轴承疲劳寿命试验微机网络监控系统
- 格式:pdf
- 大小:95.19 KB
- 文档页数:3
浅谈主机轴承磨损监控系统一.前言船舶主机是船舶的动力心脏,其安全可靠性关系到船舶的航行安全,而主机各轴承是主机工作环境最为恶劣的零部件之一,其状态的好坏直接关系到主机的正常运行。
由于主机各轴承位于主机曲拐箱内,在主机运行期间,对各轴承的检查受到很大的限制,现通过加装轴承磨损监控系统,能够实时的监控主机各轴承的状态,有助于提早发现问题,避免大的机损事故的发生。
现对我轮的主机轴承磨损监控系统做简单的介绍。
二.系统原理我轮的轴承磨损监测系统(BWCM)是基于KONGSBERG K-Chief600监控系统实现对主机各轴承状态进行实时监控。
通过加装在曲拐箱内的探头,它能够精确测量并显示十字头轴承、曲柄轴承和主轴承结合部位的物理磨损状态,并提供在主机运行期间出现的轴承咬死问题的早期预警。
系统主要有以下几部分组成:1.探头:轴承磨损监控系统在每个气缸箱内安装使用两个传感器,测量十字头每次经过下止点(BDC)的距离。
该探头为磁涡流传感器,其产生的电压输出与探头和导板之间距离成正比。
2.SCU0700单元:SCU0700模块就是一个网关。
通过CAN总线将探头和操作站联系起来,它的主要作用就是为BWCM系统处理来自各探头的信息并将处理好的信息发送至操作站。
3.K-Chief600系统:对整个BWCM系统进行界面显示、操作、参数修改设定、报警记录等。
三.使用介绍:1. 三点学习模式(rough learning)在系统开始运行阶段或者系统更换探头后需要进行三点学习模式。
三点模式开始之后,需要在这三个转速点各运行主机10分钟。
在做三点模式期间,需要让船体在一个直线上航行,并且尽可能少打舵的情况下完成三点学习模式(舵角小于±5°)。
三点学习模式主要提供一个在系统运转初期,为系统提供一个粗略的数值供系统进行计算,当三点学习完成后,系统报警功能被触发。
2. 500 小时学习模式当三点学习模式完成后,系统会自动下载补偿值到SCU,然后启动500小时的学习模式。
滚动轴承疲劳试验方案引言:滚动轴承是机械装置中常见的传动元件之一,其工作条件较为苛刻,需要经受高速旋转和重负荷的考验。
为了确保滚动轴承的可靠性和寿命,疲劳试验是不可或缺的一环。
本文将详细介绍滚动轴承疲劳试验方案,包括试验目的、试验方法、试验步骤以及试验结果的评估。
一、试验目的滚动轴承疲劳试验的主要目的是模拟实际工作条件下的轴承使用过程,评估其在长时间高速旋转和重负荷下的疲劳寿命。
通过试验,可以验证轴承的设计和制造质量,为产品的改进和优化提供依据。
二、试验方法1. 试验设备准备:a. 试验机:选择适当的试验机,能够提供满足试验要求的转速范围和负荷条件。
b. 轴承样品:选择符合试验要求的轴承样品,确保样品的代表性和一致性。
c. 测量设备:包括转速计、负荷计、温度计等,用于对试验过程中的参数进行监测和记录。
2. 试验参数确定:a. 转速范围:根据实际工作条件确定试验中的转速范围,考虑到轴承在高速旋转下的疲劳寿命变化规律。
b. 负荷条件:根据轴承的额定负荷和实际工作负荷确定试验中的负荷条件,考虑到轴承在重负荷下的疲劳寿命变化规律。
3. 试验步骤:a. 安装轴承样品:将选取的轴承样品正确安装在试验机上,确保轴承位置和轴向负荷的准确度。
b. 设置试验参数:根据试验要求,设定转速和负荷条件,确保试验过程中参数的稳定性。
c. 运行试验:启动试验机,使轴承样品在设定的转速和负荷条件下运行,连续工作一定时间。
d. 监测记录:在试验过程中,及时监测和记录轴承样品的转速、负荷和温度等参数。
e. 试验终止:根据试验要求,确定试验的终止条件,如达到设定的寿命或出现严重故障等。
f. 试验结果评估:根据试验数据和评估标准,对试验结果进行分析和评估,得出轴承的疲劳寿命。
三、试验结果评估根据试验的目的和要求,对试验结果进行评估是十分重要的。
评估的主要内容包括:1. 疲劳寿命:根据试验数据和评估标准,确定轴承的疲劳寿命,评估其是否符合设计要求和使用要求。
