冀教版八上14.1《分式》word学案2
- 格式:doc
- 大小:106.00 KB
- 文档页数:4
八年级数学上册 第十四章 分式 14.1 分式名师教案1 冀教版 〖教学目标〗(-)知识目标1.经历分式概念的抽象过程,体会分式的模型思想,进一步发展符号感.2.了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.4.利用分式的基本性质对分式进行“等值”变形.(二)能力目标1.能从具体情境中抽象出数量关系和变化规律,经历对具体问题的探索过程,进一步培养符号感.2.掌握分式有意义的条件,认识事物间的联系与制约关系.(三)情感目标通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣.即通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.〖教学重点〗1.了解分式的形式 (A 、B 是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.2.掌握分式基本性质的内容,并有意识地运用它化简分式.〖教学难点〗1.分式的一个特点:分母含有字母;一个要求:字母的取值限制于使分母的值不能为零.2.分子分母进行约分.〖教学过程〗 这是一个在美国影响很大的算题:你见过这样荒谬绝伦的约分吗?凡学过分数的学生都会被这种运算笑掉大牙.笑罢之余,再猛地一想,怪事!这结果怎么反而是正确的?当然,这是一种偶然的巧合,但是这种偶然之下有没有值得研究的地方?我们的问题是:你能否再找出其它的分数,也具有这种奇特现象?稍加思索,我们可以找到问题的解法.我们知道,正分数的分子和分母都是正整数,而且一个个位数字是y ,十位数学是x 的两位正整数可以写成10x +y 的形式.设这个分数的分子为10a +b ,分母为10b +c .我们要做的事是求满足关系式c a c b b a =++1010的分数.这实际上是一个不定方程的问题.化简上式,得10a (c-b )=c (a-b ).分别讨论a ,b ,c 从1到9的取值情况,可以求出满足此条件的分数,有6526,6416,9849,9519. 这个奇妙的算题被列为美国20世纪“最佳”趣题之一.一、课前布置自学:阅读课本P26~P28,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).二、学情诊断1.了解学生原有认知机构,解答学生提出的问题.2.一起交流课本P26的“做一做”与“大家谈谈”三、师生互动(一)[师]在自学时,我们知道有些实际问题中的数量关系所对应的代数式,不能用整式.例如(出示题目),你来列一列所需的代数式.(1)一箱苹果售价a 元,箱子与苹果的总质量为m k g ,箱子的质量为n k g ,则每千克苹果的售价是_________元.(2)某书店库存一批图书,其中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的库存全部售出时,其销售额为b 元.降价销售开始时,文林书店这种图书的库存量是__________.[生](1)n m a -元;(2)x a b-册[师]这样的代数式同整式有很大的不同,而且它是以分数的形式出现的,它们是不同于整式的一个很大的家族,我们把它们叫做分式. 谁能说说分式与整式有什么不同? [生]:分式都是由分子、分母与分数线构成;分母中都含有字母.[生]分式与整式的不同点就在于它们的分母中都含有字母,而整式的分母中不含有字母.例如:42,90y x x -它们都含有分母,但分母中不含字母,所以它们是整式. [师]很好!阅读课本分式的概念,再次感受一下课本中是如何描述分式的:(整式A 除以整式B ,可以表示成B A 的形式.如果除式B 中含有字母,那么称B A 为分式,其中A 称为分式的分子,B 称为分式的分母.)[师]分式中,字母可以取任意数吗?[生]不可以.因为分式中分母含有字母,而分母是除式,不能为零.字母的取值就受到制约,即字母的取值不能使分母为零,否则,分式就会无意义.(二)鼓励学生讲解教师提供的例题.(例题的设置是分层的,安排不同基础的学生尝试讲解,教师予以补充)例1 当x 取什么值时,下列分式有意义?(1)212x x -- (2)2||-x x分析:记住分式的分母不能为零,有意义的条件是分母≠0.解:(1)由分母-x 2=0得:x =0.所以当x ≠0时,分式212x x --有意义.(2)故|x |-2≠0,得|x |≠2,即x ≠±2.例2 当x 取什么值时, 分式211x x -+的值为零? 