九年级数学上册第二十四章圆24.1.2垂直于弦的直径拓展提高同步检测试题(含答案)
- 格式:doc
- 大小:431.00 KB
- 文档页数:5
24.1.2 垂直于弦的直径1.下列命题错误的是( B )A .平分弧的直径平分这条弧所对的弦B .平分弦的弦垂直于这条弦C .垂直于弦的直径平分这条弦D .弦的中垂线经过圆心2.如图24-1-13,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若CD =8,OP =3,则⊙O 的半径为( C )图24-1-13A .10B .8C .5D .33.如图24-1-14,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( D )图24-1-14 A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MD【解析】∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,选项A 成立;B 为CD ︵的中点,即CB ︵=DB ︵,选项B 成立;在△ACM 和△ADM 中,∵⎩⎪⎨⎪⎧AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM (SAS),∴∠ACD =∠ADC ,选项C 成立;而OM 与MD 不一定相等,选项D 不成立. -1-15,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =23,OC =1,则半径OB 的长为__2__.15【解析】 ∵AB 是⊙O 的弦,OC ⊥AB 于C ,AB =23,∴BC =12AB = 3.∵OC =1,∴在Rt △OBC 中,OB =OC 2+BC 2=12+(3)2=2.5.如图24-1-16,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24__.【解析】 如图,连接OD ,∵AM =18,BM =8,∴OD =AM +BM 2=18+82=13,∴OM =13-8=5. 在Rt △ODM 中,DM =OD 2-OM 2=132-52=12,∵直径AB 丄弦CD ,∴CD =2DM =2×12=24.第56.如图24-1-17,在半径为13的⊙O 中,OC 垂直弦AB 于点D ,交⊙O 于点C ,AB =24,则.图24-17第6题答图【解析】 如图,连接OA ,∵OC ⊥AB ,AB =24,∴AD =12AB =12. 在Rt △AOD 中,∵OA =13,AD =12,∴OD =OA 2-AD 2=132-122=5,∴CD =OC -OD =13-5=8.7.如图24-1-18,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O ,OD ⊥PB 于点D ,则CD 的长为__4__.【解析】 ∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得AC =PC ,PD =BD ,∴CD 是△APB 的中位线,∴CD =12AB =12×8=4. 8.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm ,测得钢珠顶端离零件,如图24-1-19所示,则这个小圆孔的宽口AB 的长度为__8__mm.第8题答图【解析】如图,连接OA,过点O作OD⊥AB于点D,则AB=2AD.∵钢珠的直径是10 mm,∴钢珠的半径是5 mm.∵钢珠顶端离零件表面的距离为8 mm,∴OD=3 mm.在Rt△AOD中,∵AD=OA2-OD2=52-32=4(mm),∴AB=2AD=2×4=8(mm).9.如图24-1-20所示,AB是⊙O的弦(非直径),C,D是AB上的两点,并且AC=BD.求证:OC=OD.图24-1-20第9题答图证明:如图,过O作OE⊥AB于E,则AE=BE,又∵AC=BD,∴CE=DE,∴OE是CD的中垂线,∴OC=OD.10.绍兴是著名的桥乡,如图24-1-21,圆拱桥的拱顶到水面的距离CD为8 m,桥拱半径OC 为5 m,则水面宽AB为(D)图24-1-21A.4 m B.5 mC.6 m D.8 m11.如图24-1-22,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为(B)图24-1-22A.2 B.3C.4 D.5【解析】连接OD.∵直径AB⊥CD于H,∴DH=12CD=12×22= 2.在Rt△BDH中,BH=BD2-DH2=(3)2-(2)2=1.设⊙O的半径为R,则在Rt△ODH中,OH2+DH2=OD2,∴(R -1)2+(2)2=R 2,∴2R =3,故选B.12.[2013·吉林]如图24-1-23,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,OB .点P 是半径OB 上任意一点,连接AP .若OA =5 cm ,OC =3 cm ,则AP 的长度可能是__答案不唯一,5≤AP ≤8__cm(写出一个符合条件的数值即可).图24-1-2313.如图24-1-24,两个圆都以点O 为圆心.求证:AC =BD .图24-1-24第13题答图证明:过点O 作OE ⊥AB 于E ,在小⊙O 中,∵OE ⊥AB ,∴EC =ED ,在大⊙O 中,∵OE ⊥AB ,∴EA =EB ,∴AC =BD .14.某居民小区一处圆柱形的输水管道破裂,维修人员为了更换管道,需要确定管道圆形截面的半径,图24-1-25是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16 cm ,水面最深地方的高度为4 cm ,求这个圆形截面的半径.图24-1-25第14题答图解:(1)作出图形,如图所示;(2)如图,过O 作OC ⊥AB 于D ,交弧AB 于C ,连接OB ,∵OC ⊥AB ,∴BD =12AB =12×16=8(cm). 由题意可知CD =4 cm.设这个圆形截面的半径为x cm,则OD=(x-4)cm.在Rt△BOD中,由勾股定理得OD2+BD2=OB2,即(x-4)2+82=x2,解得x=10,∴这个圆形截面的半径为10 cm.15.如图24-1-26,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A,B和C,D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若弦AB=102,求点O到直线PF的距离;(3)若以图中已标明的点(即P,A,B,C,D,O)构造四边形,则能构成菱形的四个点为第15题答图解:(1)∵PG平分∠EPF,∴∠DPO=∠BPO.∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴AP=AO.(2)如图,过点O作OH⊥AB于点H,则AH=HB,∵AB=102,∴AH=52∵OA=10,∴OH=OA2-AH2=102-(52)2=5 2.(3)P,A,O,C A,B,D,C或P,A,O,D或P,C,O,B。
