LTE定义及分类
- 格式:doc
- 大小:16.59 KB
- 文档页数:1
第二章LTE基站类型与设备LTE基站类型根据不同的划分方式,有不同的分类。
根据基站覆盖的环境和模型不同,可以分为宏站和室分站;根据LTE采用的双工方式不同,又分为TDD站点和FDD站点,下面将针对不同的分类进行介绍。
2.1 宏站和室分站区别根据环境、覆盖模型不同将站点分为宏站与室分站。
宏站一般指室外大范围的覆盖站点,由于天线覆盖无法做到无缝覆盖,宏站天线无法完全覆盖至室内,或室内覆盖信号很差,环境复杂,针对楼宇需要做室分覆盖。
简单来说宏站是大范围室外覆盖的站点,针对高楼层,覆盖差的室内而设的站点为室分站点。
宏站和室分站点区分也很简单,宏站在室外有明显的天线,而室分的天线多为在楼道的天花板里的吸顶天线。
同时宏站和室分站的设备也略有不同,在下面的章节里会做出详细介绍。
2.2 TDD和FDD区别LTE根据双工方式,分为两类:TDD和FDD,TDD代表时分复用,FDD代表频分复用,FDD系统是指系统的发送和接收数据使用不同的频率;时分双工系统则是系统的发送和接收使用相同的频段,上下行数据发送在时间上错开,通过在不同时隙发送上下行数据,可有效避免上下行干扰,至于具体含义属于理论范畴,这里就不多解释了,但要知道中国移动使用的是TDD。
电信联通使用的是FDD。
移动TDD又根据划分频段的不同,分为D、F、E三种频段,各频段范围如下:D 2570—2620MHzF 1880—1920MHzE 2300—2400MHz其中D/F频段供宏站使用,E频段供室分使用。
频段划分的含义是,在划分的这些频段区间,供LTE 4G业务使用2.3 基站基本设备介绍上面介绍了基站的分类,不同类型的基站需要的设备各不相同,下面将对所有设备进行介绍,下表列举了不同类型基站设备配置。
基站设备一般包括:主系统模块FSMF,系统拓展模块FBBA,电源模块DCDU,传输模块FTIF,时钟盒,RRU,GPS,天线等。
本节将对这些模块做出详细介绍。
2.3.1 室内基带处理单元 BBU室内基带处理单元,也称BBU(Building Base band Unite)。
移动通信的分类移动通信的分类:⒈第一代移动通信(1G)第一代移动通信是指最初的蜂窝移动通信系统,采用模拟信号传输技术。
它的主要标志是简单的语音通信功能,通信质量相对较低。
⑴蜂窝移动通信系统蜂窝移动通信系统是第一代移动通信系统的核心技术。
整个通信区域被划分为多个小区,每个小区内有一个基站,通过基站实现与用户终端的连接。
⑵ AMPSAMPS(Advanced Mobile Phone System)是第一代蜂窝移动通信系统的代表。
它采用了分频多址技术,使得多个用户可以同时使用同一个频率进行通信。
⑶ NMTNMT(Nordic Mobile Telephone)是瑞典开发的一种第一代蜂窝移动通信系统,采用了时分多址技术,可以支持多个用户在同一频段进行通信。
⒉第二代移动通信(2G)第二代移动通信是指数字移动通信系统,采用数字信号传输技术。
相比于第一代移动通信,第二代移动通信具有更好的通信质量、更高的数据传输速率和更丰富的业务功能。
⑴ GSMGSM(Global System for Mobile Communications)是第二代移动通信系统的代表。
它采用了时分多址和数字语音编解码技术,支持语音、短信等多种业务。
⑵ CDMACDMA(Code Division Multiple Access)是一种采用码分多址技术的第二代移动通信系统。
它能够更有效地利用频谱资源,提供更高的通信容量和更好的通话质量。
⑶ PDCPDC(Personal Digital Cellular)是开发的一种第二代移动通信系统,采用了时分多址技术和数字语音编解码技术,具有更好的通话质量和业务功能。
⒊第三代移动通信(3G)第三代移动通信是指采用宽带无线接入技术的移动通信系统。
它具有更高的数据传输速率和更丰富的业务功能,可以支持高质量的语音通话、视频通话和互联网接入等。
⑴ WCDMAWCDMA(Wideband Code Division Multiple Access)是一种采用宽带无线接入技术的第三代移动通信系统。
关于LTE系统中的逻辑信道、传输信道以及物理信道1、逻辑信道MAC层在逻辑信道上提供数据传送业务,逻辑信道类型集合是为MAC层提供的不同类型的数据传输业务而定义的。
逻辑信道通常可以分为两类:控制信道和业务信道。
控制信道用于传输控制平面信息,而业务信道用于传输用户平面信息。
