高频开关电源主要磁性元件的设计
- 格式:doc
- 大小:318.00 KB
- 文档页数:7
新型高频开关电源磁元件及变压器设计新型高频开关电源磁元件及变压器设计与应用第一部分: 基本磁路理论1、麦克斯韦电磁场基础理论2、磁心材料的组成及基本参数3、磁路的计算4、磁元件的串联磁路计算,等效带气隙扼流圈的设计原理5、磁元件的并联磁路计算,双绕组耦合磁元件的设计原理第二部分:开关电源中电感扼流圈的设计方法1、开关电源基本拓扑的磁元件设计与计算2、铁氧体材料的磁元件设计与计算1)、铁氧体材料的性能和选择方法2)、磁元件绕组的设计方法和计算3、带气隙的电感元件设计1)、气隙大小的计算2)、气隙对磁元件的影响4、铁粉心材料的磁元件设计1)、铁粉心材料的性能和组成2)、铁粉心磁元件的性能和设计要点5、铁硅铝材料的磁元件设计1)、铁硅铝材料的性能和组成2)、铁硅铝元件的设计方法和要点6、扼流圈的设计,带有大直流偏置的电感器的饱和原因。
各种磁心材料设计电感扼流圈的设计方法第三部分:开关电源中变压器的设计方法1、高频变压器的原理与模型2、实际变压器中的分布寄生参数对开关电源的影响3、实际变压器中的分布寄生参数4、实际变压器的分布寄生参数对开关电源EMI的影响5、开关变压器的漏感评估6、开关电源变压器的磁心材料的选择方法7、开关变压器的导线选择1)、开关变压器绕组的高频效应2)、开关变压器绕组高频交流电阻的计算模型3)、开关变压器绕组高频交流电阻的计算方法8、开关变压器的设计实例9、开关变压器中屏蔽层的加载方法10、反激开关变压器的设计与计算1)、反激开关变压器磁心的选择2)、反激开关变压器绕组特性的分析和设计方法3)、反激开关变压器工作模式的分析与变压器设计的关系4)、反激开关变压器与开关变压器的异同11、高频变压器的数学模型,寄生参数。
了解高频变压器的磁路计算。
12、高频变压器的参数设计,计算,磁心尺寸的选择,磁心材料的性能,及磁场参数对高频变压器的影响。
13、高频变压器绕组的设计计算,绕组结构对变压器参数的影响。
开关电源使用的磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。
不同的器件对材料的性能要求各不相同。
(一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。
变压器的设计公式如下: P=KfNBSI×10-6T=hcPc+hWPW 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积; B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。
由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。
但B值的增加受到材料的Bs值的限制。
而频率f可以提高几个数量级,从而有可能使体积重量显着减小。
而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。
一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。
单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。
它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大; 同时要求高的脉冲磁导率。
特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。
线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。
这就要求材料有。
高频电源变压器磁芯的设计原理1 引言电子信息产业的迅速发展,对高频开关式电源不断提出新的要求。
据报导,全球开关电源市场规模已超过100亿美元。
通信、计算机和消费电子产品是开关电源的三大主力市场。
庞大的开关电源市场主要由AC/DC和DC/DC开关电源两部分组成。
据预测,AC/DC开关电源全球销售收入将从1999年的91亿美元增加到2004年的122亿美元,年平均增长率为5.9%。
低功率(0~300W)的AC/DC将面向增长平稳的消费电子产品和计算机市场;大功率(750~1500W)的AC/DC电源将面向增长强劲的电信市场。
DC/DC电源约占整个开关电源市场的30%,但计算机与通信技术的快速融合,带动了DC/DC模块式电源的迅速增长。
预计今后几年,DC/DC电源模块增长速度将超过AC/DC电源,有人估计,中国今后五年,DC/DC电源模块市场年增长将达15%,增长主要是在电信领域。
