2020高考总复习数学创新设计人教A版教师文档第七章 第2节二元一次不等式(组)与简单的线性规划问题
- 格式:pdf
- 大小:921.99 KB
- 文档页数:25
第2讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ; (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.三个“二次”间的关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx+c (a >0)的 图象一元二次方 程ax 2+bx +c =0(a >0)的根有两相异实 根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实 数根ax 2+bx +c>0(a >0) 的解集{x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-b 2aRax 2+bx +c<0(a >0) 的解集 {x |x 1<x <x 2}∅∅(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);(2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.绝对值不等式的解法(1)|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2; (2)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x );(3)|f (x )|<g (x )⇔-g (x )<f (x )<g (x ).判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1. 不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞)解析:选A.由不等式x -12x +1≤0,可得⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1,所以不等式的解集为⎝ ⎛⎦⎥⎤-12,1. 设二次不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,则ab 的值为________.解析:由不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,知a <0且ax 2+bx +1=0的两根为x 1=-1,x 2=13,由根与系数的关系知⎩⎪⎨⎪⎧-1+13=-b a,-13=1a ,所以a =-3,b =-2,ab =6. 答案:6若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)一元二次不等式的解法(高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.高考对一元二次不等式解法的考查主要有以下三个命题角度: (1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式; (3)已知一元二次不等式的解集求参数.[典例引领]角度一 解不含参数的一元二次不等式(1)解不等式:-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3. 【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}. (2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1. 故原不等式的解集为{x |x >1}. 角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ).【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3; ②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0}; ③当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4. 综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba ,-12×⎝ ⎛⎭⎪⎫-13=-1a,解得⎩⎪⎨⎪⎧a =-6,b =5.即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系.③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[通关练习]1.(2018·陕西西安模拟)若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |0<x ≤1}D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1},B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.(2018·广东清远一中模拟)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A .(-∞,-1)∪(3,+∞) B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:选C.关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),所以a =b <0,所以不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,所以所求解集是(-1,3).故选C.3.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.高考对一元二次不等式恒成立问题的考查有以下三个命题角度: (1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.[典例引领]角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定 参数的范围若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是________.【解析】 当a -2=0,即a =2时不等式为-4<0, 对一切x ∈R 恒成立.