解:由分子x 2-1=0得x =±1而当x =-1时,分母x +1=-1+1=0 此时分式无意义,所以当x =1时,分式211x x -+的值为零. (三)[师]在小学学分数时,我们学习了分数的基本性质.自学时,你是怎样理解分式的基本性质的?[生]分式是一般化了的分数,类比分数的基本性质,我们可推想出分式的基本性质: 分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.[师]在运用此性质时,应特别注意什么?[生]应特别强调分式的分子、分母都乘以(或除以)同一个不为零的整式中的“都”“同一个”“不为零”.[师]我们利用分数的基本性质可对一个分数进行等值变形.同样我们利用分式的基本性质也可以对分式进行等值变形.(鼓励学生讲解教师提供的例题.)2.下列等式的右边是怎样从左边得到的?(1)x b 2=xy by 2 (y ≠0);(2)bx ax =ba . 解:在(1)中,因为y ≠0,利用分式的基本性质,在x b 2的分子、分母中同乘以y ,即可得到右边, 即x b 2=y x y b ⋅⋅2=xyby 2; 在(2)中,bx ax 可以分子、分母同除以x 得到,即bx ax =x bx x ax ÷÷=ba . 强调:在(1)中,题目告诉你y ≠0,因此我们可用分式的基本性质直接求得.(2)中隐含条件x ≠0的发现.在bx ax 中,x 不会为“0”,如果是“0”, bx ax 中分母就为“0”,分式bxax 将无意义,所以(2)中虽然没有直接告诉我们x ≠0,但要由bx ax 得到b a ,bx ax 必须有意义,即bx ≠0由此可得b ≠0且x ≠0.(四)引导学生小结:1.注:1°对于任意一个分式,分母都不能为零.2°分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3°分式的值为零含两层意思:分母不等于零;分子等于零.2.数学知识之间是有内在联系的.利用分数的基本性质就可推想出分式的基本性质.四、补充练习作业P28习题〖分层练习〗1.①当a =1,2时,分别求分式aa 21+的值. ②当a 为何值时,分式aa 21+有意义? ③当a 为何值时,分式a a 21+的值为零? 2.当x =1时,分式①11-+x x ,②221--x x ,③112--x x ,④113+x 中,有意义的是( )A.①③④B.③④C.②④D.④3. 写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义,且分式的值为负) .4.已知分式x x 412-是正数,则x 的取值范围是( ) A.41≠x B.41>x C.41<x D.041≠<x x 且〖答案提示〗1.解:①当a =1时,121121⨯+=+a a =1; 当a =2时,43221221=⨯+=+a a .②当分母的值等于零时,分式没有意义,除此以外,分式都有意义. 由分母2a =0,得a =0.所以,当a 取零以外的任何实数时,分式aa 21+有意义. ③分式的值为零,包含两层意思:首先分式有意义,其次,它的值为零.因此a 的取值有两个要求:⎩⎨⎧=+≠0102a a所以,当a =-1时,分母不为零,分子为零,分式a a 21+为零. 2.D 3. 112+-x (或11+-x ,答案不唯一) 4.D。
八年级上册《分式》学案冀教版题时教学目标(1)使学生了解分式的概念,能够求出分式有意义的条。
(2)掌握分式的基本性质,能对分式进行恒等变换。
重点难点分式概念及基本性质的获得分式概念的抽象过程教学内容师生随笔一:感悟新知.分式都是的形式,其中A,B都是,并且B中含有。
要想使分式有意义,分式的分母不能是。
2如果分式无意义,则x=。
3下面等式成立吗?为什么?错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=二:探索新知、下列式子:①②③④⑤⑥其中是分式的有:(填序号)2、当x时,分式有意义。
当x时,分式的值为零。
3、填表X=1X=2X=3X=4通过观察,你认为,,这三个分式相等吗?由此,你发现分式具有怎样的性质了吗?文字语言表述:分式的分子分母都乘()同一个的整式,分式的值。
数学符号表示:,(是不等于0的整式)4、你说分式与相等对吗?为什么?那么分式等于呢?三、整理归纳这节我学到了。
四、达标测评、某车间计划在x天内加工200个零,而实际加工时比原计划少用2天完成了任务,实际每天加工多少个零?(用含有x的代数式表示)2、某超市为了促销,把售价为1元/千克的甲种糖果千克和售价为20元/千克的乙种糖果n千克混合销售(混合均匀),混合后糖果的定价应定为多少?3、请在下列整式中,任选两个作为分子和分母,构造出三个分式。