开关式电源技术发展趋势是高密度、高效率、低噪声,以及表面贴装化。
无论是AC/DC或DC/DC电源,除了功率晶体管外,由软磁铁氧体磁芯制成的主电压器、扼流圈及其它电感器(如抗噪声滤波器)是极重要的元件,其磁性能和尺寸直接关系到电源的转换效率和功率密度等。
在变压器设计中,主要包括绕组设计和磁芯设计。
本文拟重点讨论涉及主变压器磁芯设计中应考虑的通过功率、性能因子、热阻等参数,并对降低磁芯总损耗提出了材料微观设计应考虑的方法。
2电源变压器磁芯性能要求及材料分类为了满足开关电源提高效率和减小尺寸、重量的要求,需要一种高磁通密度和高频低损耗的变压器磁芯。
虽然有高性能的非晶态软磁合金竞争,但从性能价格比考虑,软磁铁氧体材料仍是最佳的选择;特别在100kHz到1MHz的高频领域,新的低损耗的高频功率铁氧体材料更有其独特的优势。
为了最大限度地利用磁芯,对于较大功率运行条件下的软磁铁氧体材料,在高温工作范围(如80~100℃),应具有以下最主要的磁特性:1)高的饱和磁通密度或高的振幅磁导率。
高频开关变换器中的磁性元件设计摘要:鉴于常规的磁性元件设计方法存在局限性,不能全面反映其实际工作情况。
本文针对600W双管正激变换器中的高频变压器采用“Magnetics Designer”软件进行自行设计,给出了具体的设计方法和设计过程,并通过Pspice仿真验证其设计效果。
1、引言在高频开关变换器中磁性元件的应用非常广泛,主要有变压器和电感器两大类:当变压器用时,可起电气隔离、升降压及磁耦合传递能量等作用;当电感器用时,起到储存能量、平波与滤波等功能。
并且其性能的好坏对变换器的性能产生重要影响,特别对整个装置的效率、体积及重量起举足轻重的作用。
因此,磁性元件的设计是高频开关变换器设计中的重要环节。
高频开关变换器中的磁性元件设计,通常是根据铁芯的工作状态,合理选用铁芯材料,正确设计计算磁性元件的铁芯及绕组参数。
但由于磁性元件所涉及的参数太多,其工作状态不易透彻掌握,因此常规的设计方法不能全面反映其实际工作情况和考虑其它因素的影响,也就很难达到所需的性能指标和满足设计要求。
针对高频开关变换器中的磁性元件设计的重要性、必要性及其复杂性,笔者采用Intusoft公司的“Magnetics Designer”软件根据磁性元件的实际工作情况进行计算设计,获得较理想的效果。
本文首先介绍了磁性元件设计中应考虑、注意的一些问题,并针对600W 双管正激变换器中的高频变压器给出了具体的设计方法和设计过程,最后通过仿真加以验证。
2、磁性元件设计中应考虑的一些问题2.1 铁芯瞬态饱和在高频开关变换器启动瞬间,由于双倍磁通效应,其磁性元件的铁芯可能瞬态达到饱和,从而产生很大的浪涌电流,导致与磁性元件相连的开关器件损坏。
因此,为防止铁芯瞬态饱和,可采用的方法:一是把工作磁感应强度值减小,但这样会降低铁芯的利用率;二是增加软启动环节,启动时减小功率管的导通脉冲宽度,然后逐渐增大磁感应强度到稳态值。
2.2 绕组的漏感绕组的漏感对高频开关变换器产生很大的负面效应,影响其正常运行。
高频开关电源主要磁性元件的设计引言
在电力直流系统中,由于普遍采用高频模块,对于高频模块的设计是功率越来越大,而体积却是越来越小,这就对其设计提出了一个关键的问题,那就是如何解决磁性元件的损耗及发热问题。
高频开关电源中大量使用各种各样的磁性元件,如输入/输出共模电感,功率变压器,饱和电感以及各种差模电感。
各种磁性元器件对磁性材料的要求各不相同,如差模电感希望μ值适中,但线性度好,不易饱和;共模电感则希望μ值要高,频带宽;功率变压器则希望μ值要适中,温度稳定好,剩磁小,损耗低等。
在非晶材料出现以前,共模电感主要采用高μ值(6K~10K)Mn-Zn合金,差模电感多采用铁粉芯或开气隙铁氧体材料,变压器则采用铁氧体材料等。
这些材料应用技术成熟,种类也很丰富,并有各种各样的产品形状供选择。
随着非晶材料的出现和技术不断成熟,在开关电源设计中,非晶材料表现出许多其它材料无法比拟的优点。
几种常用磁性材料基本性能比较如表1。
1 主变压器的设计
对于高频开关电源的主要发热元件,主变压器的设计尤其重要,其尺寸的大小和材料的选择更是重要。
1)主变压器的磁芯必须具备以下几个特点
(1)低损耗;
(2)高的饱和磁感应强度且温度系数小;
(3)宽工作温度范围;
(4)μ值随B值变化小;
(5)与所选用功率器件开关速度相应的频响。
早前高频变压器一般选用铁氧体磁芯,下面对VITROPERM500F铁基超微晶磁芯与德国西门子公司生产的N67系列铁氧体磁芯的性能进行较,见图1。
从以上图表可以看出两者有以下区别:
(1)相同工作频率(200kHz以下),非晶材料损耗明显低于铁氧体,工作频率越低,工作B值越高,非晶材料优势越明显。
但在250kHz以上频段,铁氧体损耗要明显低于非晶材料。
