基于物质结构判断多中心原子的杂化类型
- 格式:pdf
- 大小:135.40 KB
- 文档页数:2
中心原子杂化轨道类型的判断方法高中化学选修模块《物质结构与性质》中介绍了杂化轨道理论,这一重要理论能解释大多数分子几何构型及价键结构。
在使用该理论时,首先必须确定中心原子的杂化形式,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较困难,成为教学难点。
下面总结几种高中阶段判断中心原子杂化轨道类型的方法。
一、根据分子的空间构型判断根据杂化轨道理论,中心原子轨道采取一定的杂化方式后,其空间构型和键角如下:由此,可以根据分子的空间构型或键角来判断中心原子轨道的杂化方式。
例如:学生对于一些常见的简单分子的结构都是熟悉的,C2H2、CO2为直线型分子,键角为 180°,推断其 C 原子的杂化轨道类型为 sp;C2H4、C6H6为平面型分子,键角为 120°,推断其 C原子的杂化轨道类型为 sp2;CH4、CCl4为正四面体,键角109.5°,推断其C原子的杂化轨道类型为 sp3。
还可以扩展到以共价键形成的晶体,如:已知金刚石中的碳原子、晶体硅和石英中的硅原子,都是以正四面体结构形成共价键的,所以也都是采用 sp3杂化;已知石墨的二维结构平面内,每个碳原子与其它三个碳原子结合,形成六元环层,键角为 120°,由此判断石墨的碳原子采用 sp2杂化。
二、根据价层电子对互斥理论判断教材的“拓展视野”中介绍了价层电子对互斥理论,根据该理论能够比较容易而准确地判断 ABm型共价分子或离子的空间构型和中心原子杂化轨道类型。
中心原子的价电子对数与价电子对的几何分布、中心原子杂化轨道类型的对应关系如下表(价电子对数>4的,高中阶段不作要求)。
运用该理论的关键是能准确计算出中心原子的价电子对数,其计算方法是:1、n=[中心原子(A)的价电子数+配位原子(B)提供的价电子数×m]÷2。
2、对于主族元素,中心原子(A)的价电子数=最外层电子数;配位原子中卤族原子、氢原子提供 1个价电子,氧族元素的原子按不提供电子计算;离子在计算价电子对数时,还应加上负离子的电荷数或减去正离子的电荷数。
高中化学选修模块〈〈物质结构与性质》中介绍了杂化轨道理论,这一重要理论能解释大多数分子几何构型及价键结构。
在使用该理论时,首先必须确定中心原子的杂化形式,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较困难,成为教学难点。
下面总结几种高中阶段判断中心原子杂化轨道类型的方法。
一、根据分子的空间构型判断根据杂化轨道理论,中心原子轨道采取一定的杂化方式后,其空间构型和键角如下:杂化轨道类型杂化轨道空间构型键角sp 直线形180 °sp2 平面三角形120 °sp3 正四面体109 . 5由此,可以根据分子的空间构型或键角来判断中心原子轨道的杂化方式。
例如一些常见的简单分子的结构都是熟悉的,C2H2 CO为直线型分子,键角为180°,推断其C原子的杂化轨道类型为sp;C2H4、C6H6 为平面型分子,键角为120°,推断其C原子的杂化轨道类型为sp2; CH4 CCI4为正四面体,键角109. 5°,推断其C原子的杂化轨道类型为sp3。
还可以扩展到以共价键形成的晶体,如:已知金刚石中的碳原子、晶体硅和石英中的硅原子,都是以正四面体结构形成共价键的,所以也都是采用sp3杂化;已知石墨的二维结构平面内,每个碳原子与其它三个碳原子结合,形成六元环层,键角为120。
