立体图形的体积复习
- 格式:ppt
- 大小:1.64 MB
- 文档页数:28
“立体图形的表面积和体积”的整理和复习(天河区员村小学季山)教学内容:立体图形的表面积和体积P132 练习P133-134 5~9教学目标:1、学生在整理、复习的过程中,进一步熟悉立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。
2、在学生对立体图形的认识和理解的基础上,进一步培养空间观念。
3、让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神。
教学重点灵活运用立体图形的表面积和体积的计算方法解决实际问题。
教学难点沟通立体图形体积计算方法之间的联系。
教具、学具准备课件、多媒体电教设备一套。
教学过程一、回忆旧知,揭示课题1、谈话揭示课题。
昨天我们对立体图形的认识进行了整理和复习,今天将对这些图形的表面积和体积进行整理和复习。
(出示课件立体图形并板书:表面积和体积的整理和复习)2、看到课题,你准备从哪些方面去进行整理和复习。
(板书:意义、计算方法)二、整理复习,形成网络1、立体图形的表面积和体积的意义。
(1)提问:什么是立体图形的表面积?你能举例说明吗?(2)提问:什么是立体图形的体积?你能举例说明吗?(3)教师小结:立体图形的表面积就是指一个立体图形所有的面的面积总和,立体图形的体积就是指一个立体图形所占空间的大小。
2、小组合作,系统整理――立体图形的表面积和体积的计算方法。
(1)独立整理。
刚才我们已经对立体图形的表面积和体积的意义进行了整理。
下面,请同学们拿出题单,用自己喜欢的方式,将对立体图形的计算方法进行整理。
(2)整理好的同学请在小组中说一说你是怎样进行整理的?3、汇报展示,交流评价哪一个同学自愿上讲台展示、汇报你的整理情况。
其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。
注意计算公式与学生的评价4、归纳总结,升华提高(1)公式推导。
刚才,我们已经对立体图形表面积和体积的计算公式进行了整理。
人教版教科书小学数学六年级下册立体图形的体积复习教学设计及反思人教版教科书小学数学六年级下册《立体图形的体积复习》教学设计一、教学内容人教版教科书小学数学六年级下册第88页例5及相关内容。
二、教材分析本节课复习内容是在学生掌握了线和面的知识及对简单立体图形特征表面积和体积意义基础上进行的。
通过学习使学生进一步积累几何体体积计算方法的经验,并有利于促进学生进一步提高简单推理的能力,为今后进一步学习立体图形起着举足轻重的作用。
三、学情分析六年级的学生已经积累了一定的“空间与图形”的知识和经验,形成了一定程度的空间感,他们对周围事物的感知理解能力以及探索图形特征的愿望不断增强,同时具备了一定的抽象思维能力,可以在比较抽象的水平基础上对图形进行再探索。
四、教学目标及重难点2、在复习立体图形体积的过程中,发展学生的空间观念。
通过实际操作,培养学生的动手操作能力。
教学难点:运用所学的知识解决生活中的实际问题。
五、教学方法及教具教法:由于这节课是几何知识的复习课,所以采用以直观演示法、操作发现法为主,以设疑诱导法为辅来实现教学目标。
学法:教学中充分发挥学生的主体作用,学生能说、能做的教师不包办,居于此,我设计了课前预习法、独立思考法、动手操作法、合作交流法,让学生在自主、合作、操作活动中获取知识,培养探究精神和应用能力。
教具:长方体、正方体、圆柱、圆锥学具:长方体、正方体、圆柱、圆锥六、教学过程(一)谈话导入今天我们上一节复习课,复习立体图形的体积。
板书课题《立体图形的体积》。
