linux内核编译
- 格式:doc
- 大小:1.63 MB
- 文档页数:26
linux 编译ko的方式
在Linux中,编译ko(内核对象)的方式通常涉及以下步骤:
1. 准备开发环境,确保已经安装了适当的编译工具链、内核源代码和开发包。
可以使用包管理器(如apt、yum等)来安装这些组件。
2. 进入内核源代码目录,使用终端进入内核源代码目录,通常位于`/usr/src/linux`或者`/usr/src/linux-<kernel_version>`。
3. 准备配置文件,可以选择使用现有的内核配置文件或生成新的配置文件。
使用`make oldconfig`命令可以生成一个新的配置文件,并根据提示进行必要的配置选择。
4. 编译内核,运行`make`命令开始编译内核。
这个过程可能需要一些时间,具体时间取决于你的硬件和内核源代码的大小。
5. 编译ko模块,进入你的ko模块所在的目录,运行`make`命令来编译ko模块。
如果你的模块有依赖关系,可能需要提前解决这些依赖关系。
6. 安装ko模块,编译完成后,你可以使用`insmod`命令将ko 模块加载到内核中。
例如,`insmod your_module.ko`。
7. 卸载ko模块,如果需要卸载已加载的ko模块,使用
`rmmod`命令。
例如,`rmmod your_module`。
需要注意的是,上述步骤只是一般的编译ko模块的方式,具体步骤可能会因为不同的内核版本和模块的特定要求而有所差异。
在实际操作中,你可能需要查阅相关文档或参考特定模块的编译指南以获得更准确的步骤和命令。
linux arm内核编译流程一、编译环境准备在开始编译Linux ARM内核之前,我们需准备以下环境:1.1硬件环境:一台支持ARM架构的计算机;1.2操作系统:安装Ubuntu等Linux发行版,并确保系统已经更新至最新版本;1.3开发工具链:安装ARM交叉编译工具链,可以通过apt-get 命令进行安装;1.4内核源码:下载最新的Linux ARM内核源码,并解压至本地。
二、配置内核选项2.1进入内核源码目录:使用cd命令进入解压后的内核源码目录;2.2配置内核选项:使用make menuconfig命令来配置内核选项,可以根据需要选择不同的功能和驱动;2.3保存配置:保存配置后,将生成.config文件,保存了当前配置选项。
三、开始编译3.1清理编译环境:使用make clean命令清理之前的编译环境,确保开始编译之前处于一个干净的状态;3.2编译内核:使用make命令开始编译内核,该过程可能持续一段时间,耐心等待;3.3生成内核镜像:编译完成后,将生成zImage或uImage等内核镜像文件,可以作为启动的内核使用。
四、安装内核4.1备份原有内核:在安装新内核之前,建议备份原有系统的内核,以防出现问题时可以回滚;4.2安装内核:将编译生成的内核镜像文件拷贝至目标设备,例如通过TFTP传输或使用SD卡等方式;4.3更新引导配置:根据不同的引导方式,更新引导配置文件以使用新内核。
五、验证内核5.1重启设备:在安装完新内核后,重启设备以加载新内核;5.2查看内核版本:使用uname-a命令查看当前内核版本,确认是否为编译安装的新内核;5.3测试功能和驱动:针对所需的功能和驱动,进行相应的测试,确保内核编译和安装没有问题。
六、常见问题解决在编译内核的过程中,可能会遇到一些常见的问题,例如编译错误、功能不正常等,可以通过以下方式解决:6.1查看编译日志:在编译过程中,可以查看编译日志以了解错误的原因;6.2网上搜索:使用搜索引擎搜索相关问题,可能会有其他开发者遇到类似问题并给出解决方案;6.3参考官方文档:阅读官方文档以获取更多关于编译和安装内核的详细信息。
编译linux实验报告
编译Linux实验报告
在计算机科学领域,Linux操作系统一直被广泛使用。
它是一个开放源代码的操作系统,具有稳定性和安全性。
在本次实验中,我们将学习如何编译Linux内核,并撰写实验报告以记录我们的实验过程和结果。
实验目的:
1. 了解Linux内核的编译过程
2. 熟悉编译工具和技术
3. 掌握编译过程中可能遇到的问题和解决方法
实验步骤:
1. 下载Linux内核源代码
2. 解压源代码并配置编译环境
3. 使用make命令编译内核