铁路通信相关名词解释1、铁路6T系统简介THDS(红外线轴温探测系统)(Track Hotbox Detection System)TFDS(货车运行故障动态图像检测系统)(Trouble of moving Freightcar Detection System) TADS(货车滚动轴承早期故障轨边升学诊断系统)(Truckside Acoustic Detection System) TPDS(货车运行状态地面安全监测系统)(Truck Performance Detection System)TWDS(车辆轮对故障、尺寸动态检测系统)TCDS(客车运行安全监控系统)(Train CoachRunning Diagnosis System)THDS(红外线轴温探测系统),利用轨边红外线探头,对通过车辆每个轴承温度实时检测,并将检测信息实时上传到分局车辆运行安全检测中心,进行实时报警。
通过配套故障智能跟踪装置,实现车次、车号跟踪,热轴货车车号的精确预报,重点探测车两轴承温度,对热轴车辆进行跟踪报警。
重点防范热切轴事故。
THDS实现了联网运行,每个探测站接车和轴温探测信息直观显示,实现跟踪报警。
TFDS(货车运行故障动态图像检测系统),采用高速连续数字照像技术、大容量图像数据实时处理技术和精确定位技术,利用轨边高速摄像头,对运行货车隐蔽故障和常见故障进行动态检测,及时发现货车运行故障,重点检测货车走行部、制动梁、悬吊件、枕簧、大部件、钩缓等安全关键部位,重点防范制动梁脱落事故,防范摇枕、侧架、钩缓大部件裂损、折断,防范枕簧丢失和窜出等危及行车安全隐患。
TFDS的实施,实现了列检作业从人控向机控、室外向室内、静态检测向动态检测的大变革。
特别是随着列检布局的调整,列检保证区段的不断延长,列检安全责任更重、要求更高,采用该系统,将对提高列检作业质量,改变作业方式产生深远的影响。
TADS(货车滚动轴承早期故障轨边升学诊断系统),利用轨边噪声采集阵列,实时采集运动货车滚动轴承噪音,通过数据分析,及时发现货车轴承早期故障。
实验一:滚动轴承疲劳寿命一、实验目的1.了解影响轴疲劳承寿命的影响因素2.了解实验的原理及试验方法二、实验设备ABLT-1A型轴承寿命强化试验机三、实验原理及方法ABLT-1A型轴承寿命强化试验机适用于内径为10-60mm的滚动轴承寿命强化实验。
该试验机主要由实验头、实验头座、传动系统、加载系统、润滑系统、电器控制系统、计算机监控系统等部分组成。
实验头装在实验头座内。
传动系统传递电机的运动,使试验轴按一定转速旋转。
加载系统提供试验所需的的载荷。
润滑系统使实验轴承在正常情况下充分润滑进行实验。
电气控制系统提供电气和动力保护,控制电机和液压油缸等的动作。
计算机记录试验温度和振动信息,监控机器的运行情况。
强化是在保持滚动轴承接触疲劳失效机理一致的前提下被实验的轴承上所加的当量动载荷应接近或达到额定动载荷C的一半,以达到缩短试验周期的目的。
实验轴承外圈温度自动显示,试验时间自动累计显示,疲劳剥落自动停机,用工控机将实验结果每隔一定时间将寿命实验通过时间、振动、温度自动打印一份。
主要技术指标:实验轴承类型:深沟球轴承、角接触球轴承、圆柱滚子轴承、圆锥滚子轴承、滚针轴承、汽车水泵轴连轴承和汽车轮毂轴承。
实验轴承内径:Φ10-60mm实验轴承数量:2-4套最大径向载荷:25KN/100KN最大轴向载荷:50KN试验轴承转速:1000-10000r/min(有级可调)供电电源:380v 50hz 三相功率:约4.5KW环境温度:5-40 ℃四、实验步骤1.在同一批同型号经检验合格的的产品中随机轴承实验样品在同一批同型号经检验合格的的产品中随机轴承实验样品,每批轴承必须在同一结构的试验机,在相同实验条件下进行试验。
2.在样品内外套圈非基准端面上逐套编号。
3.试验主体组装:试验主体是指主轴,承载体,左右衬套,左右法兰盘,拆卸环,左右锁紧螺母,承载轴承实验轴承等。
各零部件要清洗干净。
严格按照标准和图样要求组装。