当a ≠2时,则⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 即⎩⎪⎨⎪⎧a <2-2<a <2,解得-2<a <2. 所以实数a 的取值范围是(-2,2]. 【答案】 (-2,2]角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围(转化与化归思想)若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________.【解析】 由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 即⎩⎪⎨⎪⎧2m 2-1<0,2m 2+3m <0, 解得-22<m <0. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.【解】 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1. 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 则实数x 的取值范围为(-∞,2)∪(4,+∞).(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数. (2)求解不等式恒成立问题的数学思想求解此类问题常利用分类讨论思想及转化与化归思想,如例22是不等式与函数的转化,例23是主元与次元的转化,而例21是对二次项系数是否为0进行讨论.[通关练习]1.若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________. 解析:要使y =mx 2-(1-m )x +m 有意义,即mx 2-(1-m )x +m ≥0对∀x ∈R 恒成立,则⎩⎪⎨⎪⎧m >0,(1-m )2-4m 2≤0,解得m ≥13. 答案:m ≥132.若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.解析:因为不等式4x-2x +1-a ≥0在[1,2]上恒成立,所以4x-2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x+1-1=(2x-1)2-1.因为1≤x ≤2,所以2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 取得最小值0, 所以实数a 的取值范围为(-∞,0]. 答案:(-∞,0]解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别.(3)不同参数范围的解集切莫取并集,应分类表述.1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A.56 B.16C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56. 3.不等式x -43-2x<0的解集是( )A .{x |x <4}B .{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <4 解析:选C.不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4.4.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A.x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4即可,解得-1≤a ≤4.5.(2018·福建龙岩模拟)已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( ) A.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫-32,12C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫32,+∞ D.⎝ ⎛⎭⎪⎫-12,32解析:选A.不等式f (x )>0的解集是(-1,3),故f (x )<0的解集是{x |x <-1或x >3},故f (-2x )<0的解集为{x |-2x <-1或-2x >3},即⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-32或x >12. 6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.答案:{x |0<x <2} 7.函数y =lg (1-x )-2x 2+12x +32的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2x 2+12x +32>0,1-x >0,即⎩⎪⎨⎪⎧x 2-6x -16<0,1-x >0,解得-2<x <1, 即原函数的定义域为{x |-2<x <1}. 答案:(-2,1)8.(2018·江西南昌模拟)在R 上定义运算:x *y =x (1-y ).若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是________.解析:由题意,知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0,所以4y 2-4y-3<0,解得-12<y <32.答案:⎝ ⎛⎭⎪⎫-12,32 9.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.10.(2018·合肥市第二次教学质量检测)已知函数f (x )=4-|ax -2|(a ≠0). (1)求函数f (x )的定义域;(2)若当x ∈[0,1]时,不等式f (x )≥1恒成立,求实数a 的取值范围.解:(1)要使函数有意义,需4-|ax -2|≥0,即|ax -2|≤4,|ax -2|≤4⇔-4≤ax -2≤4⇔-2≤ax ≤6.当a >0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2a ≤x ≤6a ;当a <0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6a≤x ≤-2a .(2)f (x )≥1⇔|ax -2|≤3,记g (x )=|ax -2|,因为x ∈[0,1],所以需且只需⎩⎪⎨⎪⎧g (0)≤3g (1)≤3⇔⎩⎪⎨⎪⎧2≤3|a -2|≤3⇔-1≤a ≤5,又a ≠0,所以-1≤a ≤5且a ≠0.1.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.2.