3000,,a+b,a+bn,x,0,,(x-)4、如果分式的值为零,那么x应为()、x取何值时,下列分式有意义?取何值分式的值为零?(1)(2)6、下列分式中正确的是()A、=B、=-1、=0D、=7、在分式中,字母a、b的值分别扩大为原来的2倍,则分式的值()A、扩大为原来的2倍B、不变、缩小为原来的D、缩小为原来的师生反思、总结:题时教学目标(1)学生能运用分式的基本性质进行约分。
(2)熟练进行约分,并了解最简分式的意义。
重点难点掌握分式约分方法并熟练进行分式约分。
分子、分母是多项式时分解因式。
冀教版数学八年级上册《分式方程》教学设计一. 教材分析冀教版数学八年级上册《分式方程》是学生在学习了初中数学基础知识后,进一步深入研究数学的重要内容。
本节课的主要目的是让学生掌握分式方程的定义、解法及其应用,培养学生解决实际问题的能力。
教材通过引入实际问题,引导学生认识分式方程,并逐步引导学生探究分式方程的解法,从而达到理解并熟练掌握分式方程的目的。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本知识,包括分式的概念、分式的运算等。
但是,学生对于分式方程的认识还比较模糊,对于如何解决分式方程还缺乏相应的技巧和方法。
因此,在教学过程中,需要结合学生的实际情况,从学生的已有知识出发,引导学生探究分式方程的解法,并培养学生的解题技巧。
三. 教学目标1.让学生理解分式方程的定义,掌握分式方程的解法。
2.培养学生解决实际问题的能力,提高学生的数学素养。
3.培养学生合作探究的学习习惯,提高学生的自主学习能力。
四. 教学重难点1.重点:分式方程的定义、解法及其应用。
2.难点:分式方程的解法,特别是如何消元和解方程。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现分式方程,激发学生的学习兴趣。
2.采用合作探究的学习方式,让学生在小组讨论中共同解决问题,提高学生的自主学习能力。
3.采用案例教学法,通过具体的例题,让学生掌握分式方程的解法。
六. 教学准备1.准备相关的教学PPT,包括分式方程的定义、解法及其应用等内容。
2.准备一些实际的习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生认识分式方程,并激发学生的学习兴趣。
2.呈现(10分钟)通过PPT呈现分式方程的定义、解法及其应用等内容,让学生对分式方程有一个整体的认识。
3.操练(10分钟)让学生独立解决一些简单的分式方程,体会解分式方程的方法。
4.巩固(10分钟)通过小组合作,共同解决一些较复杂的分式方程,巩固学生对分式方程解法的掌握。
第一节 分式第一课时 分式的概念及分式的基本性质学习目标1.使学生理解分式的意义,会求使分式有意义的条件.2.通过类比思想掌握分式的基本性质. .课前预习方案 自主学习()--π-2214x x y 1x ,,532,+215x,x x y中,分式共有( )个.A. 2B. 3C. 4D. 5AB,分式无意义的条件是,分式有意义的条件是,分式的值为零的条件是. .知识1a ,b a ,m v ,+x x 12,-+x y x y有何共同特征?24,48,12相等吗? 课堂学习方案 知识结构1.分式定义、分式有无意义的条件.2.分式的基本性质,用式子表示是:⨯÷==⨯÷A A M A A M ,B B M B B M(其中M 是不等于零的整式)典型例题例1.当x 是什么数时,分式+-x 22x 5①值是零?②有意义?③无意义?解:①由分子x+2=0,得x=-2.而当x=-2时,分母2x-5=-4-5≠0,所以当x=-2时,分式+-x 22x 5的值是零. ②∵2x-5≠0 ∴x ≠52∴当x ≠52时,分式+-x 22x 5有意义. ③∵2x-5=0 ∴x=52∴当x=52时,分式+-x 22x 5无意义. 例2.填空:⑴()+=2a bab a b ⑵()++=22x xy x y x . 解:⑴∵a ≠0∴()+⨯++==⨯22a b a a b a ab ab ab a a b即填a 2+ab. ⑵∵x ≠0∴()+÷++==÷2222x xy x x xy x y x x x x,即填x.总结:仔细观察分母(分子)的变化利用分式的基本性质来解题.例3.不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数. ⑴+-12x y2312x y 23; ⑵+-0.3a 0.5b 0.2a b . 解:⑴1212x y 6x y 233x 4y 23123x 4y 12x y x y 62323⎛⎫+⨯ ⎪++⎝⎭==-⎛⎫--⨯ ⎪⎝⎭. ⑵()()+⨯++==---⨯0.3a 0.5b 100.3a 0.5b3a 5b 0.2a b 2a 10b 0.2a b 101.