(二)回顾交流1、请同学们回忆一下,在小学阶段,我们都研究过哪些立体图形的体积?(根据学生回答出示四种立体图形)2、关于它们的体积,昨天我们布置同学们整理和复习了这样几个问题:(实物投影出示),今天一起分享大家复习整理的成果。
(2)各个立体图形的体积公式是怎样的?用字母怎样表示?它们的体积公式是怎样推导出来的?(学生回答,教师板演)(3)在解决有关立体图形体积的问题时,需要特别注意什么?3、小组交流,分享收获。
常用的立体图形体积公式:
长方体:V=abc(长方体体积=长×宽×高)
正方体:V=a³(正方体体积=棱长×棱长×棱长)
圆柱(正圆):V=πr²×h【圆柱(正圆)体积=圆周率×底半径×底半径×高】圆锥(正圆):V=πr²×h÷3【圆锥(正圆)体积=圆周率×底半径×底半径×高÷3】
角锥:V=rS×h÷3【角锥体积=底面积×高÷3】
柱体:V=sh(柱体体积=底面积×高)
表面积的公式
1、柱体
(1)棱柱
每个面的面积相加
)特殊长方体、正方体(
长方体:S=2(ab+ah+bh)
正方体:S=6a^2
(2)圆柱
S=2πr^2+2πrh
2、锥体
(1)棱锥
每个面的面积相加
(2)圆锥
S=πr^2+πrl
3、台体
(1)棱台
每个面的面积相加
(2)圆台
S=πr^2+πr′ ^2+πrl+πr′ l
4、球
S=4πr^2
提问人的追问2010-03-07 08:00 请问台体是什么呀??
回答人的补充2010-03-07 09:49。
体积知识点总结一、立体几何中的体积在立体几何中,体积是一个基本的概念。
一个立体图形的体积指的是该图形所占据的三维空间的大小。
常见的立体图形包括长方体、正方体、圆柱、圆锥和球体等。
这些图形都有不同的体积计算公式,下面将逐一介绍。
1. 长方体的体积计算公式长方体是一个长、宽、高都不相同的立体图形,其体积可以用以下公式表示:长方体的体积 = 长 × 宽 × 高2. 正方体的体积计算公式正方体是一个长、宽、高相等的立体图形,其体积可以用以下公式表示:正方体的体积 = 边长³3. 圆柱的体积计算公式圆柱是一个底面为圆形的立体图形,其体积可以用以下公式表示:圆柱的体积 = 底面积 × 高其中,底面积指的是圆柱底面的面积,可以用公式πr²表示,其中r为底面的半径。
4. 圆锥的体积计算公式圆锥是一个底面为圆形的立体图形,其体积可以用以下公式表示:圆锥的体积 = 1/3 × 底面积 × 高其中,底面积指的是圆锥底面的面积,可以用公式πr²表示,其中r为底面的半径。
5. 球体的体积计算公式球体是一个半径相等的立体图形,其体积可以用以下公式表示:球体的体积= 4/3 × πr³其中,r为球体的半径。
以上是常见立体图形的体积计算公式,通过这些公式,我们可以方便地计算不同形状的立体图形的体积。
二、单位转换在体积的计算和测量中,我们经常需要进行不同单位之间的转换。
下面将介绍常用的体积单位及其之间的转换关系。
1. 常用的体积单位在国际单位制中,体积的基本单位是立方米(m³),其他常用的体积单位包括升(L)、立方分米(dm³)、立方厘米(cm³)等。
2. 体积单位之间的转换关系体积单位之间的转换关系如下:1立方米 = 1000升1升 = 1000立方分米1立方分米 = 1000立方厘米通过这些转换关系,我们可以方便地在不同单位之间进行换算。
借助GeoGebra 复习立体图形的体积文|贺慧杰立体图形体积的复习可以借助GeoGebra 几何软件来进行。
一、操作———创作立体图形引导学生回顾已学过的平面图形面积计算方法(图1),进一步思考:如何利用这些平面图形创作出立体图形?学生交流不同的创作方法,如:旋转、累积重叠、拉伸等,最后引导学生运用GeoGebra 的柱体拉伸功能完成小组创作任务(图2)。