4. 安装编译后的内核
5. 测试新内核的稳定性和功能
实验结果:
经过一系列的操作,我们成功地编译了Linux内核,并将其安装到我们的计算机上。
新内核的稳定性和功能得到了验证,证明我们的编译过程是成功的。
实验总结:
通过本次实验,我们不仅了解了Linux内核的编译过程,还学习了如何使用编译工具和技术。
在实验过程中,我们遇到了一些问题,但通过查阅资料和尝试不同的解决方法,最终成功地完成了编译过程。
这次实验为我们提供了宝贵的
经验,也增强了我们对Linux操作系统的理解和掌握。
总的来说,编译Linux内核的实验是一次有意义的学习过程,我们通过实践提升了自己的技能和知识水平。
希望在未来的学习和工作中,能够运用这些经验和技能,为我们的计算机科学之路增添更多的成就和贡献。
1.Code maturity level options代码成熟等级。
此处只有一项:prompt for development and/or incomplete code/drivers,如果你要试验现在仍处于实验阶段的功能,就必须把该项选择为Y了;否则可以把它选择为N。
2. Loadable module support对模块的支持。
这里面有三项:Enable loadable module support:除非你准备把所有需要的内容都编译到内核里面,否则该项应该是必选的。
Set version inFORMation on all module symbols:可以不选它。
Kernel module loader:让内核在启动时有自己装入必需模块的能力,建议选上。
3. Processor type and featuresCPU类型。
有关的几个如下:Processor family:根据你自己的情况选择CPU类型。
High Memory Support:大容量内存的支持。
可以支持到4G、64G,一般可以不选。
Math emulation:协处理器仿真。
协处理器是在386时代的宠儿,现在早已不用了。
MTTR support:MTTR支持。
可不选。
Symmetric multi-processing support:对称多处理支持。
除非你富到有多个CPU,否则就不用选了。
4. General setup这里是对最普通的一些属性进行设置。
这部分内容非常多,一般使用缺省设置就可以了。
下面介绍一下经常使用的一些选项:Networking support:网络支持。
必须,没有网卡也建议你选上。
PCI support:PCI支持。
如果使用了PCI的卡,当然必选。
PCI access mode:PCI存取模式。
可供选择的有BIOS、Direct和Any,选Any 吧。
Support for hot-pluggabel devices:热插拔设备支持。
riscv linux内核编译过程全文共四篇示例,供读者参考第一篇示例:RISC-V(Reduced Instruction Set Computing-V)是一种基于精简指令集(RISC)的开源指令集架构,旨在提供更灵活、更适用于现代计算需求的处理器设计。
在RISC-V架构中,Linux内核是最受欢迎的操作系统之一,为RISC-V平台提供强大的支持和功能。
本文将介绍RISC-V Linux内核的编译过程,帮助您了解如何在RISC-V架构下编译和定制Linux内核。
一、准备编译环境无论您是在本地计算机还是远程服务器上编译RISC-V Linux内核,首先需要安装必要的工具和软件包。
一般来说,您需要安装以下软件:1. GCC:GNU Compiler Collection是一个功能强大的编译器套件,用于编译C、C++和其他编程语言的程序。
在RISC-V架构下编译Linux内核时,可以使用最新版本的GCC版本。
2. Make:Make是一个构建自动化工具,可以大大简化编译和安装过程。
在编译Linux内核时,Make是必不可少的工具。
3. Git:Git是一个版本控制系统,可以帮助您获取和管理源代码。
在编译RISC-V Linux内核时,您需要从GitHub上克隆Linux内核源代码。
4. 软件包:除了以上基本软件外,您还可能需要安装其他依赖软件包,如Flex、Bison等。