,由此判断石墨的碳原子采用sp2杂化。
二、根据价层电子对互斥理论判断教材的“拓展视野”中介绍了价层电子对互斥理论,根据该理论能够比较容易而准确地判断ABr ffi共价分子或离子的空间构型和中心原子杂化轨道类型。
中心原子的价电子对数与价电子对的几何分布、中心原子杂化轨道类型的对应关系如下表(价电子对数〉4的,高中阶段不作要求)。
中心原子价电子对数价电子对几何分布中心原子杂化类型2 直线形sp3 平面三角形sp24 正四面体sp3运用该理论的关键是能准确计算出中心原子的价电子对数,其计算方法是:1.价电子对数n =[中心原子(A)的价电子数+配位原子(B)提供的价电子数x m]- 2。
中心原子杂化轨道类型的判断
杂化轨道数=σ键数+孤对电子数
(当杂化轨道数为2是杂化类型为sp;当杂化轨道数为3是杂化类型为sp2;当杂化轨道数为4是杂化类型为sp3;当杂化轨道数为5是杂化类型为sp3d;当杂化轨道数为6是杂化类型为sp3d2)
σ键数的求法:
根据与中心原子成键的原子数确定σ键数。
例如:CO2中与中心原子C成键的是两个O原子,故中心原子C有两个σ键。
孤对电子数的求法:
孤对电子数=(族价—化合价)/2
注:1、【族价】指主族元素原子最外层电子数,它是等于族序数的。
2、用【族价】减去【化合价】,再【除以2】,若有【0.5】则进一,
即得到【孤对电子数】
3、上述化合价与以往化合价的定义有所不同,定义本文中所用的“【化合价】定义简述为,“配体都带着充满的外层电子离去时中心原子剩下的电荷数”。
例子:1、对于NH4+,让配体均以满壳层的H—离去,中心的N即为正5价。
2、对于C2H2,让配体H以H—离去,另一配体CH基团以CH 3-离去,得到C为正4价。
3、对于F3BNH3,分析中心原子B,让配位原子N以NH3离去,F以F —离去,得到B 为正3价;分析中心原子N,让配位原子B以BF3离去,H以H—离去,得到N为正3价。
4、对于Al(H2O)6 3+中的O,让配位原子H以H-离去,配位原子Al以Al(H2O)53+离去,得到O为正2价。
配合物中心原子杂化方式判断
配合物中心原子杂化方式是指通过分子轨道理论来解释配位键
中心原子的电子形态,找出中心原子在配位键中的杂化方式和杂化轨道类型。
通常可以根据配位键中心原子的电子构型(主量子数、角量子数、磁量子数和自旋量子数),通过以下方式进行判断:
1. 确定中心原子的电子构型,即主量子数为n 的中心原子,有n 个电子,其已占据的电子数量为s + p + d + …+f 子壳内的电子数,s,p,d,f 分别表示不同的轨道类型。
2. 确定中心原子的配位体系,确定中心原子的配位数以及配位体系的结构类型,例如线性、扭曲四面体、正方形平面等。
3. 通过分子轨道理论,确定配位键形成的轨道类型,常见的包括sigma 键、pi 键、delta 键等。
4. 根据分子轨道理论和分子几何理论,分别确定中心原子的杂化方式和杂化轨道类型。
例如,对于八配位八面体CFT 模型的[Co(NH3)6]3+ 配合物,可以通过以下步骤判断:
1. 中心原子Co 的电子构型为[Ar] 3d7,表明其轨道类型包括s,p,d 三种。
2. 该配合物具有八配位八面体结构,每个配位位置上配位体的
个数均为6。
3. 配位键通过sigma 键和pi 键形成,其中sigma 键为配位原子的s, p 轨道与中心原子d 轨道的杂化而成,pi 键为配位原子的
p 轨道与中心原子d 轨道的杂化而成。
4. 这里Co 配位键的杂化方式为sp3d2,其中3 个3d 轨道、1 个4s 轨道和2 个4p 轨道杂化为6 个sp3d2 杂化轨道,配位