(2)非晶材料损耗随温度变化量大大低于铁氧体,降低了变压器热设计的难度。
(3)非晶材料导磁率随温度变化量大大低于铁氧体,降低了变压器设计的难度,提高了电源运行的稳定性和可靠性。
(4)非晶材料Bs·μ值是铁氧体的10~15倍,意味着变压器体积重量可以大幅减小。
变压器设计过程中,最困难的是热设计,变压器的产热与多方面的因素有关,如磁芯损耗,铜损等。
开关频率增加,变压器的发热呈指数增加。
若采用铁氧体磁芯,由于铁氧体的居里点较低,需对变压器磁
芯作散热处理,工艺制作比较复杂。
若散热处理不当,铁氧体磁材高温下易失磁,导致电路工作异常。
若采用非晶做变压器,将工作ΔB由4000高斯提高到100007葛斯,开关器件的工作频率则可以降到100kHz 以下。
非晶材料在16~100kHz频率范围内,损耗/Bs值最低,相应的变压器匝数及体积最小,发热量也较小,对提高整机效率,减小模块电源的体积有巨大帮助。
在采用软开关控制技术的前提下,可以充分发挥IGBT的低导通压降,大电流,高耐压的优点,大幅度地提高电源的可靠性。
2 磁芯的选择
因为全桥变换器中的变压器工作在双端,对Br的要求不是很严格,它需要的是2Bm。
但若选用高Br 的磁芯,当电源功率较大时,容易产生饱和现象。
为此,对于中、大功率的开关电源,主变压器选用饱和磁感应强度Bs高、剩余磁感应强度B,低的磁芯。
虽然铁基非晶材料的饱和磁感应强度Bs高,但是由于铁基非晶材料的工作频率较低(<15kHz),频率高时,损耗增加。
考虑到本课题中的开关频率为20kHz,故决定使用铁基超微晶中低剩磁的磁芯。
选用铁基超微晶环形铁芯:ONL—1308040,该磁芯的饱和磁感应强度Bs=1.25T,剩余磁感应强度
Br<0.2T,居里温度5 lO℃,初始磁导率μi>30000,最大磁导率μm>50000,损耗P(0.5T、20kHz)<30W /kg。
外形尺寸:外径l30mm,内径80mm,厚40mm,磁芯有效截面积Ac=7.5cm2.
(1)取设定工作时,最大工作磁密Bm=0.5T,故全桥工作时ΔB=1T
(2)副边匝数的计算
(3)原副边匝比的选取
变压器最小输入电压U1=500V,副边整流后最大输出电压U。
=300V,设定最大占空比D=0.8,U2=U0/D,
得N1=13
(4)窗口利用率的计算
变压器输入电流I1=30A,输出电流I2=50A,均按照电流密度KJ为2.5A/mm2设计;初级绕组截面积Ar1=12mm2,次级绕组截面积Ar2=20mm2窗口面积Aw=50cm2。
窗口利用率:
由于开关频率不算太高,变压器的绕制采用多股漆包线并绕,外包抗电强度高、介质损耗低的复合纤维绝缘纸的方式,保证绝缘等级。
2 输出电感的设计
1)对输出滤波电感的磁芯主要要求有以下几点:
(1)温度系数小,滤波电感的电感量随时间的变化率应保持最小;
(2)线性度好,在不同的工作电流下电感量的变化小;
(3)滤波电感的电损耗和磁损耗低。
选用铁基超微晶C D型切口铁芯:JFQ-078025015040,该磁芯的饱和磁感应强度Bs=1.25T,剩余磁感应强度Br<O.2T。
外形尺寸:内宽78mm,内长25mm,叠厚15mm,带宽40mm。
磁芯有效截面Ac=4.2cm2。
2)磁芯的选择
(1)匝数、气隙的计算
设定工作时,最大工作磁密Bm=0.8T,及最大峰值电流I=60A,电感量L=0.15mH
电感定义式
上式中,Ac是铁芯的有效截面积。
磁路欧姆定律
上式中,l0、lc是空气隙和铁芯的长度,μ0、μ。
是空气和铁芯的磁导率。
由(5)式可得
由(9)式可求得气隙长度
(1)窗口利用率的计算
滤波电感通过的最大平均电流为50A,按照电流密度KJ为2.5A/mm2设计,绕组截面积A,=20mm2;窗口面积AW=19.5cm2。
窗口利用率
3 饱和电感的设计
1)磁芯的选择
选用钴基非晶环形铁芯,该磁芯的饱和磁感应强度Bs=0.53T,剩余磁感应强度Br=0.5T,居里温度210℃,磁导率μ=90000。
外形尺寸:外径42mm,内径29mm,厚l8mm。
磁芯有效截面积Ac=0.82cm2。
2)延迟开通时间的选择根据ZCS的要求选择0.5μs
3)匝数的计算
根据
式中N为匝数,tb为延迟开通时间,Bs为磁芯的饱和磁密,Ac为磁芯的有效截面积,ULS为加在饱和电感上的电压,约等于Udc。
算得N=3
4)窗口利用率的计算
饱和电感通过的最大平均电流为50A,按照电流密度KJ为2.5A/mm2设计,绕组截面积Ar=20mm2;窗口面积AW=6.6cm2。
窗口利用率
4 结束语
通过对高频电源模块的主要磁性元件的优化设计,并应用在高频电源的生产中,很好的解决了磁性元件的损耗和发热的问题,对高频电源的稳定性有了进一步的提高。