高分子物理复习要点
- 格式:docx
- 大小:23.85 KB
- 文档页数:3
高分子物理重要知识点第一章高分子链的结构1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。
相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。
一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。
英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。
前者又可译作聚合物或高聚物;后者又可译作大分子。
这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。
与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。
(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。
高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。
此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。
1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价键相连:不易水解(2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性(4)梯形和螺旋形高分子:具有高热稳定性由单体通过聚合反应连接而成的链状分子,称为高分子链。
第五章 聚合物的分子运动和转变1.聚合物分子运动的特点: ①.运动单元的多重性 ②.分子运动的时间依赖性 ③.分子运动的温度依赖性2.运动单元的多重性: A.具有多种运动模式 B.具有多种运动单元A.具有多种运动模式:由于高分子的长链结构,分子量不仅高,还具有多分散性,此外,它还可以带有不同的侧基,加上支化,交联,结晶,取向,共聚等,使得高分子的运动单元具有多重性,或者说高聚物的分子运动有多重模式B.具有多种运动单元:如侧基、支链、链节、链段、整个分子链等* 各种运动单元的运动方式①.链段的运动: 主链中碳-碳单键的内旋转, 使得高分子链有可能在整个分子不动, 即分子链质量中心不变的情况下, 一部分链段相对于另一部分链段而运动②.链节的运动: 比链段还小的运动单元③.侧基的运动: 侧基运动是多种多样的, 如转动, 内旋转, 端基的运动等④.高分子的整体运动: 高分子作为整体呈现质量中心的移动⑤.晶区内的运动: 晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等3.分子运动的时间依赖性: 在一定的温度和外力作用下, 高聚物分子从一种平衡态过渡到另一种平衡态需要一定时间的,这种现象即为分子运动的时间依赖性; 因为各种运动单元的运动都需克服内摩擦阻力, 不可能瞬时完成4.松弛现象:除去外力,橡皮开始回缩,其中的高分子链也由伸直状态逐渐过渡到卷曲状态,即松弛状态。
故该过程简称松弛过程。
5.松弛时间τ : 形变量恢复到原长度的1/e 时所需的时间 6.分子运动的温度依赖性:①.温度升高,使分子的内能增加:运动单元做某一模式的运动需要一定的能量, 当温度升高到运动单元的能量足以克服的能垒时,这一模式的运动被激发。
②.温度升高使聚合物的体积增加:分子运动需要一定的空间, 当温度升高到使自由空间达到某种运动模式所需要的尺寸后, 这一运动就可方便地进行。