2、传输信道传输信道定义了在空中接口上数据传输的方式和特性。
一般分为两类:专用信道和公共信道。
3、物理信道一个物理信道用一个特定的载频、扰码、信道化码(可选的)、开始和结束时间(有一段持续时间)来定义。
简单来讲,逻辑信道={所有用户(包括基站,终端)的纯数据集合}传输信道={定义传输特征参数并进行特定处理后的所有用户的数据集合}物理信道={定义物理媒介中传送特征参数的各个用户的数据的总称}打个比方,某人写信给朋友,逻辑信道=信的内容传输信道=平信、挂号信、航空快件等等物理信道=写上地址,贴好邮票后的信件逻辑信道按照消息的类别不同,将业务和信令消息进行分类,获得相应的信道称为逻辑信道,这种信道的定义只是逻辑上人为的定义。
传输信道对应的是空中接口上不同信号的基带处理方式,根据不同的处理方式来描述信道的特性参数,构成了传输信道的概念,具体来说,就是信号的信道编码、选择的交织方式(交织周期、块内块间交织方式等)、CRC冗余校验的选择、块的分段等过程的不同,而定义了不同类别的传输信道。
物理信道就是空中接口上的频率加码字(扩频吗+扰码)。
物理信道就是空中接口的承载媒体,根据它所承载的上层信息的不同定义了不同类的物理信道。
从协议栈的角度,物理信道是物理层的,传输信道是物理层和MAC层之间的, 逻辑信道是MAC层和RLC层之间的。
简单理解如下:逻辑信道:传输什么东西,比如广播消息(BCCH)也就是用来传广播消息的。
逻辑信道一般分两大类:控制信道:1、广播控制信道(BCCH)该信道为传输广播系统控制信息使用的下行信道。
2、寻呼控制信道(PCCH)该信道为传输寻呼信息和系统信息改变通知消息的下行信道。
LTE⼊门篇-7:LTE的信道信道是不同类型的信息,按照不同传输格式、⽤不同的物理资源承载的信息通道。
根据信息类型的不同、处理过程的不同可将信道分为多种类型。
重点介绍LTE的逻辑信道、传输信道、物理信道等常见的信道类型,并和3G相应的信道类型作了⽐较,通过⽐较可以加深LTE信道结构的理解。
最后给出LTE从逻辑信道到传输信道,再到物理信道的映射关系。
依据不同的货物类型,采⽤不同的处理⼯艺,选择相应的运送过程,最后保证接收⽅及时正确地接受货物。
1.信道结构1.1 信道的含义信道就是信息的通道。
不同的信息类型需要经过不同的处理过程。
⼴义地讲,发射端信源信息经过层三、层⼆、物理层处理,在通过⽆线环境到接收端,经过物理层、层⼆、层三的处理被⽤户⾼层所识别的全部环节,就是信道。
信道就是信息处理的流⽔线。
上⼀道⼯序和下⼀道⼯序是相互配合、相互⽀撑的关系。
上⼀道⼯序把⾃⼰处理完的信息交给下⼀道⼯序时,要有⼀个双⽅都认可的标准,这个标准就是业务接⼊点(Service Access Point,SAP)。
协议的层与层之间要有许多这样的业务接⼊点,以便接收不同类别的信息。
狭义的讲,不同协议之间的SAP就是信道。
1.2 三类信道LTE采⽤UMTS相同的三种信道:逻辑信道、传输信道和物理信道。
从协议栈⾓度来看,逻辑信道是MAC层和RLC层之间的,传输信道是物理层和MAC层之间的,物理信道是物理层的,如图所⽰。
逻辑信道关注的是传输什么内容,什么类别的信息。
信息⾸先要被分为两种类型:控制消息(控制平⾯的信令,如⼴播类消息、寻呼类消息)和业务消息(业务平⾯的消息,承载着⾼层传来的实际数据)。
逻辑信道是⾼层信息传到MAC层的SAP。
传输信道关注的是怎样传?形成怎样的传输块(TB)?不同类型的传输信道对应的是空中接⼝上不同信号的基带处理⽅式,如调制编码⽅式、交织⽅式、冗余校验⽅式、空间复⽤⽅式等内容。
根据对资源占有的程度不同,传输信道还可以分为共享信道和专⽤信道。
随着物联网技术的快速发展,LTE技术作为一种重要的通信技术,正逐渐成为物联网领域的主流选择。
在本文中,将探讨物联网中的LTE技术的应用和发展趋势。
一、LTE技术的基本原理LTE(Long Term Evolution)是一种第四代移动通信技术,它采用了OFDM (正交频分复用)和MIMO(多输入多输出)等先进技术,可以实现更高的数据传输速度和更低的延迟。
相比于传统的2G和3G技术,LTE技术能够更好地满足物联网设备对于高速数据传输和稳定连接的需求。
在物联网中,大量的传感器设备需要通过无线网络进行数据传输,而LTE技术的高速传输和低功耗特性使其成为理想的选择。
此外,LTE技术还支持更多的设备连接,能够有效解决物联网设备数量庞大的问题。
