2,则∠C=90°,故选项A不合题意;B、若a2﹣b2=c2,所以a2=b2+c2,则∠A=90°,故选项B不合题意;C、若c2+a2=b2,则∠B=90°,故选项C不合题意;D、若a2﹣b2+c2=0,所以c2+a2=b2,则∠B=90°,故选项D符合题意;故选:D.6.(3分)在如图的网格中,每个小正方形的边长为1,A、B、C三点均在正方形格点上,则下列结论错误的是()A .AB =2√5 B .∠BAC =90°C .S △ABC =10D .点A 到直线BC 的距离是2【解答】解:由题意可得,AB =√22+42=2√5,故选项A 正确; AC =√12+22=√5, BC =√32+42=5, ∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形,∠BAC =90°,故选项B 正确; ∴S △ABC =AB⋅AC 2=2√5×√52=5,故选项C 错误; 作AD ⊥BC 于点D , 则BC⋅AD 2=5, 即5×AD 2=5,解得,AD =2,即点A 到直线BC 的距离是2,故选项D 正确; 故选:C .7.(3分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E ,DE =3,BD =2CD ,则BE =( )A.6B.7C.3√3D.2√6【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=3,∴BD=2CD=2×3=6,∴BE=√BD2−DE2=3√3.故选:C.8.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.√3B.√5C.√6D.√7【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC=√22+12=√5,故点M对应的数是:√5.故选:B.9.(3分)直角三角形斜边的平方等于两直角边乘积的2倍,这个三角形有一个锐角是()A.15度B.30度C.60度D.45度【解答】解:设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab =c 2,根据勾股定理得到:a 2+b 2=c 2,因而a 2+b 2=2ab ,即:a 2+b 2﹣2ab =0,(a ﹣b )2=0,所以a =b ,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选:D .10.(3分)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 9的值为( )A .(12)6B .(12)7C .(12)8D .(12)9 【解答】解:在图中标上字母E ,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴DE 2+CE 2=CD 2,DE =CE ,∴S 2+S 2=S 1.观察,发现规律:S 1=22=4,S 2=12S 1=2,S 3=12S 2=1,S 4=12S 3=12,…,∴S n =(12)n ﹣3. 当n =9时,S 9=(12)9﹣3=(12)6, 故选:A .二、填空题(每小题3分,共15分)11.(3分)命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2”的逆命题是如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形.【解答】解:根据逆命题的定义得:命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题是:如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形;故答案为:如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形.12.(3分)如图,三个正方形中的两个的面积分别为S1=25cm2,S2=144cm2,则第三个正方形的面积S3=119cm2.【解答】解:根据图形及勾股定理得:S2=S1+S3,∵S1=25cm2,S2=144cm2,∴S3=S2﹣S1=144﹣25=119(cm2),故答案为:119.13.(3分)如图,在四边形ABCD中,∠A=90°,AD∥BC,BC=BD,CE⊥BD,垂足为E.若AD=4,CE=3,则DE的长为1.【解答】解:∵AD∥BC,∴∠ADB=∠EBC,∵CE⊥BD,∠A=90°,∴∠A=∠BEC=90°,在△ABD和△ECB中,{∠A =∠BEC ∠ADB =∠EBC BD =CB,∴△ABD ≌△ECB (AAS ),∴AD =BE =4,AB =CE =3,BD =BC ,由勾股定理可得:BC =√BE 2+CE 2=√42+32=5,∴DE =BD ﹣BE =5﹣4=1,故答案为:1.14.(3分)在△ABC 中,AB =10,AC =2√10,BC 边上的高AD =6,则另一边BC 等于 10或6 .【解答】解:根据题意画出图形,如图所示,如图1所示,AB =10,AC =2√10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD =√AB 2−AD 2=8,CD =√AC 2−AD 2=2,此时BC =BD +CD =8+2=10;如图2所示,AB =10,AC =2√10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD =√AB 2−AD 2=8,CD =√AC 2−AD 2=2,此时BC =BD ﹣CD =8﹣2=6,则BC 的长为6或10.故答案为:10或6.15.(3分)如图所示的一段楼梯,BC =2m ,AB =4m ,每层楼梯的宽均为√3m ,若在楼梯上铺地毯,则至少要用地毯 (6+2√3) m 2.【解答】解:在Rt△ABC中,AC=√AB2−BC2=√42−22=2√3(m),∴AC+BC=(2√3+2)m,∴地毯的面积至少要(2√3+2)×√3=(6+2√3)(m2).故答案为:(6+2√3).三、解答题(本大题共8个小题,满分75分)16.(8分)如图,已知某山的高度AC为800米,在山上A处与山下B处各建一个索道口,且BC=1500米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能到达山顶?【解答】解:∵AC⊥BC,AC=800米,BC=1500米,在Rt△ABC中,由勾股定理可得:AB=√AC2+BC2=√8002+15002=1700(米),∵缆车每分钟走50米,∴欢欢达到山顶的时间=1700÷50=34(分钟).答:大约34分钟后,欢欢才能达到山顶.17.(9分)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF中,∵∠DEF=90°,DE=2,∠F=30°,∴DF=2DE=4,∴EF=√DF2−DE2=√42−22=2√3.18.(9分)一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边长如图2所示.(1)你认为这个零件符合要求吗?为什么?(2)求这个零件的面积.【解答】解:(1)∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∴∠A=90°,∠DBC=90°,故这个零件符合要求.