图1图2二、交流———区分柱体与锥体1.交流:运用GeoGebra 如何创作这些立体图形?学生一般会说:先画好平面图形,然后拖着平面图形往上笔直拉伸就创作出立体图形了。
2.交流:这个过程什么在变?什么不变?引导学生发现上、下两个底面没有变,底面之间的距离,也就是图形的高三、探讨———柱体的变与不变1.柱体体积与底面积。
图3(出示图3)教师提问:这几个长方体什么没变?什么变了?为什么会变?引导学生发现长方体的高没有变,底面积变大了,因此体积也变大了。
同样的方法依次出示图4、图5、图6引导学生观察并思考:柱体的体积跟什么有关?通过交流,发现在高一样的情况下,柱体底面积越大体积越大。
图4图5图62.柱体体积与高。
出示图7、图8、图9,引导学生发现在底面积相等的情况下,柱体越高体积就越大。
图7图图9四、总结———通用公式通过刚才的活动,学生已经知道这些立体图形的体积跟它的底面积与高有关,引导学生思考:柱体体积如何求?四人小组交流后引导学生通过长方体、正方体、圆柱的体积计算方法“底面积×高”推测出柱体体积计算方法“底面积×高”。
五、拓展———组合底面出示图10、图11,思考:这样的柱体怎样求体积?学生通过独立思考和小组交流得出方法:先把底面积分割成长方形、三角形、平行四边形或者梯形等可以直接计算面积的图形,求出底面积后再乘柱体的高就可以得到柱体的体积。
最后,让学生自己创作稍复杂的柱体并计算体积。
图10图11这样的复习过程为学生构建了知识间的联系,即长方体(正方体)和圆柱等直柱体的体积都可以用“底面积×高”一课研究小学问45Copyright©博看网 . All Rights Reserved.。
《立体图形的表面积和体积总复习》教学设计教学内容国标本苏教版六下p105页整理与反思,练习与实践的1~12题教学目标1、使学生加深理解长方体、正方体和圆柱体表面积的计算方法,能根据已知条件计算这些立体图形的表面积。
2、使学生加深理解和掌握已经学过的体积计算公式,进一步了解各种立体体积相互之间的联系,能正确地进行体积计算。
进一步发展学生的空间观念。
3、让学生在解决实际问题的过程中,感受数学与生活的密切联系,体会数学的价值,培养学生的合作意识和创新精神。
教学重点正确地进行表面积与体积计算。
教学难点了解各种立体表面积和体积公式相互之间的联系课前准备学生用自己喜欢的方式整理立体图形的表面积和体积的有关知识教学过程一、宣布内容、明确目标出示下图1、从数学的角度来看,你能解决哪些问题呢?2、揭题:立体图形的表面积和体积复习。
二、回顾整理、查漏补缺(一)出示复习提纲1、什么叫物体的表面积?什么叫物体的体积?2、这些图形的表面积怎样计算?3、这些图形的体积怎样计算?4、这些体积计算公式是怎样得到的?(二)师:课前已经让大家对这部分内容进行了整理,先独立想一想,对于这些内容你是不是都清楚了?(三)小组交流要求:把自己不清楚的问题,在小组里讨论一下(四)汇报展示,交流评价1、对于刚才的一些问题,清楚了吗?我们一起研究一下好吗?2、公式推导(1)师:相机板书:长方体、正方体、圆柱体、圆锥的体积计算公式(2)问:这些计算公式是怎样推导出来的?请同学们选择自己喜欢的图形,在小组里说一说。
(3)指名说一说自己喜欢图形表面积或者体积公式的推导过程。
(课件配合演示)3、展示、汇报整理情况。
A、有选择地展示学生整理的成果。
(能体现知识的发展过程的)B、观察思考:这些知识之间有怎样的联系?预设:a、表面积不同之处是面和个数和形状不一样,相同之处都是求所有面的面积的和。