7.黏弹行为的五个区域: ①.玻璃态 ②.玻璃化转变区 ③.高弹态(橡胶-弹性平台区) ④.粘弹转变区 ⑤.粘流态8.图- -:模量-温度曲线----各区的运动单元、特点、名字、描述玻璃化转变为高弹态,转变温度称为玻璃化温度Tg高弹态转变为粘流态,转变温度称为粘流温度Tf* 非晶聚合物:①.从相态角度来看,玻璃态,高弹态,粘流态均属液相,即分子间的相互排列均是无序的。
高分子物理复习重点第一章高分子的链结构高分子物理的研究内容(结构—性能)高分子链的结构层次构型、构造、构象、链段定义、柔顺性及影响因素、链柔性的定量表示方法第二章高分子凝聚态结构单晶、球晶形成条件,在偏光显微镜及电镜照片中的特征;球晶对力学性能的影响及控制方法、结晶度对聚合物性能的影响;按液晶态的形成条件对液晶分类;液晶基元的结构;液晶晶型分类及特点、液晶构造、液晶织构形成的原因、种类及意义;聚合物的取向结构的定义、结构特征和性能,高分子合金及体系分类、高分子合金的相容性的判别第三章高分子溶液聚合物溶解需要考虑哪些因素(定性、定量)?或溶剂对聚合物溶解能力的判定;利用X1、A2、Δμ1E及θ温度判定高分子在溶剂中所处的状态(良溶剂、劣溶剂、析出);聚合物溶剂的选择方法;Θ溶液(溶剂、温度条件)第四章聚合物的分子量与分子量分布粘度的五种表表示方法(含单位);采用毛细管粘度计测定分子量的原理方法,采用凝胶渗透色谱法测定分子量分布的原理(体积排除理论)第五章高分子分子运动和转变掌握非晶态聚合物、交联聚合物、晶态聚合物的热机械曲线特征,并能绘制并标出黏弹行为的五个区域(指温度-形变曲线(即热机械曲线)的划分(含T g、T f标注),及分子量大小对曲线影响。
了解塑料、橡胶、纤维的使用上限、下限温度;掌握Tg转变温度的测定方法(膨胀计法、量热法与温度形变法);软化温度的定义及表示方法;玻璃化转变理论—等自由体积理论;影响玻璃化转变温度的因素;影响结晶能力的因素;影响熔点的因素;了解高分子熔点与小分子熔点的区别及测定熔点的方法;第六章橡胶弹性橡胶高弹性的本质、具有橡胶弹性的条件、应力、应变、模量、柔量、泊松比之间的关系,常见材料的泊松比(如橡胶)、热塑性弹性体定义。
第七章聚合物的粘弹性虎克定律、牛顿流动定律、高聚物粘弹性定义、粘弹性分类、应力松弛、蠕变(定义及形变包含几种类型)、滞后、力学损耗;交联聚合物与线型聚合物的应力松弛曲线和蠕变曲线;掌握Maxwell 运动方程和Kelvin运动方程的推导,掌握可模拟哪类聚合物,不模拟哪类聚合物,掌握粘弹性的时温等效原理及意义。
高分子物理总复习一、名词解释1.近程结构:一个或几个结构单元的化学组成、空间结构及其与近程邻近基团间的键接关系。
2.结构单元:高分子链中单体的残基。
3.键接方式(构造异构):结构单元在链中的连接方式和顺序。
4.支化度:支化点密度,或两相邻支化点间链的平均分子量。
5.交联度:交联点密度,或两相邻交联点间链的平均分子量。
6.构型:分子中由化学键所固定的原子(团)在空间的排列。
7.旋光异构:含不对称碳的结构单元具有互为镜象的一对对映体,互称旋光异构( 单元) 。
8.几何异构(顺反异构):由内双键上基团在双键两侧排列方式不同而形成的异构体(单元)。
9.等规度:聚合物中由两种异构单元规整连接(全同和间同立构)的链所占的百分数。
10.远程结构:相距较远的原子(团)间在空间的形态及其相互作用。
11.内旋转:由ζ单键绕对称轴的旋转。
12.构象:由于单键内旋转而形成的分子在空间的不同的形态。
13.构象(内旋转)异构体:由单键内旋转而形成的相对稳定的不同构象间的互称。
14.无轨线团:具有不规则蜷曲构象的高分子链。
15.均方末端距:线型高分子链两端点间距离平方的平均值。
16.均方旋转半径:从高分子链重心到各个链单元间距离平方的平均值。
17.高斯链:高分子链段分布符合高斯分布函数的高分子链(等效自由结合链)。