二、获取Linux内核源代码```git clone https:///torvalds/linux.git```通过上述命令,您将在当前目录下创建一个名为“linux”的文件夹,其中包含了Linux内核的源代码。
您可以根据需要切换到不同的分支,如稳定的分支或特定版本的分支。
三、配置内核选项在编译RISC-V Linux内核之前,您需要配置内核选项以适应特定的硬件平台或应用需求。
您可以通过以下命令进入内核配置菜单:```make menuconfig```通过上述命令,将打开一个文本界面,您可以在其中选择不同的内核配置选项。
Linux内核编译menuconfig介绍menuconfigmenuconfig是常用的配制工具,不用特意安装,好像是和GCC 一起装上的。
注:menuconfig要用到ncurses的库,所以要安装它。
下面的命令可以安装。
apt-get install libncurses*选择相应的配置时,有三种选择,它们分别代表的含义如下:“Y”- 将该功能编译进内核“N”- 不将该功能编译进内核“M”- 将该功能编译成可以在需要时动态插入到内核中的模块。
将与核心其它部分关系较远且不经常使用的部分功能代码编译成为可加载模块,有利于减小内核的长度,减小内核消耗的内存,简化该功能相应的环境改变时对内核的影响。
许多功能都可以这样处理,例如像上面提到的网卡的支持、对FAT等文件系统的支持。
make menuconfig,则需要使用空格键进行选取。
你会发现在每一个选项前都有个括号, 但有的是中括号有的是尖括号,还有一种圆括号。
用空格键选择时可以发现,中括号里要么是空,要么是"*",而尖括号里可以是空,"*"和"M"这表示前者对应的项要么不要,要么编译到内核里;后者则多一样选择,可以编译成模块。
而圆括号的内容是要你在所提供的几个选项中选择一项。
中括号:要么是空,要么是"*",代表要么不要,要么编译到内核里。
尖括号:可以是空,"*"和"M",多一样选择,可以编译成模块。
圆括号:所提供的几个选项中选择一项。
menuconfig相关命令:$sudo make menuconfig配置用到的键只有几个,esc退出菜单;空格改变选项状态;光标键上下左右移动,回车选定。
选项意义:M是编译成可以随时加入的模块,*是编译进入内核,空就是不要。
内核升级前的准备工作:Linux系统进行内核升级或定制内核时需要安装GCC编译工具、make编译器,同时变异内核需要root权限。
安装GCC编译环境参考:/rhelinux/248.html操作系统:RHEL 5.5开始安装:按照以下顺序安装所需要的包就可以完成GCC的安装了1. rpm -ivh kernel-headers-2.6.18-194.el5.i386.rpm2. rpm -ivh glibc-headers-2.5-49.i386.rpm3. rpm -ivh glibc-devel-2.5-49.i386.rpm4. rpm -ivh libgomp-4.4.0-6.el5.i386.rpm5. rpm -ivh gcc-4.1.2-48.el5.i386.rpm6. rpm -ivh libstdc++-devel-4.1.2-48.el5.i386.rpm7. rpm -ivh gcc-c++-4.1.2-48.el5.i386.rpm8. rpm -ivh ncurses-5.5-24.20060715.i386.rpm9. rpm -ivh ncurses-devel-5.5-24.20060715.i386.rpm注意:在升级编译完内核,重启后提示如下错误信息:RedHat nash Version 5.1.19.6 startingrver(2.6.33.3)mount: could not find filesystem …/dev/root‟setuproot: moving /dev failed: No such file or directorysetuproot: error mounting /proc: No such file or directorysetuproot: error mounting /sys: No such file or directoryswitchroot: mount failed: No such file or directoryKernel panic – not syncing: Attempted to kill init![Linux-initrd @ 0x1fc37000,0x228585 bytes]于是在网上找了很多,也尝试了很多加模块、重编译了N次、改fstab等方法,都不行。