(2018·陕西咸阳模拟)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( )A .13B .18C .21D .26 解析:选C.设f (x )=x 2-6x +a ,其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧f (2)≤0,f (1)>0,即⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0, 解得5<a ≤8,又a ∈Z ,故a =6,7,8.则所有符合条件的a 的值之和是6+7+8=21.3.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得, Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.答案:[-8,4]5.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2. 6.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =a (x -m )(x -n )+x -m=(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a, 所以x -m <0,1-an +ax >0.所以f (x )-m <0,即f (x )<m .。
7.2 一元二次不等式及其解法考纲要求1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.4.(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①|a+b|≤|a|+|b|.②|a-b|≤|a-c|+|c-b|.(2)会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.1.一元二次不等式的解法一元一次不等式ax>b(a≠0)的解集为(1)当a>0时,解集为__________.(2)当a<0时,解集为__________.判别式Δ>0Δ=0Δ<0 Δ=b2-4ac二次函数 y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根 x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b 2a没有实数根ax 2+bx +c >0(a >0)的解集 __________ __________ __________ax 2+bx +c <0(a >0)的解集__________ __________ __________ax 2bx c a4.(1)含____________的不等式叫做绝对值不等式.(2)解含有绝对值的不等式关键是去掉绝对值符号,基本方法有如下几种:①分段讨论:根据|f (x )|=⎩⎪⎨⎪⎧f x ,f x ≥0,-f x ,f x <0去掉绝对值符号.②利用等价不等式:|ax +b |≤c (c >0)⇔________; |ax +b |≥c (c >0)⇔__________.③两端同时平方:即运用移项法则,使不等式两边都变为非负数...,再平方,从而去掉绝对值符号.(3)形如|x -a |+|x -b |≥c (a ≠b )与|x -a |+|x -b |≤c (a ≠b )的绝对值不等式的解法主要有三种:①运用绝对值的几何意义; ②零点分区间讨论法;③构造分段函数,结合函数图象求解.1.不等式x 2>x 的解集是( ). A .(-∞,0) B .(0,1)C .(1,+∞) D.(-∞,0)∪(1,+∞)2.(2012重庆高考,文2)不等式x -1x +2<0的解集为( ).A .(1,+∞) B.(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)3.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( ). A .x >5a 或x <-a B .x >-a 或x <5a C .5a <x <-a D .-a <x <5a4.(2012天津高考)集合A ={ x ∈R |}|x -2|≤5中的最小整数为__________.5.若关于x 的不等式-12x 2+2x >mx 的解集是{x |0<x <2},则实数m 的值是__________.一、一元二次不等式的解法 【例1】解下列不等式:(1)2x 2+4x +3>0;(2)-3x 2-2x +8≥0;(3)12x 2-ax >a 2(a ∈R ). 方法提炼1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集. 2.对于解含有参数的二次不等式,一般讨论的顺序是:(1)讨论二次项系数是否为0,这决定此不等式是否为二次不等式; (2)当二次项系数不为0时,讨论判别式是否大于0;(3)当判别式大于0时,讨论二次项系数是否大于0,这决定所求不等式的不等号的方向;(4)判断二次不等式两根的大小.提醒:当a =0时,ax >b 不是一元一次不等式;当a =0,b ≥0时,它的解集为∅;当a =0,b <0时,它的解集为R .请做演练巩固提升2二、分式不等式的解法【例2】(2012江西高考)不等式x 2-9x -2>0的解集是__________.方法提炼对于形如f xg x >0(<0)可等价转化为f (x )g (x )>0(<0)来解决;对于f xg x ≥0(≤0)可等价转化为⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.当然对于高次不等式可用“穿根法”解决.请做演练巩固提升1三、一元二次不等式的实际应用【例3】某产品按质量可分成6种不同的档次,若工时不变,每天可生产最低档次的产品40件,如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品.(1)若最低档次的产品每件利润为16元,则生产哪种档次的产品所得到的利润最大? (2)若最低档次的产品每件利润为22元,则生产哪种档次的产品所得到的利润最大? 方法提炼解不等式应用题的步骤请做演练巩固提升5四、含有绝对值不等式的解法【例4-1】(2012辽宁高考)已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}.(1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f x -2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围.