18.等效自由结合链:以若干个键所组成的链段间自由结合、且无规取向的高分子长链。
19.链段:高分子链段中由若干个键所组成的能够独立运动的最小的分子片段(单元)。
20.刚性因子(空间位阻参数):由实测高分子的无扰根均方末端距与自由旋转链的根均方末端距之比。
21.分子无扰尺寸:由实测高分子的无扰均方末端距与分子量之比的平方根。
22.无扰尺寸:在θ条件下测得的高分子链的尺寸应与高分子本体尺寸一致,称无扰尺寸。
23.柔顺性:高分子链能够改变其构象的性质。
24.聚集态结构(超分子结构):高分子材料中分子链与链间的排列与堆砌结构。
高分子物理复习资料第一章高分子链的结构高分子结构的层次:●高分子链的结构:高分子的链结构又称一级结构,指的是单个分子的结构和形态,它研究的是单个分子链中原子或基团的几何排列情况。
包含一次结构和二次结构。
●高分子的一次结构:研究的范围为高分子的组成和构型,指的是单个高分子内一个或几个结构单元的化学结构和立体化学结构,故又称化学结构或近程结构。
●高分子的二次结构:研究的是整个分子的大小和在空间的形态(构象)。
例如:是伸直链、无规线团还是折叠链、螺旋链等。
这些形态随着条件和环境的变化而变化,故又称远程结构。
●高分子的聚集态结构:高分子的聚集态结构又称二级结构,是指具有一定构象的高分子链通过范德华力或氢键的作用,聚集成一定规则排列的高分子聚集体结构。
§1.1组成和构造1、结构单元的化学组成:按化学组成不同聚合物可分成下列几类:①碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。
如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。
②杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。
由缩聚反应和开环聚合反应制得。
如:聚酯、聚醚、聚酰胺、聚砜。
POM、PA66(工程塑料)PPS、PEEK。
③元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。
侧基含有有机基团,称作有机元素高分子,如: 有机硅橡胶有机钛聚合物侧基不含有机基团的则称作无机高分子,例如:梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。
※表1-1,一些通用高分子的化学结构,俗称2、高分子的构型:构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
高分子物理复习资料1、高聚物无气态的原因。
高聚物由于分子链很长,因而分子间的总吸引力能很大,要是它们汽化,需要供给的能量太大,即需要很高的温度,它远远超过大分子链断裂的温度,所以高聚物不存在气态。
2、温度形变曲线对材料的成型的意义。
当常温介于Tb与Tg之间时,主要用作塑料;当常温介于Tg与Tf之间时,主要用做橡胶;当常温介于Tf与Td之间时,主要用作胶黏剂和油漆。
3、硬质的PVC电缆料套管在架空的情况下,会愈来愈弯曲,为什么?用什么方法来减少这一现象?因为在架空的情况下,PVC电缆料套管出现了蠕变现象。
方法:交联、取向、增强、引入芳杂环。
4、应力松弛。
未经硫化的橡胶赢了可松弛到零,而经硫化的橡胶不能松弛到零的原因。
应力松弛是指在恒定形变下,物体的应力随时间的增加而逐渐衰减的现象。
因为交联后的高聚物有交联键的存在,所以不能松弛到零。
5、法兰上的橡胶密封圈,时间用长了会失效的原因。
法兰上的橡胶在长期使用过程中,出现了老化现象。
6、高聚物的溶解过程。
线性高聚物:先溶胀,后溶解。
极性晶态高聚物:不需要加热即溶解于极性溶剂中。
非极性晶态高聚物:先熔融,再溶胀,后溶解。