b、长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;C、、圆柱的体积都可以用底面积乘高来计算;三、多层运用、深化认识(一)基本练习6 6 61、上面是由45个棱长1厘米的小正方体组成的长方体,求它的表面积正确的列式是()A、5×3×4+3×3×2B、3×3×4+5×3×2C、5×3×2+3×3×2+5×3×22、想一想:它的体积是多少立方厘米?追问:你是怎么想的?2、求下面图的表面积和体积(单位:分米)生列式,口算第一题,思考:它们相等吗?为什么?3、计算下面圆锥的体积想一想:圆锥的体积和上面圆柱的体积有什么关系?要使圆锥的体积和上面圆柱的体积相等,可以怎么办?(二)灵活运用1.(1)做一个这样的纸袋需要多少纸板?()A、28×9×2+28×37×2+37×9×2B、28×9×2+28×37+37×9×2C、28×9+28×37×2+37×9×2(2)这个纸袋的容积是多少?()A、28×9×37B、28×9×37-28×9生选择,思考:为什么B不对?你能举一个生活中的例子加以说明吗?师:在计算有关立体图形的面积问题的时候,你觉得需要注意什么?(根据实际情况确定求几个面的面积)2.下面问题你会解决吗?(1)让学生对第二个问题进行列式师:你有什么不同的想法吗?(杯子不是圆柱体),你有什么方法能较为准确地知道牛奶的体积?(2)假设它是一个圆柱体,用一个长方体纸盒将它包装起来,你能求出至少要多少纸板吗?如果包装这样的4个茶杯呢?四、评价小结、反思提升通过本课的学习你有哪些进步?有什么感受?。
《立体图形的表面积和体积复习》优秀教学设计及反思一、整理与反思1.计算下面立体图形的表面积。
揭题:同学们,今天这节课我们共同复习“立体图形的表面积和体积”。
出示上图:谁来说一说什么是长方体、正方体和圆柱的表面积?你会算这三个立体图形的表面积吗?学生独立完成,集体订正。
指名说一说正方体、长方体和圆柱的表面积各怎样计算?2.刚才复习了立体图形的表面积,谁来说一说什么是物体的体积?什么是容器的容积?体积和容积有区别吗?出示上图:你还记得这四种图形的体积怎样求吗?字母公式是什么?指名汇报。
学习不仅要知其然,还要知其所以然。
这些立体图形体积的计算公式是怎样推导出来的,你还记得吗?小组交流。
结合学生汇报,课件出示过程。
3.求下面立体图形的体积。
一个正方体,底面周长是8dm。
一个长方体,底面是边长12cm的正方形,高是50cm。
一个圆柱,底面周长是,高是5cm。
一个圆锥,底面半径是3cm,高是。
过渡:刚才我们一起回顾了这些立体图形的体积公式和公式的推导过程,下面我们就来运用这些公式。
学生逐题完成,集体订正。
4.在括号里填合适的单位。
一间卧室地面的面积是15一瓶牛奶大约有250一间教室的空间大约是144一台微波炉的体积是92,容积是25师:我们学过的面积单位从小到大分别有哪些?我们学过的体积单位从小到大分别有哪些?如果物体是液体时,它的体积我们一般用什么来表示?学生完成填空,指名回答。
5、=dm3 4050dm3=m3=cm3 60cm3=dm3=mL 75mL=cm3提问:相邻体积间的进率是多少?学生完成填空,指名回答。
6.过渡:刚才我们复习了立体图形的表面积和体积的相关知识,下面我们一起来运用这些知识解决实际问题。
二、拓展训练1.一个长方体鱼缸,长40厘米,宽40厘米,高35厘米。
它的左侧面的玻璃打碎了,要重新配一块。
重新配上的玻璃是多少平方厘米?是多少平方分米?如果把金鱼缸放在柜子上,柜子上至少留出多大的面积?做这个鱼缸至少需要玻璃多少平方分米?李叔叔在购买这个鱼缸时为了方便携带,用一个外包装是长42厘米,宽42厘米,高38厘米的长方体纸箱来装。