4.在压装轴承时只允许内圈受力,压装后手感检查每套轴承是否旋转灵活。
直线轴承寿命试验标准一、试验目的本试验标准旨在规定直线轴承的寿命试验方法,评估其性能表现,以便对其质量和可靠性进行评估和改进。
二、试验条件1. 试验环境:试验应在清洁、无尘、无腐蚀性气体的室内进行。
2. 试验温度:试验温度应保持在25±5℃范围内。
3. 试验湿度:相对湿度应保持在50±10%范围内。
4. 电源电压:电源电压应稳定在规定范围内。
三、试验设备1. 试验机台:应使用符合要求的直线轴承试验机台。
2. 测试仪器:应配备高精度传感器、数据采集系统和计算机控制系统。
3. 辅助设备:包括加载装置、速度控制装置、清洁装置等。
四、试验程序1. 预处理:对试验样品进行清洗、干燥,并安装在试验机台上。
2. 加载:根据要求对直线轴承施加预定的载荷,并保持稳定。
3. 运行:在预定的速度下运行直线轴承,并记录相关数据。
4. 检查:在试验期间,定期检查直线轴承的外观和性能,确保其正常工作。
5. 数据记录:记录试验过程中的各项数据,包括载荷、速度、温度、噪音等。
6. 疲劳试验:进行疲劳试验时,应逐步增加载荷,并记录每次试验的结果。
7. 耐久性试验:进行耐久性试验时,应在恒定载荷下连续运行直线轴承,并记录其运行时间和性能变化。
五、试验样品1. 样品来源:试验样品应从生产线上随机选取,并具有代表性。
2. 样品数量:应根据试验目的和要求确定样品数量。
六、试验结果判1. 数据处理:对采集到的数据进行处理和分析,计算各项性能指标。
2. 结果判定标准:根据判定标准对直线轴承的性能进行评估,包括摩擦力矩、刚度、疲劳寿命等。
3. 结果判定流程:根据判定标准,对每个试验样品进行评估,并对试验结果进行汇总和分析。
4. 结果报告:撰写试验报告,详细记录试验过程和结果,并对直线轴承的性能和质量做出评价。
七、试验报告1. 报告内容:试验报告应包括以下内容:试验目的、试验条件、设备介绍、试验程序、样品描述、数据记录及分析、结果判定和结论等。
智能化滚动轴承状态监测1 绪论1.1 滚动轴承状态检测的意义滚动轴承是各种旋转机械中应用最广泛的一种通用机械部件,它们在旋转机械中起着关键的作用,旋转机械的故障30%是由滚动轴承故障引起的,其运行状态的正常与否直接影响到整台机器的性能(包括精度、可靠性及寿命等)[1]。
据统计,仅有10-20%的轴承达到他们的设计寿命。
大量实验证明,滚动轴承的疲劳寿命是非常离散。
在相同的实验条件下,结构设计、材质、加工方法相同的同一批轴承,其最长与最短的寿命可能相差数十倍甚至上百倍。
由于轴承的这个特点,在实际使用中就出现这样一种情况,即有的轴承己大大超过设计寿命而依然完好地工作,而有的轴承远未达到设计寿命就出现各种故障。
所以,如果按照设计寿命对轴承进行定期维修,一方面,会对超过设计寿命而完好工作的轴承拆下来作为报废处理,造成浪费;另一方面,未达到设计寿命而出现故障的轴承或者坚持到定期维修时拆下来报废,使得机器在轴承出现故障后和拆下前这段时间内工作精度下降,或者未到维修时间就出现严重故障,导致整个机器出现严重事故[2]。
由此看来,对重要用途的轴承来说定时维修是很不科学的,要进行工况监视与故障诊断,改传统的定时维修为视情维修或预知维修,这不但可以防止机械工作精度下降,减少或杜绝事故发生,而且可以最大限度地发挥轴承的工作潜力,节约开支,具有重要意义。
1.2 滚动轴承诊断技术的发展与现状1.2.1 国外轴承诊断技术的发展早期人们对滚动轴承的故障诊断是依靠听觉来加以判断,虽然熟练的技术员工能觉察到轴承刚发生的疲劳剥落与损伤部位,但受主观因素的影响较大。
真正意义上的滚动轴承的监测与诊断开始于20世纪60年代[3],人们用振动位移、速度或加速度的均方根值或峰值来判断轴承有无故障,这样减少了对人为经验的依赖。
几十年来,故障诊断技术不断吸收各门科学技术发展的新成果,诊断的理论与应用有了很大的发展和进步,它涉及系统论、控制论、信息论、检测与估计理论、计算机科学等多方面的内容,成为集许多相关专业学科于一体的新兴交叉学科。