7、不稳定流动与其影响因素。
克服方法。
高聚物熔体在挤出时,如果应力超过一定极限,熔体往往会出现不稳定流动,挤出物外表不再是光滑的。
影响因素:对于高分子熔体,黏度高,黏滞阻力大在较高的切变速率下,弹性形变的储能达到或超过克服黏滞阻力的流动能量时,导致不稳定流动的发生。
克服方法:减小模口,增加模口长度。
8、取向与解取向。
结晶高聚物与非结晶高聚物的取向的异同。
取向是在外力作用下,分子链沿外力方向择优排列。
解取向是高分子链有有序状态回归到无规蜷曲状态、。
结晶高聚物的取向过程:链段的取向、晶粒的变形、片晶的滑脱。
线形非晶态高聚物的取向过程:链段的取向、大分子链的取向。
9、温度对结晶的影响。
用结晶高聚物生产一般制品、拉伸制品和薄膜制品在工艺上控制结晶的方法。
高分子物理重点1、结晶度、晶粒尺寸、片晶厚度⑴结晶度:试样中结晶部分所占的质量分数或者体积分数。
⑵测定方法:(测试方法不同,结晶度也不同)①密度法:依据是分子链在晶区规整堆砌,故晶区密度大于非晶区密度ρc>ρa。
试样密度可用密度梯度管进行实测,晶区和非晶区的密度分别认为是聚合物完全结晶和完全非结晶时的密度。
完全结晶的密度即晶胞密度。
完全非结晶的密度可以从熔体的比体积-温度曲线外推到被测温度求得,也可以把熔体淬火,以获得完全非结晶的试样后进行实测。
②X-射线分析法:测定晶态聚合物结晶度的依据是总的相干散射强度等于晶区和非晶区相干散射强度之和。
③量热法:根据聚合物熔融过程中的热效应来测定结晶度的方法。
(=聚合物试样的熔融热/100%结晶试样的熔融热)当温度在聚合物的熔点和玻璃化温度之间,结晶聚合物的非晶区处于橡胶弹性平台区。
此时,结晶度高,材料拉伸强度、模量、硬度高,断裂伸长率减小,冲击强度稍有下降。
而温度在Tg以下时,结晶聚合物的非晶区处于玻璃态区,结晶度增加,材料脆性增大。
两相并存的晶态聚合物通常呈乳白色、不透明。
当结晶度减小时,透明度增加。
此外,结晶度达40%以上的晶态聚合物,其最高使用温度是结晶熔点Tm,热性能优于非晶聚合物或轻度结晶的聚合物。
结晶度高低还影响材料的耐溶剂性,气体、蒸气或液体的渗透性,化学反应活性等。
⑶晶粒尺寸:(利用X射线衍射曲线测定)⑷片晶厚度l:定义为长周期内结晶部分的厚度,l=l’ X c。
长周期l’是晶态聚合物中,相邻片晶中心的间距,包括结晶部分和非晶部分。
Xc是试样的结晶度。
2、聚合物的取向结构⑴概念:高分子的取向是指在外力(拉伸、牵引、挤出)作用下,其大分子链、链段或结晶高分子中的晶体结构沿外力作用方向择优排列的结构。
⑵取向机理:①非晶态聚合物:取向条件(温度、拉伸速度等)不同其取向单元也不同。
在适当温度时,拉伸可以链段取向,即链段沿外场方向平行排列,但整个分子链的排列仍然是杂乱的。
高分子物理复习重点(考研自己整理)第一章高分子的链结构 (1)1.1 高分子结构的特点和内容 (1)1.2 高分子的近程结构 (1)1.3 高分子的远程结构 (1)1.4 高分子链的柔顺性 (2)第二章高分子的聚集态结构 (2)2.1 高聚物的非晶态 (2)2.2 高聚物的晶态 (3)2.3 高聚物的取向结构 (5)2.4 高分子液晶及高分子合金 (5)第三章高聚物的分子运动 (6)3.1 高聚物的分子热运动 (6)1. 高分子热运动的特点 (6)2. 高聚物的力学状态和热转变 (6)3. 