【例4-2】设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 方法提炼1.解含两个绝对值符号的不等式,可先将其转化为|x -a |+|x -b |≥c 的形式,对于这种绝对值符号里是一次式的不等式,一般有三种解法,分别是“零点划分法”“利用绝对值的几何意义法”和“利用函数图象法”.此外,有时还可采用平方法去绝对值,它只有在不等式两边均为正的情况下才能使用.2.绝对值不等式|x -a |≥c (c >0)表示数轴上到点a 的距离不小于c 的点的集合;反之,绝对值|x -a |<c (c >0)表示数轴上到点a 的距离小于c 的点的集合.3.“零点划分法”是解绝对值不等式的最基本方法,一般步骤是: (1)令每个绝对值符号里的代数式等于零,求出相应的根;(2)把这些根按由小到大进行排序,n 个根把数轴分为n +1个区间;(3)在各个区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集;(4)这些不等式解集的并集就是原不等式的解集.请做演练巩固提升3与一元二次不等式有关的恒成立问题【典例】(12分)设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.分析:(1)对于x ∈R ,f (x )<0恒成立,可转化为函数f (x )的图象总是在x 轴下方,可讨论m 的取值,利用判别式求解.(2)含参数的一元二次不等式在某区间内的恒成立问题,常有两种处理方法:方法一是利用二次函数区间上的最值来处理;方法二是先分离出参数,再去求函数的最值来处理.一般方法二比较简单.规范解答:(1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0. 综上有-4<m ≤0.(4分)(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.(6分)有以下两种方法:方法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,(8分) 所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67;(10分)当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0. 所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67.(12分) 方法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.(8分)因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.(10分)所以,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67.(12分) 答题指导:1.与一元二次不等式有关的恒成立问题,可通过二次函数求最值,也可通过分离参数,再求最值.2.解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.3.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.4.本题考生易错点:忽略对m =0的讨论.这是由思维定势所造成的.1.不等式x -2x +1≤0的解集为( ). A .{x |-1≤x ≤2} B .{x |-1<x ≤2} C .{x |-1≤x <2} D .{x |-1<x <2}2.已知不等式x 2-x ≤0的解集为M ,且集合N ={x |-1<x <1},则M ∩N 为( ).A .[0,1)B .(0,1)C .[0,1]D .(-1,0]3.对于x ∈R ,不等式|x +10|-|x -2|≥8的解集为________.4.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是__________. 5.某种商品,现在定价p 元,每月卖出n 件,设定价上涨x 成,每月卖出数量减少y 成,每月售货总金额变成现在的z 倍.(1)用x 和y 表示z ;(2)设x 与y 满足y =kx (0<k <1),利用k 表示当每月售货总金额最大时x 的值;(3)若y =23x ,求使每月售货总金额有所增加的x 值的范围.参考答案基础梳理自测 知识梳理1.(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >b a(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <ba2.{x |x <x 1或x >x 2} {x |x ≠x 1} {x |x ∈R } {x |x 1<x <x 2} ∅ ∅3.Δ≥0? ⎝⎛⎭⎪⎫-∞,-b 2a ∪⎝⎛⎭⎪⎫-b2a,+∞ (-∞,x 2)∪(x 1,+∞) (-∞,+∞)4.(1)绝对值符号(2)②-c ≤ax +b ≤c ax +b ≤-c 或ax +b ≥c 基础自测1.D 解析:x 2>x ⇒x (x -1)>0⇒x >1或x <0.2.C 解析:不等式x -1x +2<0,解不等式得其解集为(-2,1),故选C.3.B 解析:由x 2-4ax -5a 2>0,得(x -5a )(x +a )>0, ∵a <0,∴x <5a 或x >-a . 4.-3 解析:∵|x -2|≤5, ∴-5≤x -2≤5,∴-3≤x ≤7,∴集合A 中的最小整数为-3.5.1 解析:由-12x 2+2x >mx ,得x 2-4x +2mx <0,即x [x -(4-2m )]<0,∵不等式的解集为{x |0<x <2}, ∴4-2m =2.∴m =1. 考点探究突破【例1】 解:(1)∵Δ=42-4×2×3<0,∴方程2x 2+4x +3=0没有实根.二次函数y =2x 2+4x +3的图象开口向上,与x 轴没有交点,即2x 2+4x +3>0恒成立,∴不等式2x 2+4x +3>0的解集为R .(2)原不等式可化为3x 2+2x -8≤0, ∵Δ=100>0,∴方程3x 2+2x -8=0的两根为-2,43.结合二次函数y =3x 2+2x -8的图象可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤43. (3)由12x 2-ax -a 2>0⇔(4x +a )(3x -a )>0 ⇔⎝ ⎛⎭⎪⎫x +a 4⎝ ⎛⎭⎪⎫x -a 3>0, ①a >0时,-a 4<a3,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0}; ③a <0时,-a 4>a3,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 3或x >-a 4.