流体的特征和连续性假设
- 格式:ppt
- 大小:613.00 KB
- 文档页数:14
流体的连续性方程
流体的连续性方程是描述流体运动的基本方程之一,它揭示了流体
在运动过程中质量守恒的原理。
下面将从理论基础、连续性方程的推
导以及应用等方面进行讨论。
一、理论基础
连续性方程是基于流体的连续性假设而推导得出的。
连续性假设认为,在流体运动过程中,流体的体积虽然不断变化,但质量保持不变。
流体在某个截面上的质量密度乘以截面积等于流体通过该截面的质量
流量。
二、连续性方程的推导
设流体通过某个平面截面的质量流量为Q,截面的面积为A,流体
的密度为ρ,流体在通过截面进入和流出的速度分别为v1和v2。
根据
质量守恒的原理,流入流出的质量应该相等,则有:
ρA * v1 = ρA * v2
接着,我们可以对上式进行化简,得到:
v1 = v2
这就是连续性方程,它表明了流体在运动过程中速度的连续性。
三、连续性方程的应用
连续性方程在流体力学中具有广泛的应用。
例如,在管道流动中,
通过管道的流体密度是保持不变的,因此可以利用连续性方程来描述
流体在管道中的速度变化。
在自然界中,例如河流流动、空气运动等,也可以应用连续性方程来研究非定常流体运动的规律。
此外,连续性方程还与其他流体方程相互配合,如欧拉方程、伯努
利方程等,共同构成了解决流体力学问题的重要工具。
综上所述,流体的连续性方程是一种描述流体运动的基本方程,它
是基于流体的连续性假设进行推导的。
连续性方程揭示了流体在运动
过程中质量守恒的原理,具有重要的理论和应用价值。
1.1 流体的主要物理性质一.连续介质假设处于流体状态的物质,无论是液体还是气体,都是由大量不断运动着的分子所组成。
从微观角度来看,流体是离散的。
但流体力学是研究物体的宏观运动的,它是大量分子的平均统计特性。
1753年,欧拉采取了一个基本假设认为:流体质点(或流体微团)连续地毫无间隙地充满着流体所在的整个空间,这就是连续介质假设。
在大多数情况下,利用该基本假设得到的计算结果和实验结果符合得很好。
必须指出,连续介质模型也有一定的是适用范围。
以气体作用于物体表面上的力为例。
在标准情况下,的空气包含有个分子,分子间平均自由程,与所研究的在气体中的物体特征尺度L相比及其微小。
按气体分子运动观点,由于作热运动的大量气体分子不断撞击物体表面的结果,产生了作用于物体表面上的力。
它是大量气体分子共同作用的统计平均结果,而不是个别分子的具体运动决定,因而不必详细地研究个别分子的运动,而将气体看成连续介质以宏观的物理量来表征大量分子的共性。
但当气体体分子平均自由程与物体特征尺寸可以比拟时,这时就不能再应用连续介质的概念而必须考虑气体分子的结构了。
用连续介质假设简化时,只要研究描述流体宏观状态的物理量,如密度、速度、压强等。
二.流体的易流动性流体不能承受拉力,流体在静止时也不能承受切向剪应力。
即使是很小的切向力。
只要持续施加,都能使流体发生任意大的变形。
流体的这种宏观性质称易流动性,也正因此流体没有固定的形状。
三.流体的压缩性与膨胀性可压缩性—流体在外力作用下,其体积或密度可以改变的性质。
流体的压缩性常用压缩系数表示它表示在一定温度下,增大一个压力时,流体体积的相对缩小量,即或其中——单位质量流体的体积,即比容;——单位体积的质量,即密度。
压缩系数的倒数即流体的体积弹性模量E,它是单位体积的相对变化所需要的压力增量。
工程中常用体积弹性模量来衡量压缩性的大小。
E值越大流体就越不易被压缩。
E的单位与压强相同为Pa。
热膨胀性——流体在温度改变时,其体积或密度可以改变的性质。
流体力学课程自学辅导资料二○○八年十月教材:工程流体力学教材编者:孔珑出版社:中国电力出版社出版时间:2007年注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。
