基因自由组合定律
- 格式:doc
- 大小:300.00 KB
- 文档页数:1
基因的自由组合定律必备知识一、基因的概念基因是生物体内控制遗传特征的分子单位,是DNA分子上的特定区域。
基因决定了生物体的遗传特征,包括外貌、性状、生理功能以及疾病易感性等。
基因是遗传物质的基本单位,是生物多样性的基础。
二、基因的自由组合定律的概念基因的自由组合定律是遗传学中的一项重要定律,它揭示了基因在生殖中的自由组合规律。
基因的自由组合定律是遗传学的基础,对于理解遗传现象、进行遗传工程以及解读基因组学数据具有重要意义。
三、孟德尔的实验基因的自由组合定律最早由孟德尔通过豌豆杂交实验得出。
孟德尔选取了豌豆的7个性状进行杂交实验,得出了两个重要规律:显性性状和隐性性状的比例为3:1,两个基因型的自由组合规律。
四、基因的自由组合规律1. 随机分配规律基因在生殖过程中是随机分配的,每一个基因在生殖过程中有等同的机会和可能性组合在一起。
2. 独立分离规律不同的基因在生殖过程中独立分离,并且每个基因以独立的方式传递给后代。
3. 互不干扰规律不同基因的组合在生殖过程中是互不干扰的,它们之间的组合是随机的,不会相互影响。
五、基因的连锁与重组基因的自由组合定律揭示了基因在生殖过程中的自由组合规律,但是在染色体上有些基因是连锁的,它们无法独立分离和组合。
然而,由于染色体的重组作用,连锁基因之间也会发生重组。
重组是基因组合的一种特殊情况,是遗传变异和进化的重要机制。
六、基因的多态性与变异基因的自由组合定律也揭示了基因的多态性与变异。
基因由于突变、重组和再组合等机制会产生多种形态和类型,这种多样性是生物进化和适应环境的基础。
七、基因的应用基因的自由组合定律为现代生物技术的发展提供了理论基础。
基因工程、转基因技术、育种改良以及个体基因检测等都离不开对基因自由组合规律的深入研究和应用。
八、结语基因的自由组合定律是遗传学中的重要定律,它揭示了基因在生殖过程中的自由组合规律,为我们理解生物遗传现象提供了理论基础。
基因的自由组合定律为生物技术的发展和应用提供了重要的参考。
第2讲基因的自由组合定律基因自由组合定律的发现[基础突破——抓基础,自主学习]1.假说—演绎过程2.自由组合定律的内容3.孟德尔获得成功的原因[重难突破——攻重难,名师点拨]1.辨明重组类型及常见误区(1)明确重组类型的含义:重组类型是指F2中与亲本表现型不同的个体,而不是基因型与亲本不同的个体。
(2)含两对相对性状的纯合亲本杂交,F 2中重组类型所占比例并不都是3+316。
①当亲本基因型为YYRR 和yyrr 时,F 2中重组类型所占比例是3+316。
②当亲本基因型为YYrr 和yyRR 时,F 2中重组类型所占比例是116+916=1016。
2.基因自由组合定律的细胞学基础(1)实质:非同源染色体上的非等位基因自由组合。
(2)时间:减数第一次分裂后期。
(3)范围:有性生殖的生物,真核细胞的核内染色体上的基因。
无性生殖和细胞质基因遗传时不遵循。
3.自由组合定律的验证方法[易错警示]两对等位基因控制的性状不一定都遵循自由组合定律。
如图中A—a、B—b两对等位基因之间的遗传不遵循自由组合定律,分为以下两种情况:(1)在不发生交叉互换的情况下,AaBb自交后代性状分离比为3∶1。
(2)在发生交叉互换的情况下,其自交后代有四种表现型,但比例不是9∶3∶3∶1。
自由组合定律题型突破[题型突破——练题型,夯基提能]题型1“拆分法”求解自由组合定律计算问题[方法技巧]具有n 对等位基因(遵循自由组合定律)的个体遗传分析1.产生的配子种类数为2n ,其比例为(1∶1)n 。
2.自交产生后代的基因型种类数为3n ,其比例为(1∶2∶1)n 。
3.自交产生后代的表现型种类数为2n ,其比例为(3∶1)n 。
题型2 据子代基因型、表现型及比例推测亲本基因型和相关概率的计算 [技法总结](1)方法:将自由组合定律的性状分离比拆分成分离定律的分离比分别分析,再运用乘法原理进行逆向组合。
(2)题型示例①9∶3∶3∶1⇒(3∶1)(3∶1)⇒(Aa ×Aa)(Bb ×Bb); ②1∶1∶1∶1⇒(1∶1)(1∶1)⇒(Aa ×aa)(Bb ×bb);③3∶3∶1∶1⇒(3∶1)(1∶1)⇒(Aa ×Aa)(Bb ×bb)或(Aa ×aa)(Bb ×Bb);④3∶1⇒(3∶1)×1⇒(Aa ×Aa)(BB ×_ _)或(Aa ×Aa)(bb ×bb)或(AA ×_ _) (Bb ×Bb)或(aa ×aa)(Bb×Bb)。