【例2】 (-3,2)∪(3,+∞) 解析:不等式x 2-9x -2>0可化为(x -2)(x -3)(x +3)>0,由穿根法(如图)得,所求不等式的解集为(-3,2)∪(3,+∞).【例3】 解:(1)设生产第x 档次产品时,所获利润最大,则生产第x 档次产品时,每件利润为[16+(x -1)×1]元,生产第x 档次产品时,每天生产[40-2(x -1)]件, 所以生产第x 档次产品时,每天所获利润为: y =[40-2(x -1)][16+(x -1)]=-2(x -3)2+648.当x =3时,y 最大,即生产第三档次产品利润最大. (2)若最低档次产品每件利润为22元,则生产第x 档次产品时,每天所获利润为: y =[40-2(x -1)][22+(x -1)]=-2x 2+882.因为x ∈[1,6],且x ∈N ,所以当x =1时,y 最大,即生产第一档次产品利润最大. 【例4-1】解:(1)由|ax +1|≤3得-4≤ax ≤2. 又f (x )≤3的解集为{x |-2≤x ≤1}, 所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a,得a =2.(2)记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k ≥1.【例4-2】 解:(1)当a =-1时,f (x )=|x -1|+|x +1|, 由f (x )≥3得|x -1|+|x +1|≥3,(方法一)由绝对值的几何意义知不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.(方法二)不等式可化为⎩⎪⎨⎪⎧ x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧-1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3.所以不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.(2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤a ,1-a ,a <x <1,2x -(a +1),x ≥1,f (x )的最小值为1-a ;若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤1,a -1,1<x <a ,2x -(a +1),x ≥a .f (x )的最小值为a -1.所以对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,1]∪[3,+∞).演练巩固提升1.B 解析:原不等式⇔⎩⎪⎨⎪⎧(x -2)(x +1)≤0,x +1≠0⇔-1<x ≤2.2.A 解析:由x 2-x ≤0,得0≤x ≤1,所以M ∩N 为[0,1).选A.3.[0,+∞) 解析:令y =|x +10|-|x -2|=⎩⎪⎨⎪⎧-12, x ≤-10,2x +8,-10<x <2,12, x ≥2.则可画出其函数图象如图所示:由图象可以观察出使y ≥8的x 的范围为[0,+∞).∴|x +10|-|x -2|≥8的解集为[0,+∞).4.(-∞,-5] 解析:设f (x )=x 2+mx +4,由题意,得⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0,11 即⎩⎪⎨⎪⎧ 5+m ≤0,8+2m ≤0.∴m ≤-5.5.解:(1)按现在的定价上涨x 成时,上涨后的定价为p ⎝ ⎛⎭⎪⎫1+x 10元,每月卖出数量为n⎝ ⎛⎭⎪⎫1-y10件,每月售货总金额是npz 元, 因而npz =p ⎝ ⎛⎭⎪⎫1+x10·n ⎝ ⎛⎭⎪⎫1-y10,所以z =(10+x )(10-y )100.(2)在y =kx 的条件下,z =(10+x )(10-kx )100,整理可得z =1100·⎩⎨⎧⎭⎬⎫100+25(1-k )2k -k ·⎣⎢⎡⎦⎥⎤x -5(1-k )k 2,由于0<k <1,所以5(1-k )k >0,所以使z 值最大的x 值是x =5(1-k )k .(3)当y =23x 时,z =(10+x )⎝ ⎛⎭⎪⎫10-23x 100,要使每月售货总金额有所增加,即z >1,应有(10+x )⎝ ⎛⎭⎪⎫10-23x >100,即x (x -5)<0,所以0<x <5.所以x 的取值范围是(0,5).。
§7.3一元二次不等式及其解法最新考纲考情考向分析1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.以理解一元二次不等式的解法为主,常与集合的运算相结合考查一元二次不等式的解法,有时也在导数的应用中用到,加强函数与方程思想,分类讨论思想和数形结合思想的应用意识.在高考中常以选择题的形式考查,属于低档题,若在导数的应用中考查,难度较高.1.一元二次不等式的解集判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2} 错误!{x|x∈R} ax2+bx+c<0(a>0)的解集{x|x1< x<x2} ∅∅2.常用结论(x -a )(x -b )>0或(x -a )(x -b )<0型不等式的解法不等式解集a <ba =b a >b (x -a )·(x -b )>0 {x |x <a 或x >b } {x |x ≠a }{x |x <b 或x >a } (x -a )·(x -b )<0{x |a <x <b }∅{x |b <x <a }口诀:大于取两边,小于取中间. 概念方法微思考1.一元二次不等式ax 2+bx +c >0(a >0)的解集与其对应的函数y =ax 2+bx +c 的图象有什么关系?提示 ax 2+bx +c >0(a >0)的解集就是其对应函数y =ax 2+bx +c 的图象在x 轴上方的部分所对应的x 的取值范围.2.一元二次不等式ax 2+bx +c >0(<0)恒成立的条件是什么? 提示显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0;ax 2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ )题组二 教材改编2.已知集合A ={x |x 2-x -6>0},则∁R A 等于( ) A .{x |-2<x <3} B .{x |-2≤x ≤3} C .