体中的N 原子的p 轨道与中心原子的这些杂化轨道形成sigma 键,并存在pi 键的形成。
二氧化硫的分子空间结构和中心原子杂化方式二氧化硫是一种活跃的分子,它在地球上拥有多种功能和应用。
例如,二氧化硫可以用作酸碱平衡剂、气体燃料、化学原料,并且还可以用作污染物,如烟雾和汽油废气。
与能提供多种功能的二氧化硫分子相关的,是它的空间结构及其中心原子杂化方式。
二氧化硫分子的空间结构是一种典型的表示分子的理论模型,它由两个重氧原子和一个中心硫原子组成。
它们之间的构型由分子理论来描述:它们关联在一起,形成一个V型结构,两个重氧原子夹角约为105°,重氧原子与硫原子之间的距离为1.46,重氧原子之间的距离为1.02。
此外,重氧原子由等轴对称组成,硫原子为不对称结构。
这种拓扑结构是非常稳定的,它使分子既能有非常强的共价结合,又能有很好的溶解性,从而使它在化学反应中具有独特的作用。
同时,二氧化硫分子在其中心硫原子上有各种义点杂化,这是由原子本身的原子轨道来决定的。
根据规则,硫原子有三种原子轨道:一个s轨道,两个p轨道。
在二氧化硫分子中,硫原子的三个原子轨道发生叠加,形成了三种状态:sp3杂化状态、sp2杂化状态和sp杂化状态。
由于硫原子的极化性较大,它的sp3杂化状态被认为是最稳定的,占主导地位。
其次是sp2杂化状态。
最后,sp杂化状态很少被发现。
分子的空间结构和中心原子的杂化及其构成至关重要,因为它们影响着分子的化学性质,并有助于我们理解分子在发生反应时会改变结构和性质。
此外,它们也有助于研究二氧化硫分子的各种功能和用途。
因此,深入研究二氧化硫分子的空间结构及其中心原子杂化方式,对于提高人类对于污染物和有害物质的可控性、控制二氧化硫在大气中的排放量等具有重要的意义。
总之,二氧化硫分子的空间结构和中心原子的杂化及其构成,是非常重要的理论研究对象。
它们不仅可以帮助我们理解二氧化硫分子的各种功能和用途,还能帮助我们控制它们在环境中的污染。
因此,了解和研究二氧化硫分子的空间结构和中心原子杂化方式及其构成是非常重要的,这种研究也为我们更好地应用二氧化硫提供了更多的空间。
如何判断中心原子杂化方式作者:洪赛君来源:《化学教与学》2010年第08期江苏省考试说明在“物质结构与性质”课程模块提出“能根据杂化轨道理论和价层电子对互斥模型判断简单分子或离子的空间构型”。
因此,掌握中心原子杂化方式的判断方法是十分有用的。
基于中学化学的教学要求和学生的认知水平,我们常常采用以下三种方法来确定中心原子的杂化方式。
一、利用路易斯式确定杂化方式有机化学中我们经常使用结构式表示有机物中原子的连接方式。
结构式可以看作电子式的一种简写方式,若我们将电子式改写为结构式时保留未成键电子,得到的就是路易斯式。
以H2O 为例:路易斯式确定杂化方式的步骤为:⑴书写物质的路易斯式;⑵记录中心原子的σ键数目(设为m)和中心原子周围的孤电子对数目(设为n)⑶根据m+n的值判断中心原子的杂化方式:m+n=2sp杂化3sp杂化4sp杂化水分子的中心原子是氧原子,m=2,n=2,故氧原子的杂化方式为sp3。
甲醛的路易斯为,m=3,n=0,故碳原子的杂化方式为sp2。
二、利用价层电子对互斥理论确定杂化方式《物质结构与性质》教材中简单介绍了此理论的判断方法:(1)计算价电子对数n(2)根据n的值判断中心原子的杂化方式:n=2sp杂化3sp杂化4sp杂化(注:书上判断的是几何构型,两者没有本质上的差异。