高聚物的松驰转变及其分子机理 (7)3.2 玻璃化转变 (7)3.3 玻璃化转变与链结构的关系 (8)3.4晶态高聚物的分子运动 (10)第四章高聚物的力学性质 (10)4.1 玻璃态和结晶态高聚物的力学性质 (10)1 力学性质的基本物理量. (10)2 应力-应变曲线 (12)(1)玻璃态高聚物的拉伸 (12)(2) 玻璃态高聚物的强迫高弹形变 (13)(3) 非晶态聚合物的应力-应变曲线 (13)(4)结晶态聚合物的应力-应变曲线 (14)(5) 特殊的应为-应变曲线 (15)3 屈服 (15)4 断裂 (16)5影响高聚物实际强度的因素 (16)4.2 高弹性 (17)1 橡胶的使用温度范围 (17)2 高弹性的特点和热力学分析 (18)1) 高弹性的特点 (18)2) 橡胶弹性的热力学分析 (18)4.3 粘弹性 (19)1 聚合物的力学松驰现象 (19)(1)静态粘弹性现象 (19)(2)动态粘弹性现象 (20)2 粘弹性的力学模型 (21)3 时温等效原理 (22)4 Boltzmann叠加原理 (23)5 粘弹性的实验方法 (23)6. 蛇行理论 (24)第五章高聚物的流变性 (24)5.1牛顿流体与非牛顿流体 (24)5.2高聚物粘性流动的主要特点 (25)5.3影响粘流温度的因素 (25)5.4高聚物熔体的切粘度 (25)1. 高聚物的流动性表征 (25)2. 剪切粘度的测量方法 (25)3. 高聚物熔体的流动曲线 (26)4. 影响高聚物熔体切粘度的因素 (26)5. 高聚物熔体的弹性表现 (27)第六章高聚物的电、热、光性能 (27)6.1 聚合物的介电性能 (27)6.2 介电损耗 (28)6.3 聚合物的导电性 (29)6.4 介电击穿 (29)6.5 聚合物的静电现象 (30)第七章高分子溶液性质 (30)第八章高分子的分子量及其分布 (33)第一章 高分子的链结构1.1 高分子结构的特点和内容高聚物结构的特点:1. 是由多价原子彼此以主价键结合而成的长链状分子,相对分子质量大,相对分子质量往往存着分布。
高分子物理考试重点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高分子物理考试重点一、名词解释:等效自由连接链:若干个键组成的一链段算作一个独立的单元,称之为“链段”,链段间自由结合,无规取向,这种链的均方末端距与自由连接链的计算方式等效。
高分子θ溶液:Avrami 方程: 用数学方程描述聚合物等温结晶过程。
测定结晶度随时间的变化,这种方法测定的是结晶总速率(包括成核速率和生长速率)。
通常用膨胀计法,由于结晶时有序排列而体积收缩,若比容在时间为0,t 和∞时分别为V 0,V t 和V ∞,则结晶过程可用Avrami 方程描述:(V t -V ∞)/(V 0-V ∞)=()t n k W o W L -=exp 通过双对数作图,从斜率求n ,从截距求k ,n 称Avrami 指数,n=生长的空间维数+时间维数,异相成核的时间为0,均相成核为1,。
k 用来表征结晶速率,k 越大,结晶速率越快。
平衡熔点:熵弹性: 理想高弹性等温形变过程,只引起熵变,对内部保持不变,即只有熵的变化对理想高弹性的弹性有贡献,这种弹性称为熵弹性。
粘弹性:是材料对外界作用力的不同响应情况。
对于聚合物,其力学性质可同时兼有不可回复的永久形变和可回复的弹性形变,介于理想弹性体和理想粘性体之间,形变与时间有关,但不是线性关系。
此性质就是粘弹性。
力学损耗: 聚合物在应力作用下,形变的变化落后于应力的变化,发生滞后现象,每一个循环变化中就要消耗功,这个功就是力学损耗。
滞后现象: 一定温度与循环(交变)应力作用下,试样应变滞后于应力变化的现象。
Boltzmann叠加原理:对于聚合物材料的蠕变过程,形变是整个负荷历史的函数,每一次阶跃式加负荷对以后应变的贡献是独立的,最终形变等于各个所加负荷所贡献的形变的加和。
时温等效原理:升高温度和延长观察时间对分子运动是等效的,对于聚合物的粘弹性行为也是等效的。