NO.10基因的自由组合定律1、基因的自由组合定律(B)【过程】:【解释】:○1孟德尔认为两对相对性状的遗传彼此是,不同对的相对性状之间可以 .○2一对相对性状的和不同相对性状之间的彼此是独立的、互不干扰的○3 F1(YyRr)产生的雌雄配子各有种,分别是,其数量比之接近于1:1∶1∶1,F1自交,4种雌配子与4种雄配子随机结合,可形成种组合,种基因型,种表现型,即黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,数量比接近于【验证】:测交实验○1目的:测定F1的基因型及产生配子的种类和比例○2结论:F1的基因型为F1产生了四种类型且比例相等的配子F1在形成配子时,同源染色体上的等位基因分离的同时,非同源染色体上的非等位基因进行自由组合【实质】:在减数分裂的过程中,同源染色体上的彼此分离的同时,非同源染色体上的自由组合。
【相关计算】:一、分析子代、推出双亲即已知子代的表现型或基因型,求双亲的基因型。
解法一:隐性纯合突破法。
这种方法是先根据双亲的表现型确定部分基因型,如果是隐性性状则必为纯合体,其基因型可直接写出。
如果是显性性状,其基因型中必然含一个显性基因,然后在子代中找隐性纯合体来突破求双亲的基因型。
例1:番茄的红果(R)对黄果(r)为显性,二室(D)对多室为显性,这两对基因分别位于不同染色体上,现用红色二室与黄色二室作亲本杂交,后代的植株数分别是,红果二室:红果多室:黄果二室:黄果多室=300:109:305:104,求双亲的基因型解:①根据题意列遗传式:P R_D r r D_:⨯↓子代有黄果多室(rrdd)解法二:根据后代的性状分离比,求双亲基因型。
这种解法要将两对或多对性状分开,一对一对地进行分析研究,研究清楚后再将它们综合起来。
因为两对或多对等位基因是独立分配的,每对基因都遵循基因的分离规律:子代性状分离比为3:1,则为杂合子自交如Aa Aa⨯子代性状分离比为1:1,则为测交类型如Aa aa⨯子代性状全为显性性状,则亲本中至少有一个显性纯合子。
基因的自由组合定律(知识讲解)【学习目标】1、阐明孟德尔的两对相对性状的杂交实验及自由组合定律。
2、基因自由组合定律的说明和验证。
3、了解基因自由组合定律的应用。
【要点梳理】要点一:两对相对性状的杂交实验 1.豌豆杂交中自由组合现象 摸索:什么缘故在F2代中显现了与亲本不同的表型,且各种性状的分离比为9:3:3:1呢?2.对性状自由组合现象的说明(假设) (1)两对相对性状分别由两对等位基因操纵(2)F1产生配子时,等位基因分离,非等位基因自由组合,产生四种数量相等的配子(3)受精时,4种类型的雌雄配子结合的几率相等 遗传图解: F1:F2的性状分离比:黄色圆粒∶黄色皱粒∶绿色圆粒∶绿色皱粒=9∶3∶3∶1。
②每对相对性状的结果分析a .性状分离比:黄粒∶绿粒=3∶1;圆粒∶皱粒=3∶1。
b .结论:每对相对性状的遗传符合分离定律;两对相对性状的分离是各自独立的。
亲本:YYRR (黄圆)×yyrr (绿皱) Rr × Rr →1RR:2 Rr:1rr× Yy →1YY:2 Yy:1yy③两对相对性状的随机组合④F2的表现型与基因型的比例关系F2中4种表现型,9种基因型分别为:YYRR、YYRr、YyRR、YyRr、YYrr、Yyrr、yyRR、yyRr、yyrr(2)有关结论①F2共有9种基因型、4种表现型。
②双显性占9/16,单显性(绿圆、黄皱)各占3/16,双隐性占1/ 16。
③纯合子占4/16(1/16YYRR+1/16YYrr+1/16yyRR+1/16yyrr),杂合子占:1 -4/16=12/16。
④F2中双亲类型(9/16Y_R_+1/16yyrr)占10/16,重组类型占6/ 16(3/16Y_rr+3/16yyR_)。
摸索:按照上述孟德尔的假设条件,所获得的各种性状及其比例是完全符合9:3:3:1的比例的,因此只需证明F1是双杂合体的假设成立,如何设计实验来验证呢?3.对自由组合现象说明的验证——测交实验实验方案:杂合体F1与隐性纯合体杂交实验结果:结论:通过测交实验,所获得的F2代各种性状及其比例为黄圆:黄皱:绿圆:绿皱为1:1:1:1,证实了F1产生了比例相同的四种配子,确定为双杂合体。