(2)这个零件的面积=△ABD的面积+△BDC的面积=3×4÷2+5×12÷2=6+30=36.故这个零件的面积是36.19.(9分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解答】解:在Rt△ABC中,BC=13m,AC=5m,则AB=√BC2−AC2=12m,6秒后,BC=10,则AB=√BC2−AC2=5√3(m),则船向岸边移动距离为(12﹣5√3)m.20.(9分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.【解答】解:(1)∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;(2)∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC2+CE2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.21.(10分)如图,在正方形ABCD纸片上有一点P,P A=1,PD=2,PC=3.现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合).求:(1)线段PG的长;(2)∠APD的度数.【解答】解:四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∵P A=1,PD=2,PC=3,将△PCD剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),∴PD=GD=2,∠CDP=∠ADG,AG=PC=3,∴∠PDG=∠ADC=90°,∴△PDG是等腰直角三角形,∴∠GPD=45°,PG=√2PD=2√2,(2)由(1)知∠GPD=45°,PG=√2PD=2√2,∵AG=PC=3,AP=1,∴12+(2√2)2=32,∴AP2+PG2=AG2,∴∠GP A=90°,∴∠APD=90°+45°=135°.22.(10分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿BC方向移动.已知AD⊥BC且AD=12AB,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【解答】解:(1)该城市会受到这次台风的影响.理由是:如图,在Rt△ABD中,∵AD=12AB∴∠ABD=30°,AB=240千米,∴AD=12AB=120千米,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200千米.∵120<200,∴该城市会受到这次台风的影响.(2)如图以A为圆心,200为半径作⊙A交BC于E、F.则AE=AF=200.∴台风影响该市持续的路程为:EF=2DE=2√2002−1202=320.∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2≈8(级).23.(11分)已知:如图,在Rt △ABC 中,∠ACB =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动的时间为t 秒,(1)当△ABP 为直角三角形时,求t 的值:(2)当△ABP 为等腰三角形时,求t 的值.(本题可根据需要,自己画图并解答)【解答】解:(1)∵∠C =90°,AB =5cm ,AC =3cm ,∴BC =4 cm .①当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm ,∴t =4÷2=2s .②当∠BAP 为直角时,BP =2tcm ,CP =(2t ﹣4)cm ,AC =3 cm ,在Rt △ACP 中,AP 2=32+(2t ﹣4)2,在Rt △BAP 中,AB 2+AP 2=BP 2,∴52+[32+(2t ﹣4)2]=(2t )2,解得t =258s .综上,当t =2s 或258s 时,△ABP 为直角三角形.(2)①当BP =BA =5时,∴t =2.5s .②当AB =AP 时,BP =2BC =8cm ,∴t =4s .③当PB =P A 时,PB =P A =2t cm ,CP =(4﹣2t )cm ,AC =3 cm ,在Rt △ACP 中,AP 2=AC 2+CP 2,∴(2t )2=32+(4﹣2t )2,解得t =2516s . 综上,当△ABP 为等腰三角形时,t =2.5s 或4s 或2516s .。
初中八年级数学下册第十七章勾股定理单元复习试题3(含答案)在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形【答案】B【解析】【分析】根据勾股定理的逆定理解答即可.【详解】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直角三角形,故选:B.【点睛】本题考查勾股定理的逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.32.以下列各组数为边的三角形中,是直角三角形的有()A.3,4,5 B.32,42,52D.0.03,0.04,0.05【答案】A【解析】【分析】根据勾股定理的逆定理进行逐一分析判断.【详解】解:A、∵32+42=25=52,∴3,4,5为边的三角形是直角三角形;B、∵(2)2=7≠2,∴该选项不能组成直角三角形;C、∵(32)2+(42)2=81+256=337≠(52)2,∴该选项不能组成直角三角形;D、∵0.032+0.042=0.0025≠0.062,∴该选项能够组成直角三角形.故选:A.【点睛】此题主要是勾股定理的逆定理的运用,即如果三角形的两条边的平方和等于第三边的平方,则该三角形是直角三角形.33.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′【答案】D【解析】【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,逐一检验.【详解】A 、符合SAS 判定定理,故本选项错误;B 、符合ASA 判定定理,故本选项错误;C 、符合AAS 判定定理,故本选项错误;D 、没有AAA 判定定理,故本选项正确.故选D .【点睛】此题考查全等三角形的判定,解题关键在于掌握判定定理.34.下列各组数是勾股数的是( )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,15【答案】A【解析】试题解析:A 、∵32+42=52,∴是勾股数,故此选项正确;B 、∵1.52+22=2.52,但不是正整数,∴不是勾股数,故此选项错误;C 、∵222223+45≠()()(),∴不是勾股数,故此选项正确;D 、∵(13)2+(14)2≠(15)2,∴不是勾股数,故此选项错误; 故选A .35.如图,在五边形ABCDE 中,280A B E EDC BCD ︒∠+∠+∠=∠∠,、的平分线DP CP 、相交于P 点,则P ∠的度数是( )A .40︒B .45︒C .50︒D .55︒【答案】C【解析】【分析】 先计算出五边形的内角和等于540°,然后可得∠BCD+∠CDE=260°,再根据∠BCD ,∠CDE 的平分线在五边形内相交于点O ,可得∠PDC+∠PCD=12(∠CDE+∠BCD)=130°,即可得出答案.