下列各式中,是分式的是( )B.13x2C.12D.xx 1- 2.(2006年某某)使式子-1x 1有意义的x 的取值X 围为( ) A.x >0 B.x ≠1 C.x ≠-1 D.x ≠±13.(2006年某某)下列各式从左到右的变形正确的是( ) A.--=++1x y2x y 21x 2y x y 2 B.++=++0.2a b 2a ba 0.2b a 2bC.+--=--x 1x 1x y x yD.+-=-+a b a b a b a b 4.使式子-+x 1x 1的值为零的x 的取值X 围为( )A.x=0B.x=1C.x=-1D.x=±1++x 2yx y中的x 和y 都扩大10倍,那么分式的值( )23对于分式+-x 2b 2x a ,当x=1时,分式无意义;当x=4时,分式+-x 2b2x a的值为0,求a+b 的值.。
14.1分式教学目标(一)知识与技能目标1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.2.使学生能够求出分式有意义的条件.(二)过程与方法目标能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.(三)情感与价值目标在土地沙化问题中,体会保护人类生存环境的重要性。
培养学生严谨的思维能力. 教学重点和难点准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点.教学方法:分组讨论. 教学过程1. 情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?(1) 这一问题中有哪些等量关系(2) 如果设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月根据题意,可得方程 ;2、解读探究x 2400,302400+x ,43024002400=+-x x 认真观察上面的式子,方程有什么特点?做一做1.正n 边形的每个内角为 度2一箱苹果售价a 元,箱子与苹果的总质量为mkg ,箱子的质量为nkg ,则每千克苹果售价是多少元? 上面问题中出现的代数式x 2400,302400+x ,nn 180)2(⨯-;它们有什么共同特征? (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论的分母.(2)由学生举几个分式的例子.(3)学生小结分式的概念中应注意的问题.①分母中含有字母.②如同分数一样,分式的分母不能为零.(4)问:何时分式的值为零?(以(2)中学生举出的分式为例进行讨论)例1(1)当a=1,2时,求分式aa 21+的值; (3) 当a 取何值时,分式aa 21+有意义 解:(1)当a=1时,;1121121=⨯+=+a a 当a=2时43221221=⨯+=+a a (2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义。
冀教版数学八年级上册《分式的混合运算》教学设计2一. 教材分析冀教版数学八年级上册《分式的混合运算》是学生在掌握了分式的基本概念、性质、运算方法的基础上进行学习的内容。
本节课的主要内容是分式的加减乘除运算,以及混合运算的顺序和法则。
通过本节课的学习,使学生能够熟练掌握分式的混合运算方法,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、性质和运算方法,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于分式的混合运算,部分学生可能会感到困惑,对于运算顺序和法则的理解可能不够深入。
因此,在教学过程中,需要关注这部分学生的学习情况,通过举例、讲解、练习等方式,帮助他们理解和掌握分式的混合运算方法。
三. 教学目标1.理解分式的混合运算的概念和法则。
2.掌握分式的混合运算方法,能够熟练进行分式的加减乘除运算。
3.提高解决实际问题的能力,培养逻辑思维能力。
四. 教学重难点1.重点:分式的混合运算方法。
2.难点:分式混合运算的顺序和法则的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动思考和探索。
2.通过举例、讲解、练习等方式,帮助学生理解和掌握分式的混合运算方法。
3.利用多媒体教学手段,直观地展示分式的混合运算过程,提高学生的学习兴趣和效果。
六. 教学准备1.多媒体教学设备。
2.教学PPT。
3.练习题。
七. 教学过程1.导入(5分钟)通过复习分式的基本概念、性质和运算方法,引出本节课的内容——分式的混合运算。