总成绩中,作业占15分。
第一章绪论一、本章的核心、重点及前后联系(一)本章的核心流体力学的研究内容和研究方法(二)本章重点流体力学的研究内容和研究方法(三)本章前后联系为本书的其它章节内容做一介绍二、本章的基本概念、难点及学习方法指导(一)本章的基本概念研究内容:是力学的一个独立分支,是一门研究流体的平衡和运动规律及其实际应用的技术科学。
研究速度分布、压强分布、能量损失及作用力。
研究方法:理论分析、实验研究、数值计算(二)本章难点及学习方法指导流体力学研究内容三、典型例题分析(略)四、思考题、习题及习题解答(一)思考题、习题(略)(二)习题解答(只解答难题)(略)第二章流体及其物理性质一、本章的核心、重点及前后联系(一)本章的核心1、流体的几个性质2、流体的几个物理模型3、作用在流体上的力(二)本章重点1、流体的压缩性、粘性2、连续介质模型、不可压缩流体模型、理想流体模型3、作用在流体上的力:表面力和质量力(三)本章前后联系为本书的其它章节建立物理模型二、本章的基本概念、难点及学习方法指导(一)本章的基本概念1、流体力学定义:受任何微小剪切力都能连续变形的物质特征:流动性2、连续介质模型:(1)宏观上无限小(2)微观上足够大(3)有确定物理量连续介质假设(continuum/continuous medium model):把流体视为没有间隙地充满所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:f =f(t,x,y,z)。
特例:分子的自由行程和所涉及的最小有效尺寸可以相比拟时,如火箭在高空非常稀薄的空气中以及高真空技术3、压缩性:一定温度下、压强增加体积缩小的性质4、膨胀性:一定压强下、温度升高体积增大的性质5、不可压缩流体模型:通常情况下液体流速不高、压强变化小气体6、粘性:在运动的状态下,流体所产生的抵抗剪切变形的性质影响粘性的主要因素:流体种类、温度和压强7、牛顿流体:牛顿内摩擦定律和牛顿流体8、理想流体模型:粘度为09、作用在流体上的力:表面力和质量力(二)本章难点及学习方法指导1、流体的力学定义2、不可压缩流体模型3、理想流体模型三、典型例题分析1、P8. 例2-12、P14例2-4四、思考题、习题及习题解答(一)思考题、习题2-1、2-3、2-14(二)习题解答(只解答难题)(略)第三章流体静力学一、本章的核心、重点及前后联系(一)本章的核心流体静压强分布及作用在平面和曲面上的力(二)本章重点1、流体静压强特性2、流体静力学基本方程及其物理和几何意义3、液体相对平衡时压强分布及工程应用4、静止液体作用在平板上总压力大小和位置5、静止液体作用在曲面上总压力,压力体(三)本章前后联系流体静力学是力学的基础知识,最基本内容二、本章的基本概念、难点及学习方法指导(一)本章的基本概念1、流体静压强特性:方向沿作用面内法线方向,大小和作用面方位无关2、等压面:压强相等的点组成的面3、流体静力学基本方程及其物理和几何意义:水头、测压管水头、压强势能、重力势能4、帕斯卡原理、液柱式测压计5、液体相对平衡时压强分布及工程应用:离心式泵与风机、离心铸造机工作原理6、静止液体作用在平板上总压力大小和位置7、静止液体作用在曲面上总压力,压力体(二)本章难点及学习方法指导1、液体相对平衡时压强分布及工程应用:离心式泵与风机、离心铸造机工作原理2、静止液体作用在平板上总压力大小和位置3、静止液体作用在曲面上总压力,压力体三、典型例题分析1、P30. 例3-22、P37. 例3-63、P40. 例3-7四、思考题、习题及习题解答(一)思考题、习题1.相对平衡的流体的等压面是否为水平面?为什么?什么条件下的等压面是水平面?2.压力表和测压计上测得的压强是绝对压强还是相对压强 ?3、圆筒,H0=0.7m,R=0.4m, V=0.25m3, ω=10rad/s,中心开孔,顶盖m=5kg 。