二、LTE-M和NB-IoT技术除了传统的LTE技术,LTE-M(LTE for Machines)和NB-IoT(Narrowband IoT)也是物联网中的重要通信技术。
LTE-M技术主要用于对于高带宽需求的物联网设备,比如高清视频监控设备和可穿戴设备等。
而NB-IoT技术则主要用于对于低功耗、低带宽需求的设备,比如环境监测传感器和智能家居设备等。
这两种技术都是基于LTE技术的变种,它们在物联网领域的应用将进一步推动物联网设备的发展和普及。
而且,随着5G技术的不断发展,LTE-M和NB-IoT技术也将逐渐融入到5G网络中,为物联网设备提供更加高效的连接和服务。
三、LTE技术在智能城市中的应用智能城市是物联网技术的一个重要应用领域,而LTE技术作为智能城市的通信基础设施也扮演着至关重要的角色。
在智能城市中,各种传感器设备和智能设备需要通过无线网络进行数据传输和互联互通,而LTE技术的高速传输和低延迟可以为智能城市提供可靠的通信支持。
比如,智能交通系统可以通过LTE技术实现车辆之间的实时通信和数据交换,从而提高交通效率和安全性。
智能环境监测系统可以通过LTE技术实现对于城市环境参数的实时监测和数据传输,为城市环境管理提供数据支持。
EPS = UE + E-UTRAN +EPCEPC = Evolved Packet Core,是核心网;EPS = Evolved Packet System是整个网络体系的全称,可类似理解为咱们以前的UMTS。
SAE(System Architecture Evolution,系统架构演进)实际上是与LTE(Long TermEvolution,长期演进计划)相对应的,是3GPP当初提出的两大研究计划的名称,分别侧重网络架构和无线接入技术。
因此,LTE与E-UTRAN;SAE与EPS存在着一定的映射关系。
但是,由于LTE名称使用起来比E-UTRAN更简单明了,也更加通俗易懂,更具备可宣传性。
目前,LTE 已成为整个系统对普通公众宣传的名称。
实际上,我们在3G时代对公众也不常用UTRAN这一名称,而采用WCDMA或TD-SCDMA来进行宣传和描述。
端到端的服务可以分为EPS承载和外部承载,EPS承载又包括E-RAB和S5、S8承载,E-RAB 分为无线承载和S1口承载。
承载概念由于EPS的接入网结构更加扁平化,即由UMTS的RNC和NodeB两个节点简化到只有eNo de B一个节点,从而在QoS的结构上也有所变化。
演进系统的QoS结构相比UMTS进行了简化。
同时由于希望更好地实现“永远在线”,在QoS中也引入了默认承载等新概念。
EPS的QoS在核心网主要为将IPQoS映射到承载的QoS等级指示(QoSClass ldentifier,QCl)上;在接入网主要是将S1接口上传输的QCI对应到eNodeB应执行的QCI特征(QCICharacteristics)上。
EPS承载指为在UE和PDN之间提供某种特性的QoS传输保证,分为默认承载和专用承载。
默认承载:一种满足默认QoS的数据和信令的用户承载。
默认承载可简单地理解为一种提供尽力而为IP连接的承载,随着PDN链接的建立而建立,随着PDN的链接的拆除而销毁。
LTE定义及分类
1、什么是LTE?
LTE是应用于手机及数据卡终端的高速无线通讯标准。
2010年12月6日国际电信联盟把LTE正式称为4G。
2、LTE系统种类介绍?
LTE系统有两种制式:FDD-LTE和TDD-LTE,即频分双工LTE系统和时分双工LTE系统,二者技术的主要区别在于空中接口的物理层上(像帧结构、时分设计、同步等)。
FDD-LTE系统空口上下行传输采用一对对称的频段接收和发送数据;TDD-LTE系统上下行则使用相同的频段在不同的时隙上传输;相对于FDD双工方式,TDD有着较高的频谱利用率。
3、什么是FDD?
FDD-LTE是一种以频分为特点的4G制式,即上下行通过不同的频点区分。
FDD模式的特点是在分离的两个对称频率信道上,进行接收和传送,用保证频段来分离接收和传送信道。
上行理论速率为40Mbps,下行理论速率为150Mbps。
是当前世界上采用的国家及地区最广泛的,终端种类最丰富的一种4G标准。
4、什么是TDD?
TDD-LTE是一种以时分为特点的4G制式,即上下行在同一个频点的时隙分配。
在TDD模式的移动通信系统中,基站到移动台之间的上行和下行通信使用同一频率信道(即载波)的不同时隙,用时间来分离接收和传送信道,某个时间段由基站发送信号给移动台,另外的时间由移动台发送信号给基站。
TD-LTE上行理论速率为50Mbps,下行理论速率为100Mbps。