【详解】∵五边形的内角和等于(5-2)×180°=540°,∠A+∠B+∠E=280°,∴∠BCD+∠CDE=540°一280°=260°,∵∠BCD ,∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠CDE+∠BCD)=130°, ∴∠P=180°-130°=50°,故选:C .【点睛】本题考查了多边形的内角和,角平分线的性质,求出五边形内角和是解题关键.36.以下列各组数据为边组成的三角形,不是直角三角形的是( )A .3,4,5B .1,1C .5,12,13 D【答案】D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、32+42=25=52,符合勾股定理的逆定理,故本选项正确;B 、12+12=2=)2,符合勾股定理的逆定理,故本选项正确;C 、52+122=169=132,符合勾股定理的逆定理,故本选项正确;D 、2+22=7≠2=5,不符合勾股定理的逆定理,故本选项错误. 故选D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.37.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ′C ′D ′,则它们的公共部分的面积等于( )A .1-3B .1-4C .12D .3【答案】D【解析】试题分析:设CD 与B ′C ′相交于点O ,连接OA .根据旋转的性质,得∠BAB ′=30°,则∠DAB ′=60°.在Rt △ADO 和Rt △AB ′O 中,AD =AB ′,AO =AO ,∴Rt △ADO ≌Rt △AB ′O .∴∠OAD =∠OAB ′=30°.∴OA =2OD ,在Rt △ODA 中OD 2+AD 2=OA 2,∴OD 2+AD 2=(2OD )2,又∵AD =1,∴OD∴公共部分的面积=2×12×3×1=3. 故选D .38.下列说法正确的是( )A .两条不相交的直线一定平行B .三角形三条高线交于一点C .过一点有且只有一条直线与已知直线垂直D .直线外一点到这条直线的垂线段的长度叫做这个点到直线的距离【答案】D【解析】【分析】根据平行线的概念可判断选项A;根据三角形的高的概念可判断选项B;根据垂线的定义、可判断选项C;根据点到直线的距离概念可判断选项D,进而可得答案.【详解】解:A、应该是在同一平面内,两条不相交的直线是平行线,故该选项错误;B、三角形的高是线段,而钝角三角形的三条高线不相交,故本选项错误;C、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;D、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项正确;故选:D.【点睛】本题考查了命题和定理的辨析,注意各定理或推论成立的条件是解决此题的关键所在.39.如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,GD=2CG,连接BG、DE,DE和FG相交于点O.下列结论:①△BCG≌△DCE;②BG⊥DE;③DGGC=GOCE;④4S△EFO=S△DGO.其中正确的结论有()A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由四边形ABCD 和四边形CEFG 是正方形,根据正方形的性质,即可得BC=DC ,CG=CE ,∠BCD=∠ECG=90°,则可根据SAS 证得①△BCG ≌△DCE ;延长BG 交DE 于点H ,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH ⊥DE .由△DGF 与△DCE 相似即可判定③错误;由△GOD 与△FOE 相似即可求得④.【详解】①四边形ABCD 和四边形CEFG 是正方形,∴BC=DC ,CG=CE ,∠BCD=∠ECG=90°,∴∠BCG=∠DCE ,在△BCG 和△DCE 中,BC DC BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴△BCG ≌△DCE(SAS),故①正确;②延长BG 交DE 于点H ,∵△BCG ≌△DCE ,∴∠CBG=∠CDE ,又∵∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH ⊥DE ;∴BG ⊥DE故②正确;③∵四边形GCEF 是正方形,∴GF ∥CE , ∴DG GO DC CE= ∴DG GO GC CE =是错误的 故③错误;④∵DC ∥EF ,∴∠GDO=∠OEF ,∵∠GOD=∠FOE ,∴△OGD ∽△OFE , ∴2()DGO EFO SDG S EF=∵GD=2CG ,∴EF=CG=12GD , ∴2()4DGO EFO SDG S EF == ∴4S △EFO =S △DGO故④正确;综上所述①②④正确故选:C【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,熟练掌握和灵活运用相关知识是解题的关键.40.已知4a b +=,3ab =,则22a b +的值是( )A .6B .8C .10D .12 【答案】C【解析】【分析】将a+b=4两边平方,利用完全平方公式化简,将ab 的值代入即可求出a 2+b 2的值.【详解】解:将a+b=4两边平方得:(a+b )2=a 2+b 2+2ab=16,把ab=3代入得:a 2+b 2+6=16,即a 2+b 2=10.故选:C .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.。
人教新版八年级下册《第17章勾股定理》单元测试卷(2)一、选择题(本题共计8小题,每题3分,共计24分,)1.(3分)若直角三角形的两直角边长分别为12、5,则这个直角三角形的斜边长是()A.13B.C.169D.2.(3分)我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是()A.分类思想B.方程思想C.转化D.数形结合3.(3分)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处玩耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断4.(3分)下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.45.(3分)下列命题中,其逆命题不成立的是()A.若两个数的差为正数,则这两个数都为正数B.等腰三角形的两个底角相等C.若ab=1,则a与b互为倒数D.如果|a|=|b|,那么a2=b26.(3分)下列线段不能组成直角三角形的是()A.a=3,b=4,c=5B.a=1,b=,c=C.a=2,b=3,c=4D.a=7,b=24,c=257.(3分)已知二条线段的长分别为cm,cm,那么能与它们组成直角三角形的第三条线段的长是()A.1cm B.cm C.5cm D.1cm与cm 8.(3分)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是()A.10米B.15米C.16米D.17米二、填空题(本题共计7小题,每题3分,共计21分,)9.