第一章流体流动§1.1.1、概述1、流体—液体和气体的总称。
流体具有三个特点①流动性,即抗剪抗张能力都很小。
②无固定形状,随容器的形状而变化。
③在外力作用下流体内部发生相对运动。
2、流体质点:含有大量分子的流体微团。
流体分子自由程<流体质点尺寸<设备大小,流体质点成为研究流体宏观运动规律的考察对象。
3、流体连续性假设:假设流体是由大量质点组成的彼此间没有空隙,完全充满所占空间的连续介质。
连续性假设的目的是为了摆脱复杂的分子运动,而从宏观的角度来研究流体的流动规律,这时,流体的物理性质及运动参数在空间作连续分布,从而可用连续函数的数学工具加以描述。
流体流动规律是本门课程的重要基础,这是因为:①流体的输送研究流体的流动规律以便进行管路的设计、输送机械的选择及所需功率的计算。
②压强、流速及流量的测量为了了解和控制生产过程,需要对管路或设备内的压强、流量及流速等一系列的参数进行测量,这些测量仪表的操作原理又多以流体的静止或流动规律为依据的。
③为强化设备提供适宜的流动条件化工生产中的传热、传质过程都是在流体流动的情况下进行的。
设备的操作效率与流体流动状况有密切的联系。
因此,研究流体流动对寻找设备的强化途径具有重要意义。
本章将着重讨论流体流动过程的基本原理及流体在管内的流动规律,并运用这些原理及规律来分析和计算流体的输送问题。
第二节流体静力学方程流体静力学是研究流体在外力作用下处于平衡的规律。
本节只讨论流体在重力和压力作用下的平衡规律。
§1.2.1流体的密度和比容1、流体的密度:单位体积的流体所具有的质量。
/m V ρ=∆∆当V ∆趋近于零时,/m V ∆∆的极限值为流体内部某点的密度,可以写成:0limV mVρ∆→∆=∆各种流体的密度可以从物理化学手册和有关资料中查得。
气体具有可压缩性及膨胀性,故其密度随温度及压强而变化,因此对气体密度必须标出其所处的状态。
从手册中查出的气体密度是某指定状态下的数值 ,应用时一定要换算到操作条件下的数值。
流体的连续性方程流体力学是关于流体力学与流动的规律和性质的科学。
在流体的运动过程中,流体的密度和速度都会发生变化。
为了描述这种变化,我们引入了连续性方程,它是流体力学中的重要基本方程之一。
连续性方程是描述流体质量守恒的方程。
它基于以下几个假设:假设流体是连续均匀的,假设流体是非可压缩的,假设流体在稳态流动过程中质量不会减少或增加。
基于这些假设,我们可以得到流体的连续性方程。
在流体力学中,流体的连续性方程可以表示为以下形式:∇·ρv+A=0其中,ρ是流体的密度,v是流体的速度矢量,∇·是散度运算符,A 是质量流量。
连续性方程的物理意义是流体的质量在单位时间内的净流入或流出量等于单位时间内质量积累的速率。
在实际应用中,根据具体问题的不同,连续性方程可以具体表达为不同的形式。
下面将介绍几个常见的连续性方程的应用。
1. 理想流体的连续性方程理想流体是指当流体受到外力作用时不发生黏性耗散的流体。
在理想流体中,连续性方程可以写作以下形式:∇·v=0这个方程表示了在理想流体中,速度矢量场的散度为零,即流体流入和流出的速率相等,流体的质量不会减少或增加。
2. 不可压缩流体的连续性方程不可压缩流体是指密度在流动过程中可以忽略变化的流体。
在不可压缩流体中,连续性方程可以写作以下形式:∇·v=0这个方程表示了在不可压缩流体中,速度矢量场的散度为零,即流体流入和流出的速率相等,流体的质量不会减少或增加。
不过需要注意的是,不可压缩流体的连续性方程只能描述速度场的分布,而不能描述流体密度的变化。
3. 积分形式的连续性方程连续性方程还可以表示为积分形式。
在空间中的一个任意闭合曲面S上,流体质量的净流出量等于质量积累的速率,即可以表示为以下积分形式:∮S ρv·n dS = -d/dt ∭V ρ dV其中,S是曲面的边界,n是法向量,V是曲面所包围的体积,∮和∭分别表示曲面和体积的积分。