人教版九年级数学上册第24章 24.1.2垂直于弦的直径 同步练习题一、选择题1.下列说法中,不正确的是(D)A .圆既是轴对称图形,又是中心对称图形B .圆绕着它的圆心旋转任意角度,都能与它自身重合C .圆的对称轴有无数条,对称中心只有一个D .圆的每一条直径都是它的对称轴2.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是(D)A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则OE =(C)A .4 cmB .5 cmC .3 cmD .2 cm5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是(B)A.7 B.27 C.6 D.86.如图,⊙O的半径为10,M是AB的中点,且OM=6,则⊙O的弦AB等于(D)A.8 B.10 C.12 D.167.一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为(B)A.6 dm B.5 dm C.4 dm D.3 dm8.已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB 与CD的距离为(D)A.1 B.7 C.4或3 D.7或1二、填空题9.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.10.如图,在⊙O中,AB,AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8 cm,AC=6 cm,那四边形OEAD的周长为14cm.11.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.12.如图,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30°,CD=23,则⊙O 的半径是2.13.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.14.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为1 2.15.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).三、解答题16.如图是某风景区的一个圆拱形门,路面AB宽为2米,净高5米,则圆拱形门所在圆的半径是多少米?解:连接OA.∵CD⊥AB,且CD过圆心O,∴AD=12AB=1米,∠CDA=90°.设⊙O的半径为R,则OA=OC=R,OD=5-R.在Rt△OAD中,由勾股定理,得OA2=OD2+AD2,即R2=(5-R)2+12,解得R=2.6.故圆拱形门所在圆的半径为2.6米.17.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.又∵AB∥CD,∴OF⊥CD.①当AB,CD在点O两侧时,如图1.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE+OF=22 cm,即AB与CD之间的距离为22 cm;图1 图2②当AB,CD在点O同侧时,如图2.连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE-OF=8 cm,即AB与CD之间的距离为8 cm.综上所述,AB与CD之间的距离为22 cm或8 cm.。
24.1.2垂直于弦的直径一、单选题 1.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .4√3B .6√3C .2√3D .82.如图,A ,B 是⊙O 上的两点,连接AB ,用尺规按①到③的步骤操作,下列结论正确的有( )①在⊙O 上任取一点C (不与A ,B 重合),连接AC ;②作AB 的垂线平分线交⊙O 于点M ,N ;③作AC 的垂直平分线交⊙O 于点E ,F结论Ⅰ:直线MN 与直线EF 的交点一定与点O 重合;结论Ⅱ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅲ:⊙O 上存在唯一的点C ,使得MF⌢=2AE ⌢A .3个B .2个C .1个D .0个3.过⊙O 内一点M 的最长弦为10cm ,最短弦长为8cm ,则OM 的长为( )A .9cmB .6cmC .3cmD .√41cm4.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若∠A =30°,AC =2,则CD 的长是( )5.如图,在⊙O中,AE是直径,连接BE,若AB=8,OC⊥AB于点D,CD=2,则BE 的长是()A.5B.6C.7D.86.下列命题:①对角线垂直且相等的四边形是正方形;②垂直弦的直径平分这条弦;③过一点有且只有一条直线与已知直线平行;④各边相等的多边形是正多边形;⑤直线外一点到这条直线的垂线段叫做点到直线的距离.其中真命题有()个.A.1B.2C.3D.47.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A.5cm B.6cm C.7cm D.8cm8.