(3分)已知一个直角三角形的两边长分别为3和4,则这个三角形的周长是.10.(3分)以下列各组数为边长:①3、4、5;②5,12,13;③3,5,7;④9,40,41;⑤10,12,13;其中能构成直角三角形的有.11.(3分)如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是.12.(3分)在四边形ABCD中,∠C=90°,DC=3,BC=4,AD=12,AB=13,则四边形ABCD的面积是.13.(3分)已知Rt△ABC的其中两边的长为3与4,则这个三角形的周长是.14.(3分)如图,在△ABC中,∠ACB=90°,D是斜边AB上一点,且BC=BD.若BC =2AC=2,则AD的长为.15.(3分)如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中A,B,C,D四个小正方形的面积之和等于8,则最大正方形的边长为.三、解答题(本题共计7小题,共计75分,)16.(10分)在我区“五水绕城”生态环境提升项目中,有一块三角形空地将进行绿化,如图,△ABC中,AB=AC,E是AC上的一点,CE=50,BC=130,BE=120.(1)判断△ABE的形状,并说明理由.(2)求△ABC的周长.17.(10分)利用下面的图形分别给出勾股定理的两种证明.18.(10分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c.(1)填表:边a、b、c三角形的面积与周长的比值3455121381517(2)若a+b﹣c=m,则猜想=(用含m的代数式表示,不必证明).19.(11分)如图,已知AD平分∠BAC,BE∥AD,F是BE的中点,求证:AF⊥BE.20.(10分)如图,25米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C 的距离为7米,如果梯子的顶端沿墙下滑4米,那么梯足将向外移多少米?21.(12分)如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.22.(12分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a、2a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.人教新版八年级下册《第17章勾股定理》单元测试卷(2)参考答案与试题解析一、选择题(本题共计8小题,每题3分,共计24分,)1.(3分)若直角三角形的两直角边长分别为12、5,则这个直角三角形的斜边长是()A.13B.C.169D.【考点】勾股定理.【分析】根据勾股定理即可求出答案.【解答】解:直角三角形的两直角边长分别为12、5,∴直角三角形的斜边长为=13,故选:A.2.(3分)我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是()A.分类思想B.方程思想C.转化D.数形结合【考点】勾股定理;数学常识.【分析】由于是用一副反应勾股定理的数形关系图来揭示直角三角形的三边之间的关系,所以它体现的数学思想方法是数形结合思想.【解答】解:由题意可得,它体现的数学思想方法是数形结合思想.故选:D.3.(3分)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处玩耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【考点】勾股定理的应用.【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC==4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.4.(3分)下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.4【考点】命题与定理.【分析】首先写出各个命题的逆命题,然后进行判断即可.【解答】解:①直角三角形两锐角互余逆命题是如果两个角互余那么这个三角形是直角三角形是真命题;②全等三角形的对应角相等逆命题是对应角相等的两个三角形全等是假命题;③两直线平行,同位角相等逆命题是同位角相等,两直线平行是真命题:④对角线互相平分的四边形是平行四边形逆命题是如果平行四边形,那么它的对角线互相平分是真命题;故选:C.5.(3分)下列命题中,其逆命题不成立的是()A.若两个数的差为正数,则这两个数都为正数B.等腰三角形的两个底角相等C.若ab=1,则a与b互为倒数D.如果|a|=|b|,那么a2=b2【考点】命题与定理.【分析】写出原命题的逆命题后判断正误即可.【解答】解:A、逆命题为若两个数都是正数,则这两个数的差为正数,不成立,符合题意;B、逆命题为两个角相等的三角形是等腰三角形,成立,不符合题意;C、逆命题为若a与b互为倒数,则ab=1,成立,不符合题意;D、逆命题为若a2=b2,那么|a|=|b|,成立,不符合题意.故选A.6.(3分)下列线段不能组成直角三角形的是()A.a=3,b=4,c=5B.a=1,b=,c=C.a=2,b=3,c=4D.a=7,b=24,c=25【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【解答】解:A、∵32+42=52,∴能组成直角三角形,故本选项错误;B、∵12+()2=()2,∴能组成直角三角形,故本选项错误;C、∵22+32≠42,∴不能组成直角三角形,故本选项正确;D、∵72+242=252,∴能组成直角三角形,故本选项错误.故选:C.7.(3分)已知二条线段的长分别为cm,cm,那么能与它们组成直角三角形的第三条线段的长是()A.1cm B.cm C.5cm D.1cm与cm 【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理列出方程解即可,有第三边是斜边或者是直角边两种情况.【解答】解:根据勾股定理的逆定理列出方程解即可,有第三边是斜边或者是直角边两种情况.当第三边是斜边时,第三边==(cm),当第三边是直角边时,第三边==1(cm).故选:D.8.(3分)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是()A.10米B.15米C.16米D.17米【考点】勾股定理的应用.【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB的长,即攀岩墙的高.【解答】解:如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)9.(3分)已知一个直角三角形的两边长分别为3和4,则这个三角形的周长是12或7+.【考点】勾股定理.【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=,此时周长=3+4+=7+;②3和4都是直角边,由勾股定理得:第三边长是=5,此时周长=3+4+5=12;综上所述,第三边的长为12或7+.故答案为:12或7+.10.(3分)以下列各组数为边长:①3、4、5;②5,12,13;③3,5,7;④9,40,41;⑤10,12,13;其中能构成直角三角形的有①②④.