向学生提出问题:“什么是分式的混合运算?混合运算的顺序和法则是什么?”激发学生的学习兴趣和思考。
2.呈现(10分钟)通过PPT展示分式的混合运算的定义和法则,让学生直观地了解分式的混合运算的过程。
同时,给出一些例子,让学生跟随PPT的讲解,一起进行分式的混合运算。
3.操练(10分钟)让学生分成小组,互相进行分式的混合运算练习。
教师在这个过程中,要关注学生的练习情况,对于遇到问题的学生,要进行及时的指导和帮助。
冀教版数学八年级上册《分式方程》教学设计一. 教材分析冀教版数学八年级上册《分式方程》是学生在掌握了分式、方程的基础上,进一步研究分式与方程的关系。
本节课的内容包括分式方程的定义、解法、检验及应用。
教材通过丰富的例题和练习题,引导学生掌握分式方程的解法,并能够应用分式方程解决实际问题。
本节课的教学内容在初中数学知识体系中占有重要地位,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了分式和一元一次方程的知识,具备了一定的数学基础。
但部分学生在解决实际问题时,仍存在将数学知识与实际问题脱节的现象。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生将分式方程与实际问题相结合,提高学生解决实际问题的能力。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够运用分式方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.分式方程的定义及解法。
2.将分式方程应用于实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生主动探究分式方程的解法。
2.案例分析法:分析典型例题,总结分式方程的解法步骤。
3.小组合作学习:学生分组讨论,共同解决问题,提高合作能力。
六. 教学准备1.教学课件:制作课件,展示分式方程的相关概念、例题和练习题。
2.练习题:准备一定数量的练习题,巩固学生对分式方程的掌握。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用实例引入分式方程的概念,激发学生的学习兴趣。
2.呈现(15分钟)展示分式方程的定义、解法及应用,引导学生了解分式方程的相关知识。
3.操练(20分钟)学生分组讨论,共同解决实际问题,巩固分式方程的解法。
4.巩固(10分钟)针对分式方程的解法,进行课堂练习,检查学生对知识点的掌握情况。
5.拓展(10分钟)分析分式方程在实际问题中的应用,引导学生学会将数学知识与实际问题相结合。
冀教版八年级数学上册《分式》教案《分式》教案教材分析本节课的教材“从分数到分式”,通过学生对熟知的实例的思考得出一些具体的分数与分式,然后引导学生,对它们进行观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念.在此基础上教材通过实例进一步揭示了分数与分式的“特殊与一般”的关系,并且引导学生去类比思考,从而得出分式的分母不能为0.本节课教材的编写有以下三个特点:1、背景:从典型实例出发引出分式概念.2、思想:通过分数与分式的类比,渗透“类比”和“特殊到一般”的数学思想方法.3、问题性:全部内容都是通过设置恰当的问题引发学生的活动和思考而展开的.本节课教材的以上三个方面特点为后续知识的学习奠定了基础.教学目标1、知识与技能(1)理解分式的含义,能区分整式与分式.(2)理解分式中分母不能为0,会求分式中字母满足什么条件分式有意义.(3)学会约分.2、过程与方法(1)通过分式与分数的类比,培养学生“从具体到抽象”、“从特殊到一般”的思维能力.(2)通过“思考”、“观察”、“归纳”等活动发展学生提出问题的意识与归纳推理能力.(3)通过分式概念的实际背景,体会数学概念来源于实际,发展学生应用数学解决实际问题的意识.3、情感、态度与价值观通过“思考”、“观察”、“归纳”等栏目让学生参与数学的学习活动,使学生学会提出问题,思考问题,从而提高对数学的学习兴趣.教学重难点从实际问题出发,通过类比与观察,由学生自己抽象出分式的概念.教学方法“问题——活动——达成”式的教学方法.教学准备多媒体.教学过程活动(一):教师引导学生观察章前图,自学本章导言,并回答下列问题:1、我们过去学过整式,请你举出几个整式的例子.2、观察两个式子v +20100与v-2060,指出它们的特点,它们属于整式吗? 3、本章我们将要学习哪些内容?章前引言,是学习本章知识的一个“导游图”,通过对引言的学习,给学生展现一个全章知识的背景,初步了解本章将要学习哪些知识.激发学生的学习兴趣.