在半径为5cm的⊙O中,若弦AB与弦CD平行,且AB=6cm,CD=8cm,则AB与CD 之间的距离为()A.1cm B.7cm C.8cm D.1cm或7cm9.若⊙O的半径为10 cm,且两平行弦AC,BD的长分别为12 cm,16 cm,则两弦间的距离是()A.2 cm B.14 cm C.2 cm或14 cm D.6 cm或8 cm 10.如图,Rt△ABC中,∠C=90°,AB=4√3,F是线段AC上一点,过点A的⊙F交AB于点D,E是线段BC上一点,且ED=EB,则EF的最小值为()A.3√3B.2√3C.√3D.2二、填空题11.如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为AC⌢上的动点,点M,N,P别是AD,DC,CB的中点,若⊙O的半径为2,则PN+MN的长度的最大值是 .12.如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的直径为.13.一个圆柱体容器内装入一些水,截面如图所示,若⊙O中的直径为52cm,水面宽AB=48cm,则水的最大深度为cm.14.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP 的取值范围为.15.如图4,点P在半径为3的⊙O内,OP=√3,点A为⊙O上一动点,弦AB过点P,则AB最长为,AB最短为.三、解答题16.凰仪桥始建于嘉泰以前,是绍兴市区的一座古桥,此桥可以看成是一种特殊的圆拱桥,已知此圆拱桥的跨径(桥拱圆弧所对的弦的长)为18.2m,拱高(桥拱圆弧的中点到弦的距离)为6.2m.求此桥拱圆弧的半径(精确到0.1m)17.如图,在平行四边行ABCD中,AB=5,BC=8,BC边上的高AH=3,点P是边BC 上的动点,以CP为半径的⊙C与边AD交于点E,F(点E在点F的左侧).(1)当⊙C经过点A时,求CP的长;(2)连接AP,当AP//CE时,求⊙C的半径及弦EF的长.18.在直径为1米的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=0.8米,求油的最大深度.19.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52∘,求∠DEB的度数;(2)若OC=3,BC=3√3,求弧AB^的长.20.如图,AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)证明:∠BCO=∠ACD;(2)若AE=2,BE=8,求弦CD的长.⌢的中点,在直径CD 21.如图:已知⊙O的直径CD为2,AC⌢的度数为60°,点B是AC上作出点P,使BP+AP的值最小,则BP+AP的最小值为多少?。
2019版九年级数学上册第24章圆24.1.2垂直于弦的直径同步检测题含解析新人教版一、夯实基础1.如图,AB是⊙O的直径,BC是弦,OD⊥BC,垂足为D,已知OD=5,则弦AC=______.2.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.3.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为______.4.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为______.5.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.6.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2 B.3 C.4 D.57.在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,则AB和CD的距离是()A.7cm B.1cm C.7cm或4cm D.7cm或1cm8.如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是()A. B. C.D.二、能力提升9.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为______.10.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为______.11.如图,AB是⊙O的弦,OC⊥AB于C.若AB=4,0C=2,则半径OB的长为______.12.如图,⊙O的半径为5,P为圆内一点,P点到圆心O的距离为4,则过P点的弦长的最小值是______.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD14.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3D.415.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.2016.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm三、课外拓展17.如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.18.如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.19.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.四、中考链接1.(xx·湖北黄石·3分)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.112.(xx·贵州安顺·4分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .答案1答案为:10.2.答案为:48.3.答案为:.4.答案为:2.5.答案为:(3,2).6.答案为:5.7.答案为:4.8.解:连接OP并延长与圆相交于C.过点P作AB⊥CQ,AB即为最短弦.因为AO=5,OP=4,根据勾股定理AP==3,则根据垂径定理,AB=3×2=6.9.