{x |x <-2}∪{x |x >3} D .{x |x ≤-2}∪{x |x ≥3} 答案 B解析 ∵x 2-x -6>0,∴(x +2)(x -3)>0,∴x >3或x <-2,即A ={x |x >3或x <-2}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-2≤x ≤3}. 故选B.3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞ 解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.5.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .(-2,2] C .(-2,2) D .(-∞,2) 答案 B解析 ∵⎩⎪⎨⎪⎧a -2<0,Δ<0,∴-2<a <2,另a =2时,原式化为-4<0,不等式恒成立, ∴-2<a ≤2.故选B.题型一 一元二次不等式的求解命题点1 不含参的不等式例1(2019·呼和浩特模拟)已知集合A ={x |x 2-x -2<0},B ={y |y =2x },则A ∩B 等于( ) A .(-1,2) B .(-2,1) C .(0,1) D .(0,2)答案 D解析 由题意得A ={x |x 2-x -2<0}={x |-1<x <2},B ={y |y =2x }={y |y >0}, ∴A ∩B ={x |0<x <2}=(0,2).故选D. 命题点2 含参不等式例2解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 思维升华对含参的不等式,应对参数进行分类讨论 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ判断根的个数.(3)有两个根时,有时还需根据两根的大小进行讨论. 跟踪训练1解不等式12x 2-ax >a 2(a ∈R ). 解 原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝⎛⎭⎫-∞,-a 4∪⎝⎛⎭⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝⎛⎭⎫-∞,a 3∪⎝⎛⎭⎫-a4,+∞.题型二 一元二次不等式恒成立问题命题点1 在R 上的恒成立问题例3已知函数f (x )=mx 2-mx -1.若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围. 解 当m =0时,f (x )=-1<0恒成立.当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0]. 命题点2 在给定区间上的恒成立问题例4已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 引申探究1.若将“f (x )<5-m 恒成立”改为“f (x )<5-m 无解”,如何求m 的取值范围? 解 若f (x )<5-m 无解,即f (x )≥5-m 恒成立, 即m ≥6x 2-x +1恒成立,又x ∈[1,3],得m ≥6,即m 的取值范围为[6,+∞).2.若将“f (x )<5-m 恒成立”改为“存在x ,使f (x )<5-m 成立”,如何求m 的取值范围? 解 由题意知f (x )<5-m 有解,即m <6x 2-x +1有解,则m <⎝⎛⎭⎫6x 2-x +1max ,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6). 命题点3 给定参数范围的恒成立问题例5若mx 2-mx -1<0对于m ∈[1,2]恒成立,求实数x 的取值范围.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧ g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0,解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32.思维升华解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. 跟踪训练2函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图①,当g (x )的图象与x 轴不超过1个交点时, 有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有2个交点, 但当x ∈[-2,+∞)时,g (x )≥0,即⎩⎪⎨⎪⎧ Δ>0,x =-a2<-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )>0,-a2<-2,4-2a +3-a ≥0,可得⎩⎪⎨⎪⎧a >2或a <-6,a >4,a ≤73,解得a ∈∅.③如图③,g (x )的图象与x 轴有2个交点, 但当x ∈(-∞,2]时,g (x )≥0.即⎩⎪⎨⎪⎧Δ>0,x=-a2>2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )>0,-a2>2,7+a ≥0,可得⎩⎪⎨⎪⎧a >2或a <-6,a <-4,a ≥-7.∴-7≤a <-6,综上,实数a 的取值范围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. ∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).一、选择题1.已知集合A ={x |x ≥0},B ={x |(x +1)(x -5)<0},则A ∩B 等于( ) A .[-1,4) B .[0,5)C .[1,4]D .[-4,-1)∪ [4,5)答案 B解析 由题意得B ={x |-1<x <5},故A ∩B ={x |x ≥0}∩{x |-1<x <5}=[0,5).故选B.2.(2018·沈阳二十中联考)若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <12 C .{x |-2<x <1} D .{x |x <-2或x >1}答案 A解析 ∵不等式ax 2+bx +2>0的解集为{x |-1<x <2},∴ax 2+bx +2=0的两根为-1,2,且a <0,即-1+2=-b a ,(-1)×2=2a ,解得a =-1,b =1,则所求不等式可化为2x 2+x -1>0,解得x <-1或x >12,故选A.3.