活动(二):问题1、填空(1)长方形的面积为10cm 2,长为7cm ,宽应为______cm ;长方形的面积为S ,长为a ,宽应为______.(2)把体积为200cm 2的水倒入底面积为33cm 2的圆柱形容器中,水面高度为_____cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为______.2、请你观察式子a S ,SV 及引言中的式子v +20100,v -2060有什么共同点?它们与分数有什么相同点和不同点?3、通过以上例子,你能归纳得出什么样的式子叫做分式吗?你能再举些分式的例子吗?师生行为:教师用投影仪展示做一做,由学生思考后口答结果,教师板书.教师展示“大家谈谈”后,启发、引导学生充分发表意见,然后教师总结出以下几点:(1)这些式子与分数一样都是BA 的形式. (2)分数BA 的分子与分母都是整数. (3)这些式子中A 、B 都是整式,且B 中含有字母,然后教师再提一个问题:与分数对比,你能给这些式子起个名称吗?到此分式的概念也就“水到渠成”了.先由学生说出什么叫分式,然后板书分式的定义.设计意图1、“问题是创新的开始”,以问题来引导学生的学习活动,可以促使学生主动探究,培养问题意识和创新意识.2、通过分式与分数的类比,渗透类比思想,培养合情推理能力.3、通过具体实例,建立实际背景,抽象出分式概念,不仅可以发展学生的应用意识,而且培养学生抽象思维能力.活动(三):问题1、分式与整式的不同点在哪里?2、对于分式yx ,由于字母x 、y 可以表示不同的数,当x 、y 取具体数值时,它就变成了分数,请你举出几例.3、分式中的分母应满足什么条件?教师提出做一做,把分数与分式建立起联系,形成一种新的认知结构.“大家谈谈“,在于进一步把分式与分数进行类比,使学生体会分式比分数更具有一般性,二者是特殊与一般的关系,同时也为本课内容提供一个具体背景.教师应强调由于除数不能为0,所以分式的分母不能为0.教师板书,当B ≠0时,分式BA 才有意义. 4、怎样约分?活动(四)练习:书中3页练习.此项活动教师重点关注分层训练. 课堂小结1、本节课你学到了哪些知识?2、你有什么发现或体会?学生思考后充分发表自己的意见,然后互相补充,师生共同归纳出本节课的主要内容. 通过小结明确本节的主要内容、思想和方法,培养学生善于反思的良好习惯.内容提示:(1)学会了哪些知识、思想和方法?(2)你对数学又有哪些新的认识和体会?(3)本节课你有哪些不理解的问题?你准备怎样解决?(4)你对老师的教学有哪些意见和建议?你准备采取什么方式与老师沟通?布置作业课本第4页、第6页习题.。
八年级数学上册第十四章分式 14.3 分式的加减名师教案2 冀教版〖教学目标〗(-)知识目标1.异分母的分式加减法的法则.2.分式的通分.(二)能力目标1.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力.2.进一步通过实例发展学生的符号感.(三)情感目标1.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐.2.提高学生“用数学”意识.〖教学重点〗1.掌握异分母的分式加减运算.2.理解通分的意义.〖教学难点〗1.化异分母分式为同分母分式的过程.〖教学方法〗启发、探索相结合〖教学过程〗一、课前布置自学:阅读课本P38~P40,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).二、学情诊断1.了解学生原有认知机构,解答学生提出的问题.三、师生互动[师]谈谈昨天是怎样自学这小节内容的?[生]我们已学过分式的一些知识,如分式的概念,分式的约分以及分式的乘除法等.这些知识,都是在与分数类比中得到的.我想异分母的分式的加减法也可类比分数的加减法,应先把异分母的分式加减法转化为同分母的分式的加减法通过看书我知道,在分式的加减法中,把异分母的分式化成同分母分式的过程也叫做通分.[师生讨论](1)分式的通分是要运用分式的基本性质,把几个异分母的分式化为与原来分式相等的同分母的分式.通分的关键在于确定最简公分母,取各分母的系数的最小公倍数和所有因式的最高次幂的积就得到最简公分母.当公分母不是最简时,虽然也能达到通分的目的,但会使运算变得繁琐.(2)异分母的分式的加减法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.上述法则用式子表示为:.bd bc ad bd bc bd ad d c b a ±=±=±(二)鼓励学生讲解教师提供的例题.