【考点】勾股数.【分析】根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.【解答】解:①32+42=52,②52+122=132,③32+52≠72,④92+402=412,⑤102+122≠132;所以①②④组数为边长的能构成直角三角形,故答案为:①②④.11.(3分)如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是a2+b2=c2.【考点】勾股定理的证明.【分析】用三角形的面积和、梯形的面积来表示这个图形的面积,从而列出等式,发现边与边之间的关系.【解答】解:此图可以这样理解,有三个Rt△其面积分别为ab,ab和c2.还有一个直角梯形,其面积为(a+b)(a+b).由图形可知:(a+b)(a+b)=ab+ab+c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.故答案为:a2+b2=c2.12.(3分)在四边形ABCD中,∠C=90°,DC=3,BC=4,AD=12,AB=13,则四边形ABCD的面积是36.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理求出BD,根据勾股定理的逆定理求出∠ADB=90°,根据三角形的面积公式求出△BCD和△ABD的面积即可.【解答】解:如图,连接BD,∵∠C=90°,DC=3,BC=4,∴由勾股定理得:BD==5,∵AB=13,AD=12,∴AD2+BD2=AB2,∴∠ADB=90°,+S△ABD=×3×4+×5×12=36.∴四边形ABCD的面积S=S△BCD故答案为:36.13.(3分)已知Rt△ABC的其中两边的长为3与4,则这个三角形的周长是12或7+.【考点】勾股定理的应用.【分析】先设Rt△ABC的第三边长为x,由于4是直角边还是斜边不能确定,故应分4是斜边或x为斜边两种情况讨论.【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x==,此时这个三角形的周长=3+4+=7+.故答案为:12或7+.14.(3分)如图,在△ABC中,∠ACB=90°,D是斜边AB上一点,且BC=BD.若BC =2AC=2,则AD的长为﹣2.【考点】勾股定理.【分析】先根据勾股定理计算AB的长,由线段的差可得结论.【解答】解:∵BC=2AC=2,∴AC=1,∵∠ACB=90°,∴AB==,∵BC=BD=2,∴AD=﹣2.故答案为:﹣2.15.(3分)如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中A,B,C,D四个小正方形的面积之和等于8,则最大正方形的边长为2.【考点】勾股定理.【分析】根据勾股定理可知正方形A和C的面积和就是大正方形的面积.同理正方形B 和D的面积和等于大正方形的面积,所以四个正方形的面积和就等于两个大正方形的面积由此即可得出结论.【解答】解:∵所有的三角形都是直角三角形,∴正方形A和C的面积和就是大正方形的面积,同理,正方形B和D的面积和等于大正方形的面积,设最大正方形的边长为x,可得:四个小正方形的面积=2×x×x=8.解得:x=2,故答案为:2.三、解答题(本题共计7小题,共计75分,)16.(10分)在我区“五水绕城”生态环境提升项目中,有一块三角形空地将进行绿化,如图,△ABC中,AB=AC,E是AC上的一点,CE=50,BC=130,BE=120.(1)判断△ABE的形状,并说明理由.(2)求△ABC的周长.【考点】勾股定理;等腰三角形的性质.【分析】(1)直接利用勾股定理逆定理进而分析得出答案.(2)设AB=AC=x,则AE=x﹣50,利用勾股定理得出AB的长,则可求出答案.【解答】解:(1)△ABE是直角三角形,理由:∵BC2=1302=16900,BE2=1202=14400,CE2=502=2500,∴BE2+CE2=BC2=16900,∴∠BEC=90°,∴BE⊥AC,∴△ABE是直角三角形.(2)设AB=AC=x,则AE=x﹣50,由(1)可知△ABE是直角三角形,∴BE2+AE2=AB2,∴1202+(x﹣50)2=x2,解得x=169.∴△ABC的周长为AB+AC+BC=169+169+130=468.17.(10分)利用下面的图形分别给出勾股定理的两种证明.【考点】勾股定理的证明.【分析】直接利用正方形面积以及三角形面积公式进而得出等式即可.【解答】证明:∵四边形HEFM的面积为:c2,四边形HEFM的面积还可以表示为:4×ab+(b﹣a)2=a2+b2,∴a2+b2=c2;∵四边形ABCD的面积为:(a+b)2,四边形ABCD的面积还可以表示为:4×ab+c2=c2+2ab,∴a2+b2=c2.18.(10分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c.(1)填表:边a、b、c三角形的面积与周长的比值3455121381517(2)若a+b﹣c=m,则猜想=(用含m的代数式表示,不必证明).【考点】勾股数.【分析】(1)分别求出每个直角三角形的面积和周长,计算面积与周长的比即可;(2)根据求得的a+b﹣c与的值,总结其规律,写出即可;用m、c的式子表示出a、b,分别表示出其周长及面积,用面积除以周长即可完成证明.【解答】(1)解:∵S=×3×4=6,L=3+4+5=12,∴==,∴同理可得其他两空分别为2,;(2)=;证明:∵a+b﹣c=m,∴a+b=m+c,∴a2+2ab+b2=m2+2mc+c2,又∵a2+b2=c2,∴2ab=m2+2mc,∴s==m(m+2c),∴===.19.(11分)如图,已知AD平分∠BAC,BE∥AD,F是BE的中点,求证:AF⊥BE.【考点】勾股定理的逆定理.【分析】先由角平分线定义得出∠BAD=∠CAD,再根据平行线的性质得出∠EBA=∠BAD,∠E=∠CAD,那么∠EBA=∠E,由等角对等边得出AE=AB,又F是BE的中点,根据等腰三角形三线合一的性质即可证明AF⊥BE.【解答】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE∥AD,∴∠EBA=∠BAD,∠E=∠CAD,∴∠EBA=∠E,∴AE=AB,又∵F是BE的中点,∴AF⊥BE.20.(10分)如图,25米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C 的距离为7米,如果梯子的顶端沿墙下滑4米,那么梯足将向外移多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据AC =AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB1的长度,根据BB1=CB1﹣CB,即可求得BB2的长度.【解答】解;在直角△ABC中,已知AB=25米,BC=7米,则由勾股定理得:AC==24(米);∵AC=AA1+CA1∴CA1=24米﹣4米=20米,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴由勾股定理得:CB1==15米,∴BB1=CB1﹣CB=15米﹣7米=8米;答:梯足将向外移8米.21.(12分)如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.【考点】勾股定理的应用.