解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选B.10.解:①M与A或B重合时OM最长,等于半径5;②∵半径为5,弦AB=8∴∠OMA=90°,OA=5,AM=4∴OM最短为=3,∴3≤OM≤5,因此OM不可能为2.故选A.11.解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=3,CF=DF=CD=4,在Rt△AOE中,∵OA=5,AE=3,∴OE==4,在Rt△COF中,∵OC=5,CF=4,∴OF==3,当点O在AB与CD之间时,AB和CD的距离EF=OE+OF=4+3=7(cm);当点O不在AB与CD之间时,AB和CD的距离EF=OE﹣OF=4﹣3=1(cm),即AB和CD的距离为1cm或7cm.故选D.12.解:过O作OC⊥AB于C.在Rt△OAC中,OA=2,∠AOC=∠AOB=60°,∴AC=OA•sin60°=,因此AB=2AC=2.故选B.13.解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D14.解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.15.解:连接OC,根据题意,CE=CD=6,BE=2.在Rt△OEC中,设OC=x,则OE=x﹣2,故:(x﹣2)2+62=x2解得:x=10即直径AB=20.故选D.16.解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.17.证明:连结OA、OC,如图,∵E、F分别为弦AB、CD的中点,∴OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵AB=CD,∴AE=CF,在Rt△AEO和Rt△COF中,,∴Rt△AEO≌Rt△COF(HL),∴OE=OF.18.证明:∵OD⊥AB于D,OE⊥AC于E,∵AD=AB,AE=AC,∠ADO=∠AEO=90°,∵AB⊥AC,∴∠DAE=90°,∴四边形ADOE是矩形,∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.19.解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×30=15cm,CF=CD=×16=8cm,在Rt△AOE中,OE===8cm,在Rt△OCF中,OF===15cm,∴EF=OF﹣OE=15﹣8=7cm.答:AB和CD的距离为7cm.中考链接:1.解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,.精品 故选A .2.解:如图,连接OC .∵弦CD ⊥AB 于点E ,CD=6,∴CE=ED=CD=3.∵在Rt△OEC 中,∠OEC=90°,CE=3,OC=4, ∴OE=∴BE=OB ﹣OE=4﹣7.故答案为4﹣7.如有侵权请联系告知删除,感谢你们的配合!。
九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径(拓展提高)同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径(拓展提高)同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径(拓展提高)同步检测(含解析)(新版)新人教版的全部内容。
24.1.2 垂直于弦的直径基础闯关全练拓展训练1。
(2016云南曲靖一模)如图,在☉O中,弦AB⊥AC,OD⊥AB于点D,OE⊥AC于点E,若AB=8 cm,AC=6 cm,则☉O的半径OA的长为( )A。
7 cm B.6 cm C。
5 cm D。
4 cm2。
(2016贵州一模)☉O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则☉O的半径为()A.B。
2 C. D.3能力提升全练拓展训练1。
如图,圆心在y轴的负半轴上,半径为5的☉B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与☉B相交于C、D两点,则弦CD的长的所有可能整数值有()A。
1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,以原点O为圆心的圆过点A(0,3),直线y=kx-3k+4(k≠0)与☉O交于B,C两点,则弦BC的长的最小值为。
三年模拟全练拓展训练(2018黑龙江哈尔滨尚志期中,16,★★☆)如图,AB为☉O的弦,P为AB 上一点,且PA=8,PB=6,OP=4,则☉O的半径为。
2023-2024学年人教版九年级数学上册24.1.2垂直于弦的直径同步练习(含答案)24.1.2 垂直于弦的直径一、单选题1.如图,⊙O的直径为10,AB为弦,OC⊙AB,垂足为C,若OC=3,则弦AB的长为()A.8 B.6 C.4 D.102.如图是某高速公路的一个隧道的横截面,若它的形状是以点O为圆心,线段OA的长为半径的圆的一部分,路面AB=12米,隧道高CD=9米,则⊙O的半径OA= ()A.6米B.米C.7米D.米3.在中,直径,弦于点,若,则的周长为()A.13 B.14 C.15 D.164.如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,⊙A=⊙B=60°,则BC的长为()A.19 B.16 C.18 D.205.如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3 个B.4个C.5个D.6个6.已知⊙O的半径为3,⊙ABC内接于⊙O,AB=3 ,AC=3 ,D是⊙O 上一点,且AD=3,则CD的长应是()A.3 B.6 C.D.3或6二、填空题7.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.8.如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.9.如图,是的直径,弦,垂足为点H.若,,则的半径长为.10.