基因分离定律和自由组合定律的区别与联系基因的分离定律是一对等位基因的遗传规律,描述的是等位基因分离的情况(重点指出了等位基因之间是互相独立的.);而基因的自由组合定律则是两对及两对以上的等位基因间的遗传规律,属于非等位基因组合的情况(重点指出非同源染色体上的非等位基因是可以任意组合的)。
基因的分离定律是基因的自由组合定律的基础,基因的自由组合定律中的每对等位等位基因都要相互分离,这些非等位基因才能进行自由组合。
基因的分离定律和自由组合定律都发生在减数分裂过程中,而且发生的时间也是相同的。
1基因的分离规律知识点1、相对性状:同种生物同一性状的不同表现类型,叫做相对性状。
(此概念有三个要点:同种生物——豌豆,同一性状——茎的高度,不同表现类型——高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。
3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。
4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。
5、显性基因:控制显性性状的基因,叫做显性基因。
一般用大写字母表示,豌豆高茎基因用D表示。
6、隐性基因:控制隐性性状的基因,叫做隐性基因。
一般用小写字母表示,豌豆矮茎基因用d表示。
7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
)8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
9、。
基因自由组合定律
基础过关
1. 有关基因型和表现型的关系,正确的是(环境影响除外)( )
A .基因型相同,表现型一般相同
B .基因型不同,表现型一定不同
C .表现型相同,基因型一定相同
D .表现型不同,基因型可能相同
2. 基因型为AaBb 的个体进行测交,后代中不会出现的基因型是( )
A .AaBb
B .aabb
C .AABb
D .aaBb
3. ddtt DDTt ⨯(遗传遵循自由组合定律),其后代中能稳定遗传的占( )
A .100%
B .50%
C .25%
D .0
4. 用黄色圆粒豌豆与绿色皱粒豌豆杂交,后代有黄色圆粒70粒、黄色皱粒68粒、绿色圆粒73粒、绿色皱粒77粒。
亲本的杂交组合是( )
A .yyrr YYRR ⨯
B .yyRr YYRr ⨯
C .YyRr YyRr ⨯
D .yyrr YyRr ⨯
5. 黄粒(A )高杆(B )玉米与某表现型玉米杂交,后代中黄粒高杆占
83,黄粒矮杆占83,白粒高杆占81,白粒矮秆占8
1,则双亲基因型是( ) A .AABb aaBb ⨯ B .Aabb AaBb ⨯ C .AaBb AaBb ⨯ D .aaBB AaBb ⨯
6.水稻有芒(A )对无芒为显性,抗病(B )对不抗病为显性。
两对等位基因独立遗传。
现有两株杂合体水稻杂交,但后代只有一种表现型。
那么,这两株水稻的基因型为( )
A .AABb aaBb ⨯
B .AABb AaBb ⨯
C .aaBb AaBB ⨯
D .AABb AaBB ⨯
7. 人类并指(D )为显性遗传病,白化病(a )是一种隐性遗传病,已知控制两种遗传病的基因都在常染色体上,而且都是独立遗传的。
一个家庭中,父亲并指,母亲正常,他们有一个患白化病但手指正常的孩子,这对夫妇再生一个患病孩子的概率是( )
8.下表是豌豆四种杂交组合的实验统计数据:(设D 、d 表示株高的显隐性基因,R 、r 表示花颜色的显隐性基因)
(1) 对于株高,根据第_________组杂交结果,可判断___ _对____________为显性;对花的颜色, 根据第_______组杂交结果,可判断____ ____对__________为显性。
(2) 分别写出四种杂交组合亲本的基因型
组别一:__________________________________________组别二: 组别三:___________________________________ 组别四:
(3) 四种杂交组合所产生的后代中,纯合子的概率依次是_______ 、_______ 、_______ 、_______ 。