Linux操作系统的编译和安装在正文规定的字数限制下,为了准确满足标题描述的内容需求,并确保内容排版整洁美观、语句通顺、全文表达流畅且无影响阅读体验的问题,本文将按照以下格式进行写作:一、简介Linux操作系统是一种开源的、自由的Unix-like操作系统,它广泛应用于各种领域,包括服务器、嵌入式设备等。
本文将重点介绍Linux 操作系统的编译和安装过程。
二、编译准备1. 下载源代码在编译Linux操作系统之前,首先需要从官方网站下载Linux内核的源代码包。
2. 安装必要的依赖软件在编译过程中,需要安装一些必要的软件和工具,如编译器、构建工具等。
三、编译步骤1. 解压源代码包使用解压命令将下载的源代码包解压到指定目录。
2. 配置编译选项进入源代码目录,并运行配置命令,根据需要选择不同的编译选项。
3. 执行编译命令运行编译命令开始编译操作系统内核,这个过程可能需要一段时间。
四、安装步骤1. 安装编译生成的内核镜像文件将编译生成的内核镜像文件复制到合适的位置,并修改相关配置文件以引导新编译的内核。
2. 安装相关系统文件运行安装命令,将其他必要的系统文件复制到适当的位置。
五、系统配置1. 修改引导加载程序根据系统的引导加载程序,如GRUB、LILO等,修改引导配置文件以支持新安装的内核。
2. 配置网络和驱动程序根据具体需求,配置网络设置和硬件驱动程序。
六、测试与验证1. 重新启动系统重新启动计算机,并选择新编译的内核进行引导。
2. 验证系统版本和功能运行相应的命令,验证新安装的Linux操作系统版本和功能是否正确。
七、常见问题解决1. 编译错误分析编译过程中出现的错误信息,根据错误提示进行逐步修复。
2. 硬件兼容性问题部分硬件设备可能需要额外的驱动程序或补丁文件才能正常运行,根据具体情况进行相应的处理。
八、总结通过本文的介绍,读者可以了解到Linux操作系统的编译和安装过程,同时了解到在实际操作中会遇到的一些常见问题及解决方法。
***学生实验报告一、实验目的(1)学习重新编译Linux内核的方法(2)理解Linux标准内核和发行版本内核的区别。
二、实验内容在Linux系统中下载同一发行版本的版本号较高的内核,编译之后运行自己编译的内核,并使用uname-r命令查看是否运行成功。
由于不同版本的内核在编译过程中可能出现不同的问题,本书推荐的内核版本为4.16.10。
从第7章开始的进阶实验篇,都可以选用该版本的内核。
三、实验设备Vmware上运行的linux ubuntu 5.11.0-43-generic实验成功:linux ubuntu 4.18.0-generic(Ubuntu18.04均可)实验成功的方法在最后四、实验过程和原理分析一、实验(一)准备工作:在这里我建议用一个全新的虚拟机,避免编译错误对原来常使用的虚拟机造成不可逆的影响,安装好后就先安装gcc、make等工具首先下载好Linux***内核文件解压至/usr/src 目录下,如下:确认安装好gcc、make等工具,后可直接运行命令sudo make menuconfig进行查看内核功能是否需要编译,如果遇到如下错误可以运行命令sudo apt bison 或sudo apt-get install fiex bison命令解决错误:解决:(不建议)(强烈建议)除此之外还可以直接运行,上一条命令解决不了就用下面这个:sudo apt-get install --reinstall bison libbison-dev flex libfl-dev解决上述错误(强烈建议)运行完上述命令后再次输入sudo make menuconfig便正常进入如下:见到这个界面后无需任何多余操作,使用键盘方向键选择<Save>回车再回车即可此时.config文件生成成功.config文件是隐藏文件记得加参数-a此外还有一个方法就是用cp 命令从原有系统的内核复制.config文件过来也可以命令:sudo cp /boot/config- 5.11.0-43-generic ./.config(二)编译内核为了避免多线程编译时同时出现过多错误,我们这里一开始只使用单线程编译在这里除了用make编译还可以用make-kpkg等工具,个人比较喜欢用make-kpkg但课本用make所以我接下来的实验也先用make完成。