(例题的设置是分层的,安排不同基础的学生尝试讲解,教师予以补充)例1计算(1)24a -a 1; (2)ab b a +-bc cb +解: (1)24a -a 1=24a -a a a ⨯⨯1=24a -2a a =24a a-; (2) ab b a +-bc cb + =c ab c b a ⋅+)(-bc a c b a ⋅+)( =abc bc ac +-abc acab + =abc ac ab bc ac )()(+-+ =abc acab bc ac --+ =abc a c b )(- =ac ac -;例2 计算:222222n m n m n m n m -+-+-分析:分母是多项式的异分母相加减,要先将分母分解因式.确定最简的公分母再通分.如本题中2m +2n =2(m +n ),m 2-n 2=(m +n )(m -n ),因此最简公分母是2(m +n )(m -n ).解: ))(()(222222222n m n m n m n m n m n m n m n m n m -++-+-=-+-+-=))((2222))((222))((2222222222n m n m n m n mn m n m n m n m n m n m n mn m -+--+-=-++--++- =n m n m n m n m n m n m n m n mn m 22))((2)())((22222-+-=-++-=-+--- 例3阅读并回答下列问题计算: 21x x --x -1 解:原式=.1121)1(111222--=---=---x x x x x x x x上面的运算过程对吗?若不对说明理由并改正.解:不对,因为添分数线时,分数线前是负号,而分数线有括号的作用,取分子和各项都要变号,上述过程只改变第一项的符号显然不对. 正解:原式=111)1)(1(11122-=--+-=+--x x x x x x x x .例4 有这样的一道题:“计算:2222111x x x x x x x-+-÷--+的值,其中x =2005.”甲同学把“x =2005”错抄成“x =2050”,但他的计算结果也是正确的.你说这是怎么回事?分析:所给代数式的值与字母的取值为什么无关,这是一个具有思维价值的问题。
12.1分式(第二课时)教学设计(二)教学设计思想本节主要学习利用分式的基本性质来进行分式的约分。
约分之前先找出分子分母的公因式,进而即可进行约分。
约分可使一些代数式的求值运算变得简单。
通过例题的学习来巩固这些知识点。
教学目标知识与技能总结分式的基本性质,会灵活运用分式的基本性质将分式变形;能熟练地将分式约分。
过程与方法经历找分式的分子分母公因式的过程,进而对分式进行约分。
情感态度价值观通过问题的转化可使原来的问题变得简单。
教学重点、难点重点:分式的约分。
难点:找分式的公因式。
教学方法小组讨论,讲练结合教学媒体多媒体课时安排1课时教学设计过程第二课时【复习提问】分式的基本性质?(一)分式的约分数学小笑话:从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?学生分组讨论,最终达成共识.2.教师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请学生观察思考:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请学生分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.解:原式.当,时..(二)随堂练习教材P6练习1、2.(三)总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.(四)布置作业教材P6中习题.补充思考讨论题:1.将下列各式约分:(1);(2);(3)2.已知,则(五)板书设计分式问题的提出与解决练习小结。
八年级《数学》学教案
课题:14.1分式(二)
教学目的: 1、知识目标
(1)学生能运用分式的基本性质进行约分。
(2)熟练进行约分,并了解最简分式的意义。
2、能力目标
培养学生的观察能力,注意新旧知识的联系性,提高计算水平。
3、情感目标
培养学生耐心、细致的良好学习习惯。
教学重点:
掌握分式约分方法并熟练进行分式约分。
教学难点:
分子、分母是多项式时分解因式。
节前预习:
1、把下列分数化为最简分数:812=_____; 12545=______; 26
13
=______。
2、利用分式的基本性质,使下列分式的分子、分母不含公因式(提示:公因式就是分子分母都有的代数式)
(1)2ab b (2))1(+x x x (3)()()
b a b a ++13262
=()()()()⋅⋅ =()()()()⋅⋅ = ()()()()⋅⋅ =()() =()() = ()()。