)教材中计算价电子对数n的公式以及相关说明不少学生不能理解,所以,无法灵活运用。
我们可以用下面公式代替:对于ABm型分子(A是中心原子,B是配位原子)n=m+(注:若n为小数,则进行四舍五入取整)例如,BF3中m=3,中心原子B的最外层电子数为3,配位原子F的核外电子轨道表示式可知F的单电子数为1。
代入公式,则n=3+=3,故B的杂化方式为sp2。
三、利用等电子体原理确定杂化方式等电子原理告诉我们:两个等电子体具有相似的结构特征。
同理,可以推出等电子体的中心原子杂化方式也是相同的。
所以,我们在识记常见物质的杂化方式的基础上灵活运用等电子体原理可以快速的确定一个原子的杂化方式。
分子或离子的中心原子杂化轨道类型判断方法【关键词】化学教学;分子;离子;杂化轨道类型;判断方法普通高中课程标准实验教科书化学选修3《物质结构与性质》(人民教育出版社)第二章中编排有分子的立体构型的主题内容,其中,分子或离子的空间构型与中心原子的杂化轨道类型的判断专业理论性很强,教师难以吃透教材,导致学生难以理解其相互关系,不会灵活应用所介绍的方法。
本文结合教学实践,介绍一些判断方法。
一、ABn 型分子或离子的中心原子杂化轨道类型判断方法判断分子或离子的中心原子的杂化轨道类型的思路:根据用价层电子对互斥理论(VSEPR theory)→确定分子或离子的中心原子的价层电子对数(包括σ键电子对数和中心原子上的孤电子对数)VSEPR模型→分子或离子的立体构型→中心原子的杂化轨道类型。
中心原子上的孤电子对数=1/2(a-xb)式中a为中心原子的价电子数x为与中心原子结合的原子数,b为与中心原子结合的原子最多能接受的电子数。
二、多元化合物分子或离子的中心原子杂化类型判断方法要确定中心原子的价层电子对数,难点是确定中心原子的孤电子对数,关键是要明确哪些原子或原子团直接与中心原子相连,直接与中心原子相连的原子或原子团最多能接受的电子数是多少?如,HCHO分子中直接与中心原子相连的原子是2个H和1个0原子,HNO3分子中直接与中心原子相连的原子或原子团是2个0和1个-OH(H原子不直接与中心原子相连),所以,HCHO分子中,中心原子C原子形成3个σ键,中心原子上的孤电子对数为:1/2(4-2×1-1×2)=0,中心原子的价层电子对数为3.中心原子C的杂化轨道类型是sp2;HNO3分子中,中心原子N原子形成3个σ键,与中心原子相连的-OH最多接受的电子数为1,中心原子上的孤电子对数为:1/2(5-2×2-1×1)=0,中心原子的价层电子对数为3,中心原子C的杂化轨道类型是sp2。
关于中心原子杂化理论的理解以及确定轨道数的方法周二平甘肃省陇南市武都区两水中学摘要:杂化轨道理论是高中选修的重要基础理论之一,主要用来讨论共价分子(或离子)的成键情况以及预测其几何构型,对中心原子杂化理论的理解及如何确定轨道数是教师教学过程的重点及难点,本论文针对如何让学生更好的理解杂化轨道理论,提出了比拟、想象等方法,从概念、中心原子价电子对数的计算、中心原子杂化轨道的类型等入手,使学生能够简单、深刻的理解中心原子杂化理论。
同时从分析原子轨道种类,使学生更好的掌握确定轨道数的方法。
关键词:中心原子;杂化轨道;轨道数一、中心原子杂化理论(一)杂化轨道的概念:杂化轨道理论是在1931年由鲍林等人在价健理论基础上提出,不同于价健理论的是,它在成健能力、分子空间构型等方面丰富和发展了现代价健理论。