在ubuntu12.04下编译linux内核写这个东西的时候,想起07年第一次编译内核,想起06年开始看内核代码,想起那段,生命中最灰暗的日子。
那时,经常在校内写读内核的心得,只因发现,你目录前言 (2)一、编译前的准备工作 (2)二、内核的配置 (2)三、内核的生成和安装 (3)四、启动新内核 (4)五、修改默认的配置文件 (4)5.1修改默认配置添加软件功能 (4)5.2修改默认配置添加pci和usb设备驱动 (5)5.3修改默认配置添加杂类设备驱动 (7)前言编译内核和编译其它软件相比,除了配置之外,没有什么特别的地方。
既然编译内核这么简单,网上也能找到很多介绍的文章,我为什么还要写呢?因为看到有些文章源自不断抄袭旧东西,导致抄了些没用的东西,而且基本都对内核配置避而不谈,这样实际上一定会有人遇到问题。
所以,写点吧,给初学者。
一、编译前的准备工作编译软件需要先安装编译环境,主要的就是工具链(toolchain)。
由于安装包需要下载的数据量较大,所以如果软件源建议还是换成国内的吧。
我用163的源,source.list文件在这里,覆盖/etc/apt/source.list就行了。
替换源后,执行如下命令:apt-get updateapt-get install build-essential p7zip-full后面的7z工具供下载了xz后缀文件的同学使用。
下载内核源码的网站是,版本随意,源码包名字是linux-3.x.x.tar.gz,有很多版本提供.xz结尾的压缩版本,压缩比较高,看自己网络情况定吧。
我这里下载的版本是3.6.6,名为linux-3.6.6.tar.gz。
接着解压源码,假设我们的编译目录为/home/sb/,解压命令为:tar xf linux-3.6.6.tar.gz-C/home/sb这样/home/sb/下出现一个linux-3.6.6的目录。
二、内核的配置内核支持很多的设备和功能,这些设备驱动和功能的开关主要通过内核的配置文件确定。
linux内核编译(2.6.12版本一、编译环境ubuntu 5.10,要编译的内核源码版本2.6.12二、下载并解压源代码首先从linux内核的官网把源代码下载下来。
为了和后面实验要求符合,我们要下载使用O(1)调度器的源码。
因此这里下载了2.6.12版本源码。
下载下linux-2.6.12.tar.bz2,将下载源码放入/usr/src/目录下。
如下图所示:解压该源码:三、构建编译环境现在我们得到的只是源代码,只是许许多多的文本文件,要想使这些文件成为可以运行的程序,需要使用编译器进行编译以及链接。
编译器有很多,但在里linux下一般都使用gnu的开源编译器套件,这里包括gcc等,现在我们安装基本的编译器套件,如图所示:四、安装ncurses库这里使用Ubuntu系统,因为系统自带的ncurses库在支持make menuconfig 的时候会出错,所以,依然要安装ncurses库,这里我们从源码安装。
首先去ncurses官网/pub/gnu/ncurses/上下载源码。
这里我们下载5.9版本,并通过简单的安装方式.configure 和make、make install方式安装。
如下图所示:五、配置内核一切准备工作做完,现在我们就可以配置内核了,这里我们使用make menuconfig方式。
如下图:在使用make menuconfig这个命令后,会出现如下的字符界面,我们就可以在这个界面上对内核进行配置。
但是如果这不是你第一次配置这个内核,那么请先运行:make mrproper来清除以前的配置,回到默认配置,然后再运行:make menuconfig.在这里,我们以对cpu支持的配置为例,其余的选项就不一一详述,首先查看本机的cpu类型,如下图:在这里我们可以看到,我的电脑的cpu是AMD Athlon的,因此我们在cpu 选项里面选用AMD,如下图所示:在这里需要注意的是:A、cpu的设置在linux内核编译过程中,不是必需的,即使保持默认的386选项(我们刚才把它改成了AMD),内核也能正常运行,只不过运行慢一些而已。