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60 cm,水面至管道顶的距离为10 cm,则修理人员准备更换的新管道的内径为.11.等腰⊙ABC的三个顶点都在⊙O上,底边BC=8cm,⊙O的半径为5cm,则⊙ABC的面积为.12.如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为.13.已知的半径为2,中有两条平行的弦和,,,则两条弦之间的距离为.三、解答题14.如图,AB是⊙O的直径,弦CD⊙AB,垂足为E,如果AB=20,CD=16,求线段OE的长.15.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.16.已知⊙O的弦AB长为10,半径长R为7,OC是弦AB的弦心距,求OC的长17.《九章算术》是我国古代数学成就的杰出代表作,书中记载:“今有中,不知大小.以锯锯之,深1寸,锯道长1尺,问经几何?“其意思为:“如图,今有一圆形木材在墙中,不知其大小用锯子去锯这个木材,锯口深DE=1寸,锯道长AB=10寸,问这块圆形木材的直径是多少?”18.如图所示,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F.若CF⊙AD,AB=2,求CD的长.19.如图,AB、CD为⊙O的两条弦,AB⊙CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF20.如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD 的中点,证明:OE=OF.答案解析部分1.【答案】A2.【答案】B3.【答案】D4.【答案】D5.【答案】A6.【答案】D7.【答案】268.【答案】9.【答案】1310.【答案】100 cm11.【答案】32或812.【答案】613.【答案】或14.【答案】解:连接OC,⊙弦CD⊙AB,⊙CE= CD=8,在Rt⊙OCE中,OE= =6.15.【答案】解:如图,过O点作OC⊙AB,连接OB,根据垂径定理得出AB=2BC,再根据勾股定理求出BC== =8,从而求得AB=2BC=2×8=16.16.【答案】解:连接OA,那么在直角三角形OAC中据垂径定理可以得到AC=5,根据勾引股定理可以求的OC=.17.【答案】解:连接OA,⊙AB⊙CD,且AB=10,⊙AE=BE=AB =5(寸),设圆O的半径OA的长为x,则OC=OD=x⊙DE=1,⊙OE=x-1,在Rt⊙AOE 中,根据勾股定理得:OA2-OE2=AE2,解得:x=13所以CD=26(寸).故答案为CD=26寸.18.【答案】解:连接AC⊙AB⊙CD⊙CE=DE(垂径分弦)⊙AB垂直平分CD⊙AC=AD,⊙CF⊙AD,⊙AF=DF(垂径分弦),⊙CF垂直平分AD,⊙AC =CD,⊙AC=AD=CD,⊙⊙ACD为等边三角形,⊙⊙DCF=⊙ACD=30°,⊙CO=AO=AB=1,⊙DE=CE=CO× =;⊙CD=2DE=19.【答案】证明:⊙E为AB中点,MN过圆心O,⊙MN⊙AB ,⊙⊙MEB=90°,⊙AB⊙CD ,⊙⊙MFD=⊙MEB=90°,即MN⊙CD ,⊙CF=DF.20.【答案】证明:连结OA、OC,如图,⊙E、F分别为弦AB、CD的中点,⊙OE⊙AB,AE=BE,OF⊙CD,CF=DF,⊙AB=CD,⊙AE=CF,在Rt⊙AEO和Rt⊙COF中,,⊙Rt⊙AEO⊙Rt⊙COF(HL),⊙OE=OF。
24.1.2 垂直于弦的直径一、夯实基础1.如图,AB是⊙O的直径,BC是弦,OD⊥BC,垂足为D,已知OD=5,则弦AC=______.2.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.3.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为______.4.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为______.5.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C. D.6.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2 B.3 C.4 D.57.在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,则AB和CD的距离是()A.7cm B.1cm C.7cm或4cm D.7cm或1cm8.如图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是()A. B. C.D.二、能力提升9.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为______.10.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为______.11.如图,AB是⊙O的弦,OC⊥AB于C.若AB=4,0C=2,则半径OB的长为______.12.如图,⊙O的半径为5,P为圆内一点,P点到圆心O的距离为4,则过P点的弦长的最小值是______.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B. =C.∠ACD=∠ADC D.OM=MD14.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP 的长为()A.3 B.4 C.3 D.415.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.2016.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm三、课外拓展17.如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.18.如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.19.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.