【分析】此题只需根据勾股定理计算直角三角形的斜边,即矩形的宽.再根据矩形的面积公式计算.【解答】解:根据勾股定理得,蔬菜大棚的斜面的宽度即直角三角形的斜边长为:m,所以蔬菜大棚的斜面面积为:10×20=200m2.答:阳光透过的最大面积为200平方米.22.(12分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a、2a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.【考点】勾股定理.【分析】(1)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(2)先作出以a、2a为直角边的三角形的斜边,再根据勾股定理和网格结构作出2a、a的长度,然后顺次连接即可;再根据三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.=3×3﹣×1×2﹣×1×3﹣×2×3【解答】解:(1)S△ABC=9﹣1﹣﹣3=9﹣5.5=3.5;故答案为:3.5;(2)△ABC如图所示,S△ABC=2a•4a﹣×2a•a﹣×2a•2a﹣×4a•a =8a2﹣a2﹣2a2﹣2a2=3a2.。
人教版八年级下册《第17章勾股定理》单元测试试卷(一)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )A.52B.3C.3+2D.334,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B. 800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.L 1 B.L 2 C.L 3 D.L 47,如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线ABABC图25m BCAD图1BCED图3左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( ) A.1 B.2 C.3 D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________. 14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm. 17,如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .图5图418,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.图620,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.A B 小河东北 牧童小屋 图7图8图924,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt△ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE2;10,A . 二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形. 20,15m.北A图1021,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt△A ′DB 中,由勾股定理求得A ′B =17km.22,( 1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab =6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM人教版八年级下册《第17章勾股定理》单元测试试卷(二)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303. 如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积是( )A.313B.144C.169D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以222c b a =+D.在Rt△中,∠°,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.5cm C.5.5 cmD.1 cm6.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A. B. C. D.7. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B. 3+1 C. 5-1 D. 5+1 8. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A.B.3C.1D.二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm, cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C 2.B 3.A 4.A 5.A6.C7.C8.D9.D 10.A二、11.37012.直角;24 分析:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.4 cm 分析:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4 (cm).14.略15.分析:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.=·BC·AD≈×7×5.8=20.3≈20.所以S△ABC17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC== =10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C 作CE⊥AD 于点E,由题意得AB=30 m,∠CAD=30°,∠C BD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m. 在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA-S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.21.解:(1)MN 不会穿过原始森林保护区.理由如下: 过点C 作CH⊥AB 于点H. 设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°. 在Rt△ACH 中,AH=CH=x m,在Rt△HBC 中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN 不会穿过原始森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.人教版八年级下册《第17章勾股定理》单元测试试卷(三)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5. 