B、一般容易出问题的地方在于Device Driver的设置。
我在一开始就遇到了在内核编译完,通过grub引导系统过程中报“ALERT! /dev/sda1 does not exist . Dropping to a shell!”的错误。
这是因为硬盘驱动没有配置好而造成的。
运行lspci命令,查看到下面这行:由此确定,需要配置SCSI、PCI-X、Fusion-MPT驱动,需要在响应的驱动选项里将[M]设置为[*],因为硬盘驱动是在系统开机的时候加载,所以不能以模块形式加载。
把这几个驱动内部的选项全部改为[*]:六、编译内核对内核的配置完成之后,现在就可以开始编译内核了,只需要一个简单的make命令即可,之后我们就只能慢慢等,直到编译完成,在我的电脑上,大概用了25分钟。
下图是运行make后的部分输出。
七、安装内核编译完成之后,我们需要安装内核,主要分为如下几步:1)、安装模块安装模块,对于内核来说,每一个内核版本有自己的模块目录,默认在/lib/modules/内核版本号这个目录下,make modules_install会创建对应的目录,并把对应的模块文件拷贝过去。
注意,这一步必须要在编译过内核再做。
2)、拷贝bzImage文件bzImage文件是内核映像文件,是启动内核所必需的,我们应当把它拷贝到/boot目录下。
在这里,我为自己新建了一个目录,我们把它拷贝过去,并且按照一般内核映像文件的命名方式为它改名为vmlinuz-2.6.12。
3)、制作initrd文件initrd文件命名为initrd.img-2.6.124)、修改grub启动项要能引导起我们的新系统,需要更改grub配置,增加启动选项。
ubuntu 5.10的grub版本比较低,配置文件为/boot/grub/menu.lst,高版本的grub可能在/boot/grub/grub.cfg里。
在原有启动项基础上,添加我们自己的启动项,并把它设为默认启动项,配置如下:5)重启不出意外的话,我们的内核已经正常加载了,运行uname -a,会发现,内核版本已经是2.6.12了。
增加linux内核系统调用增加系统调用后,需要重新编译内核。
一、实验目的增加加减乘除系统调用,并测试系统调用和用户调用的性能差异。
二、增加系统调用增加系统调用主要分为3步:1)、增加系统调用函数。
修改/usr/src/linux-2.6.12/kernel/sys.c文件,在文件末尾增加4个系统响应函数(+、-、*、/)。
函数实现如下:2)、在系统调用表中注册。
在/usr/src/linux-2.6.12/arch/i386/kernel/syscall_table_32.S中添加我们的系统调用。
3)、添加系统调用入口参数在/usr/src/linux-2.6.12/include/asm-i386/unistd.h中添加系统调用入口参数(注意:其中会顺序定义入口参数的序号,添加的序号是在原有最大值的基础上+1)。
三、编译内核,引导新内核启动四、测试测试需要在添加了系统调用的新系统中进行。
1)功能测试首先测试,系统调用是否能正常执行,测试程序为testsyscall.c1.#include<asm/unistd.h>2.#include<errno.h>3.#include<stdio.h>4.5.#define __NR_add 2896.#define __NR_sub 2907._syscall2(int,add,int,x,int,y)8._syscall2(int,sub,int,x,int,y)9.int main()10.{11. printf("%d\n",add(10,10));12. printf("%d\n",sub(15,10));13. return 0;14.}编译运行,查看结果,成功调用。