高分子物理复习提要1’ 高分子化学组成,高分子链接键接方式、序列,分子构造,分子链构型2‘ 分子链大小(分子量,均方末端距,均方半径)分子链在空间的形态(构象、柔顺性)3’ 晶态,非晶态,液晶态,取向结构4‘ 多组分分子链体系,高分子生物体结构一级与二级结构统称为链结构,四级结构为高级结构,三级与四级结构统称聚集态结构1.碳碳PE PS PP PVC 可塑性好,键能低,强度低,化学性质差,耐热性差,不易水解2.杂链高分子PI PSU PEO 易水解,化学稳定性差,芳香族用于工程塑料3.元素高分子PDMS 可塑性和弹性好,热稳定性优良,但强度低4.三维网状结构的交联高分子受热不能熔融,加入溶剂不可以溶解,只能溶胀——热固性材料(①对线型高分子硫化或过氧化物交联②使用多官能团单体③具有一定分子量的齐聚物端基交联)交联度高弹性变差。
两交联点间平均分子量越小,交联密度越高。
5.梯形高分子热稳定性好,高强度高模量使用交联剂可以提高性能(1)一级结构(近程结构)1.线型高分子:柔顺性好,易结晶,高密度——热塑性高分子2.支链短的高分子规整度差,不易结晶;长支链的高分子流动黏度大。
整体结晶度密度强度降低。
3.无规支化高分子规整性差,不易结晶,强度弱(低密度聚乙烯LDPE:软塑料制品和薄膜);几乎无支化链高分子规整性好,易结晶,强度好(高密度聚乙烯HDPE:硬塑料制品、管、板材和包装容器)4.构型:几何异构(反式结构规整度好,易结晶;天然橡胶以顺式结构为主)光学异构(全同立构和间同立构规整性好,易于结晶,通常不具有旋光性,配位聚合可得到;自由基聚合多为无规立构)(2)二级结构(远程结构)1.高分子链构象:低温大部分以全反式构象(锯齿状)为主(聚丙烯PP为旁式构象和全反式构象交替的螺旋结构,一个晶胞中有单体单元12个,单斜晶系)高温时柔性高分子成为无规线团(全反式和左旁式构象和右旁式构象均有)刚性大分子以伸展的棒状构象存在(单键内旋转不易发生)2.柔顺性:热力学平衡下高分子卷曲程度越高,静态柔顺性越好;构象转变越容易越快动态柔顺性越好。
2015年高分子物理及化学复习要点
一、名词解释
1、熔融指数:是指聚合物熔体在一定温度、一定负荷下熔体每10min通过标准口模的重量。
2、门尼粘度:是用门尼粘度计测定的数值,基本上可以反映合成橡胶的聚合度与分子量。
3、应力松弛:就是在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
4、取向:是指在某种外力的作用下,分子链或其他的结构单元沿着外力作用方向择优排列的结构。
5、构象:表示原子或原子基团围绕单键内旋转而产生的空间排布。
6、
7、蠕变:是指在一定的温度和较小的恒定应力的作用下,材料的应变随时间的增加而增大的现象。
8、牛顿流体:牛顿流体是指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。
二、重点理解部分。
旋光异构和几何异构的区别以及例子(P3)
链段的均方末端距见书中(P25)
塑料橡胶的分区详见书中P34
分子量的计算:P100
玻璃化温度P135
内聚能密度P34
集合物的溶解P73
非晶态、交联、晶态
三、影响分子柔顺性的因素:
1、取代基取代基的极性大,相互作用力大,分子链内旋
转受阻严重,柔性变差。
极性取代基的比例越大,沿分
子链排布的距离小或者数量多,则分子链内内旋转越困
难,柔性越差。
2、对于非极性取代基来说,基团体积越大,空间位阻越大,
内旋转越困难,柔性越差。
3、支化、交联,若支链很长,阻碍链的内旋转起主导作用
时,柔性下降。
4、分子链的长短,一般来说,分子链越长,构想数目越多,
链的柔顺性越好。
四、集合物分子的运动特点P129
1、运动单元的重复性:①高分子链的整体运动②链段运动③链节、支链、侧基的运动④晶区内的分子运动
2、分子运动的时间依赖性。
3、分子运动的温度依赖性。
四、非晶态聚合物的应力——应变曲线及其解释?晶态聚合物呢?差异在哪?。