设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B. C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC 的形状,并说明理由.14.(12分)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分) 在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC 为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L.27.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S=×3h+×4h=×△ABC5×,解得h=,S=×3×=BD·,△ABD解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S=BP·BQ=×6×6=18(cm2).△PBQ答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵A D平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10,=AB·DE=×10×3=15.∴S△ADB15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得:BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边,∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形,∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.人教版八年级下册《第17章勾股定理》单元测试试卷(四)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x ,则使此三角形是直角三角形的x 的值是___ _.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是( ) A .1,2,B .1,2,C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于( ) A .6B .C .D .417.已知三角形的三边长之比为1∶1∶,则此三角形一定是( ) A .锐角三角形 B .钝角三角形 C .等边三角形D .等腰直角三角形18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ) A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1. ①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.A B C D53652 第13题 第16题第19题②第19题①20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面米处吹断,倒下的旗杆的顶端落在离旗杆底部米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =32 k m ,请根据上述数据,求出隧道BC 的长(精确到0.1 k m).22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.8.26.9 2.8米9.6米23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方米B 处,过了秒后,测得小汽车C 与车速检测仪A 间距离为米,这辆小汽车超速了吗?25.(6分)如图,△ABC 中,CD ⊥AB 于D . (1)图中有__________个直角三角形; A .0B .1C .2D .3(2)若AD =12,AC =13则CD =__________. (3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.26.(6分)小明把一根长为160 cm 的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?BC AD 703025027.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.参考答案 一、填空题1.15 2.10 3.3cm 4.1∶∶2 5. 6.12+6 7. 96 8.910.30cm 2 11.直角 12.A A 不是直角三角形,B、C 、D 是直角三角形 13.2+2 14. 5或 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²新人教版八年级下册《第17章勾股定理》单元测试试卷(五)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)33136031537 (1) (2)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt△ABC 的周长为4+2,斜边AB 的长为2,则Rt△ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则++=_______. 6.已知三角形三边长为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.8.如图,是北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .332AB 2AC 2BC n n n n n n ,122,22,1222++++第2题 第3题第4题3220A第7题9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5B .25C .D .5或16.已知Rt△ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt△ABC 的面积是 ( ) A .24cm 2B .36cm 2C .48cm 2D .60cm 217.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121B .120C .90D .不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小7760 12014060BAC第8题第11题第12题第13题图红和小颖家的直线距离为 ( )A .600米 B. 800米 C. 1000米 D. 不能确定 三、解答题(共60分)19.(5分)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?24.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB =90°,AC =80米,BC =60米,若线段CD 是一条小渠,且D 点在边AB 上,已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.27.(7分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?。