这里要注意的是,在testsyscall.c中声明__NR_add 289.2)、性能测试要对比系统调用和用户调用的性能差异,我们先编写用户调用的测试程序testusercall.c1.#include<stdio.h>2.int add(int x,int y)3.{4. return x+y;5.}6.int main()7.{8.int i=0;9.for(i=0;i<100000000;i++)10.{11. add(10,20);12.}13. return 0;14.}再编写系统调用的测试程序testsyscall.c1.#include<asm/unistd.h>2.#include<stdio.h>3.4.#define __NR_add 2895._syscall2(int,add,int,x,int,y)6.int main()7.{8.int i=0;9.for(i=0;i<100000000;i++)10.{11. add(10,20);12.}13. return 0;14.}两个程序均是运行10000000次,然后分别统计他们的时间。
可以发现,两个测试程序在系统sys运行时间差别很大,testusercall仅在sys运行了0m0.003s,而testsyscall却在sys运行了0m4.028s,说明,系统调用的sys时间远远大于用户层调用的时间。
修改O(1)调度算法一、实验目的修改O(1)调度程序,使交互性非常强的程序(IO密集型)在时间片用完后,不放置到活动数组,而放入过期数组(与O(1)调度实现相反),并测试cpu 密集型和IO密集型进程的调度性能。
二、修改调度程序该调度逻辑在2.6.12内核中,是在kernel/sched.c文件里的scheduler_tick()函数里实现的,进入该函数,定位到如下代码:1.if(!TASK_INTERACTIVE(p)|| EXPIRED_STARVING(rq)){2.enqueue_task(p, rq->expired);3.if(p->static_prio < rq->best_expired_prio)4. rq->best_expired_prio = p->static_prio;5.}else6. enqueue_task(p, rq->active);7.}第一个if判断里就是判断CPU消耗和IO消耗的,去掉if判断,使在时间片用完时,系统直接将进程不加判断直接加入过期队列,修改后的代码如下:1. enqueue_task(p, rq->expired);2.if(p->static_prio < rq->best_expired_prio)3.rq->best_expired_prio = p->static_prio三、编译内核,修改grub引导程序该内核重新编译,并修改grub启动选项,从而可以使实验在两个O(1)调度程序下运行,如下图。
如我们要测试更改前的调度,就引导第三个系统选项,如果要测试更改后的,则引导第一个(默认)。
四、性能测试1、测试修改调度前后cpu密集程序和IO密集程序前后性能变化A、测试cpu密集程序前后性能的程序cpu_app_test.cpp关键代码为:B、测试IO密集型前后性能对比程序io_app_test.cpp关键代码为:C、将两个程序分别编译成可执行文件:cpu_app_test、io_app_testD、编写测试程序性能的调用脚本auto_test.shE、分别在修改调度的系统和未修改调度的系统,调用测试脚本,auto_test.sh,并且查看记录文件cpu_app_test.log和io_app_test.log未修改调度的系统cpu密集程序结果修改了调度的cpu密集程序结果未修改调度的IO密集型程序结果修改了调度的IO密集型程序结果2、测试修改前后cpu密集程序与IO密集型程序性能比较A、在测试基础上,修改cpu_app_test.cpp和io_app_test.cpp程序,将子进程的时间间隔打印功能注释掉B、屏蔽掉子进程的时间间隔功能后,我们可以专注于整个程序(cpu密集或IO 密集)所有子进程完成后的总时间,分别在两个系统中利用auto_test.sh脚本,测试运行20次。
C、分别在两个系统中查看日志文件,io_app_test.log、cpu_app_test.logD、对比结果修改调度前的结果:修改调度后的结果:模块编程一、实验要求添加系统调用加减乘除,并通过模块加载,实现加减乘除。