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0] 答案 A解析 由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解得-3<k <0.4.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A .(13,+∞) B .(5,+∞) C .(4,+∞) D .(-∞,13)答案 B解析 m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时f (x )min =5,∃x ∈[2,4] 使x 2-2x +5-m <0成立,即m >f (x )min ,∴m >5.故选B.5.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3] D .[-1,3] 答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.6.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎤-∞,-235 答案 A解析 由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故选A.7.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值范围是( ) A .(-3,5) B .(-2,4) C .[-1,3] D .[-2,4]答案 C解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a =1或1<a ≤3或1>a ≥-1, 所以实数a 的取值范围是a ∈[-1,3],故选C.8.设a <0,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( ) A.12B.13C.14D.22 答案 C解析 当a <b <0时,∀x ∈(a ,b ),2x +b <0, 所以(4x 2+a )(2x +b )≥0在(a ,b )上恒成立, 可转化为∀x ∈(a ,b ),a ≤-4x 2,所以a ≤-4a 2,所以-14≤a <0,所以0<b -a <14;当a <0<b 时,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,当x =0时,(4x 2+a )(2x +b )=ab <0,不符合题意;当a <0=b 时,由题意知x ∈(a ,0),(4x 2+a )2x ≥0恒成立,所以4x 2+a ≤0,所以-14≤a <0,所以b -a ≤14. 综上所述,b -a 的最大值为14. 二、填空题9.(2018·全国名校大联考)不等式x 2-2ax -3a 2<0(a >0)的解集为________.答案 {x |-a <x <3a }解析 x 2-2ax -3a 2<0⇔(x -3a )(x +a )<0,∵a >0,∴-a <3a ,不等式的解集为{x |-a <x <3a }.10.(2018·烟台联考)不等式x >1x的解集为________. 答案 (-1,0)∪(1,+∞)解析 当x >0时,原不等式等价于x 2>1,解得x >1;当x <0时,原不等式等价于x 2<1,解得-1<x <0.所以不等式x >1x的解集为(-1,0)∪(1,+∞). 11.若关于x 的不等式x 2-ax -a >0的解集为R ,则实数a 的取值范围是________. 答案 (-4,0)解析 因为x 2-ax -a >0的解集为R ,所以Δ=(-a )2-4(-a )<0,解得-4<a <0,故实数a 的取值范围是(-4,0).12.(2019·上海长宁、嘉定区模拟)不等式x x +1≤0的解集为________. 答案 (-1,0]解析 由x x +1≤0得x (x +1)≤0(x ≠-1), 解得-1<x ≤0.13.若不等式x 2+ax +4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为________. 答案 [-5,+∞)解析 由题意,分离参数后得,a ≥-⎝⎛⎭⎫x +4x . 设f (x )=-⎝⎛⎭⎫x +4x ,x ∈(0,1], 则只要a ≥[f (x )]max 即可.由于函数f (x )在区间(0,1]上单调递增,所以[f (x )]max =f (1)=-5,故a ≥-5.三、解答题14.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,求实数a 的取值范围.解 设f (x )=x 2-2(a -2)x +a ,当Δ=4(a -2)2-4a <0时,即1<a <4时,f (x )>0对x ∈R 恒成立;当a =1时,f (-1)=0,不合题意;当a =4时,f (2)=0符合题意;当Δ>0时,由⎩⎪⎨⎪⎧ Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,即⎩⎪⎨⎪⎧ a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值范围是(1,5].15.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)∵f (x )=-3x 2+a (6-a )x +6,∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.∴原不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎨⎧-1+3=a (6-a )3,-1×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围. 解 (1)f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),即2x 2+bx +c <0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=5,c 2=0, ∴b =-10,c =0,f (x )=2x 2-10x .(2)f (x )+t ≤2恒成立等价于2x 2-10x +t -2≤0恒成立,∴2x 2-10x +t -2在x ∈[-1,1]上的最大值小于或等于0.设g (x )=2x 2-10x +t -2,x ∈[-1,1],则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g (x )max =g (-1)=10+t ,∴10+t ≤0,即t ≤-10.。