(二)杂化轨道的要点:(1)原子成键时,参与成键的若干个能级相近的原子轨道相互“混杂”,组成一组新轨道(杂化轨道),这一过程叫原子轨道的“杂化”(2)杂化前后轨道数目不变-----轨道守恒(3)杂化前后总能量不变-----能量守恒(4)杂化后轨道伸展方向,形状和能量发生改变(5)杂化轨道比未杂化的原子轨道的成键能力强,杂化后,轨道成分变了,轨道能量、轨道形状变了,具有更强的成健能力、更合理的空间取向。
(三)杂化轨道的类型及其应用(1)s-p 型杂化分为:sp 杂化、sp2杂化和sp3杂化。
sp 杂化是1个ns 轨道和1个np 轨道之间的杂化,杂化的结果是生成2个sp 杂化轨道。
这2个sp 杂化轨道各含有1/2的s 轨道和的1/2的p 轨道成分,夹角为180°,呈直线型分布。
sp2杂化是无孤对电子时含1/3s 和2/3p 的成分。
一个s 轨道和两个p 轨道杂化,形成3个完全相同的sp2杂化轨道。
其3个轨道间夹角为120°,呈平面正三角形。
sp3杂化:1个s 轨道+3个p 轨道=4个sp3杂化轨道。
2020届高三化学选修三物质结构与性质常考题型——立体结构和杂化类型判断.DOC【方法和规律】1、立体构型的判断方法——价层电子对互斥理论(1) 中心原子价层电子对数===σ键电子对数+孤电子对数中心原子的价电子数配位原子的化合价的总和(2)中心原子的价层电子对数2中心原子的最外层电子数配位原子的化合价的总和中心原子的价层电子对数2【微点拨】① 配位原子是指中心原子以外的其它原子(即与中心原子结合的原子)② 若是离子,则应加上或减去与离子所带的电荷数(阴加阳减)③氧、硫原子若为配位原子,则其化合价规定为" 零”,若为中心原子,则价电子数为6 (3)价层电子对互斥理论判断分子空间构型的具体方法PO43—H3O+2、中心原子的杂化类型判断规律:杂化轨道数==价层电子对数==σ键电子对数+孤电子对数价层电子对数杂化方式4sp3杂化3sp2杂化2sp 杂化用中心原子的价层电子对数中心原子的价电子数配位原子的化合价的总和,2来迅速判断(见上表)技巧2:若有多个中心原子时,则根据:“ 杂化轨道数==价层电子对数==σ键电子对数+孤电子对数”来判断如:三聚氰胺分子的结构简式如图所示,分析氮原子、碳原子的杂化类型杂化类型价层电子对数σ键电子对数孤电子对数孤电子对数确定方法环外氮原子sp3431氮原子最外层有5 个电子,形成了3环上氮原子sp2321对共用电子对,则有一对孤对电子环上碳原子sp2330碳原子最外层4 个电子,形成了4 对共用电子对,所以碳上无孤对电子技巧3:根据杂化轨道的空间分布构型判断①若杂化轨道在空间的分布为正四面体形或三角锥形,则分子的中心原子发生sp3杂化②若杂化轨道在空间的分布呈平面三角形,则分子的中心原子发生sp2杂化③若杂化轨道在空间的分布呈直线形,则分子的中心原子发生sp 杂化技巧4:根据杂化轨道之间的夹角判断①若杂化轨道之间的夹角为109°28,′则分子的中心原子发生sp3杂化②若杂化轨道之间的夹角为120°,则分子的中心原子发生sp2杂化③若杂化轨道之间的夹角为180°,则分子的中心原子发生sp 杂化技巧5:根据等电子原理进行判断CO 2是直线形分子,CNS -、N3-与CO 2是等电子体,所以分子构型均为直线形,中心原子均采用sp 杂化技巧6:根据分子或离子中有无π键及π键数目判断没有π键为sp3杂化,含一个π键为sp2杂化,含两个π键为sp 杂化【真题感悟】1、[2019·全国卷Ⅰ ·节选]乙二胺(H 2NCH 2CH 2NH 2)是一种有机化合物,分子中氮、碳的杂化类型分别是 _______________2、[2019 ·全国卷Ⅱ ·节选]元素As与N 同族。