第17章勾股定理测试卷一、选择题1、下列各组数中,能构成直角三角形的是()A、4, 5, 6B、1, 1, >/2C、6, 8, 11D、5, 12, 232、等边三角形的边长为2,则该三角形的面积为()A、4A/3B、A/3C、2^3D、33、己知3、b、c是三角形的三边长,如果满足(a —6)2+jm + |c —10 | = 0,则三角形的形状是()A、底与边不相等的等腰三角形B、等边三角形C、钝角三角形I)、直角三角形4、若等腰三角形的腰长为10,底边长为12,则底边上的高为()A、6B、7C、8D、95、如图一艘轮船以16海里/小吋的速度从港n A 发向东北方向航行,另一轮船12海里/小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A、36海里B、48海里C、60海里D、84海里6、若中,AB = 13cm,AC = i5cm,高AD二12,则BC 的长为()A、14B、4C、14或4D、以上都不对二、填空题1、命题:“在同一个三角形中,等边对等角”的逆命题是___________________________________________ 星 ________ (填真命题或假命题)2、己知一个直角三角形的两条直角边分别为6和8,那么这个直角三角形斜边上的高为______________3、若一个直角三角形的两条边长分别为3和5,那么它的第三边长是______________________4、己知在△ 中,Z 〃二90 °( 3 )如图 3 ,若AB = 4 , BC = x , AC二8-x ,则BC= ___________ , AC二 __________5.在我国古算书《周髀算经》屮记载周公与商高的谈话,其叩就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如是由边长相等的小正方形和直角三角形构成的,可以用其而积关系验证勾股定理.图2是由图1放入矩形内得到的,ZBAC = 90°, AB 二3, AC=4,则 D E, F, G, H, /都在矩形K 厶的边上, 那么矩形KLMJ 的面积为 •二、综合题1.在 RtAABC 中,ZC 二90°.(1)已知 c = 25,b = 15,求 a ; 2、一架长为2.5m 的梯子,斜靠在竖直的墙上,这时梯子的底端距离底0.7m 。
勾股定理
一、选择题(每小题4分):
1.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的有( )
A ②
B ①②
C ①③
D ②③
2. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )
A 365
B 1225
C 94
D 4
3. 如图,在平面直角坐标系中,点P 坐标为()2,3-,以点O 为圆心,以OP 的长
为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )
A 4-和3-之间
B 3和4之间
C 5-和4-之间
D 4和5之间
4.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( )
A 22+
5. 如图,点A 的坐标是(1,1),若点B 在x 轴上,且△ABO 是等腰三角形,则点B 的坐标不可能是( )
A ()2,0
B 1
02,⎛⎫ ⎪⎝⎭
C ()
D ()1,0
6. 如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④
9x y +=.其中说法正确的是
A ①②
B ①②③
C ①②④
D ①②③④
7. 如图,已知△ABC 中,∠ABC =90°,AB=BC ,三角形的顶点在相互平行的三条
直线1l ,2l ,3l 上,且1l ,2l 之间的距离为2,2l ,3l 之间的距离为3,则AC 的长是( )
A
8. 如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )
A 5+
9. 如图,直线MN 和EF 相交于点O ,∠EON =60°,AO =2m ,∠AOE =20°.设点A 关于EF 的对称点是B ,点B 关于MN 的对称点是C ,则A 、C 的距离为( )
10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得
到的,∠BAC =90°,AB =3,AC =4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A 90 B 100 C 110 D 121
二、填空题(每小题4分):
11. 在直角三角形ABC 中,∠C =90°,BC =12,AC =9,则AB = .
12. 若直角三角形的两直角边长为a 、b 40b -=,则该直角三角形的斜边长
为 .
13. 如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现绳子刚好比旗杆长11米,若把绳子往
外拉直,绳子接触地面A 点并与地面形成30°角时,绳子未端D 距A 点还有1米,那么旗杆BC 的高度为 米.
14. 如图,在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 .
勾股定理单元测试答题纸
班级 姓名 学号
三、解答题(第19题8分,其余各题每小题7分):
15.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.
16. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;
(2)若CD= 2,求AD的长.
17. 如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)请直接写出四边形ABCD的周长.
18. 校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:
1.41
≈, 1.73
≈)
19. 联想三角形外心的概念,我们可引入如下概念.
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)如图2,CD为等边三角形ABC的高,准外心P在高CD上,且
1
2
PD AB
=,求∠APB的度数.
(2)已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,求PA的长.
附加题:
20. (5分)如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2013个等腰直角三角形的斜边长是.
21. (5分)在平面直角坐标系中,已知点()
A ,)
B
,点C 在坐标轴上,且AC +BC =6,写出
满足条件的所有点C 的坐标 .
22.(10分)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.
(1)小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由.
(2)保持(1)中的条件不变,若DC=2DF ,求
AD
AB 的值; (3)保持(1)中条件不变,若DC=nDF ,求AD
AB
的值.。