四、中考链接1.(2016·湖北黄石·3分)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.112.(2016·贵州安顺·4分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .答案1答案为:10.2.答案为:48.3.答案为:.4.答案为:2.5.答案为:(3,2).6.答案为:5.7.答案为:4.8.解:连接OP并延长与圆相交于C.过点P作AB⊥CQ,AB即为最短弦.因为AO=5,OP=4,根据勾股定理AP==3,则根据垂径定理,AB=3×2=6.9.解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选B.10.解:①M与A或B重合时OM最长,等于半径5;②∵半径为5,弦AB=8∴∠OMA=90°,OA=5,AM=4∴OM最短为=3,∴3≤OM≤5,因此OM不可能为2.故选A.11.解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=3,CF=DF=CD=4,在Rt△AOE中,∵OA=5,AE=3,∴OE==4,在Rt△COF中,∵OC=5,CF=4,∴OF==3,当点O在AB与CD之间时,AB和CD的距离EF=OE+OF=4+3=7(cm);当点O不在AB与CD之间时,AB和CD的距离EF=OE﹣OF=4﹣3=1(cm),即AB和CD的距离为1cm或7cm.故选D.12.解:过O作OC⊥AB于C.在Rt△OAC中,OA=2,∠AOC=∠AOB=60°,∴AC=OA•sin60°=,因此AB=2AC=2.故选B.13.解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D14.解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.15.解:连接OC,根据题意,CE=CD=6,BE=2.在Rt△OEC中,设OC=x,则OE=x﹣2,故:(x﹣2)2+62=x2解得:x=10即直径AB=20.故选D.16.解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.17.证明:连结OA、OC,如图,∵E、F分别为弦AB、CD的中点,∴OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵AB=CD,∴AE=CF,在Rt△AEO和Rt△COF中,,∴Rt△AEO≌Rt△COF(HL),∴OE=OF.18.证明:∵OD⊥AB于D,OE⊥AC于E,∵AD=AB,AE=AC,∠ADO=∠AEO=90°,∵AB⊥AC,∴∠DAE=90°,∴四边形ADOE是矩形,∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.19.解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×30=15cm,CF=CD=×16=8cm,在Rt△AOE中,OE===8cm,在Rt△OCF中,OF===15cm,∴EF=OF﹣OE=15﹣8=7cm.答:AB和CD的距离为7cm.中考链接:1.解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选A.2.解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE=∴BE=OB﹣OE=4﹣7.故答案为4﹣7.。
人教版九年级数学上册《24.1.2垂直于弦的直径》同步测试题含答案一、选择题:在每小题给出的选项中,只有一项是符合题目要求的。
1.下列说法正确的是( )A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径的弦平分这条直径D. 弦的垂直平分线经过圆心2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,则下列结论不一定成立的是 ( )A. CM =DMB. CB ⌢=DB ⌢C. AC ⌢=AD ⌢D. OM =MB3.如图,A 是⊙O 上一点,连接OA ,弦BC ⊥OA 于点D.若OD =2,AD =1则BC 的长为 ( )A. 2√ 5B. 4C. 2√ 3D. 2√ 24.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm 则AE 的长为 ( )A. 8 cmB. 5 cmC. 3 cmD. 2 cm5.已知⊙O 的直径CD =100cm ,AB 是⊙O 的弦AB ⊥CD ,垂足为M ,且AB =96cm ,则AC 的长为( )A. 36cm 或64cmB. 60cm 或80cmC. 80cmD. 60cm6.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 长的取值范围是 ( )A. 4≤OM ≤5B. 3≤OM <5C. 3<OM ≤5D. 3≤OM ≤57.如图,AB,CD是⊙O的两条平行弦,且AB=4,CD=6,AB,CD之间的距离为5,则⊙O的直径是( )A. √ 13B. 2√ 13C. 8D. 108.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )A. 10cmB. 16cmC. 24cmD. 26cm9.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD 是( )(9题)(10题)A. 3dmB. 4dmC. 5dmD. 6dm10.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,OC=3,则EC的长为( )A. 2√ 15B. 8C. 2√ 10D. 2√ 13二、填空题:11.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为.12.下列说法:①经过圆心的直线是圆的对称轴;②直径是圆的对称轴;③圆的对称轴有无数条;④当圆绕它的圆心旋转180∘时,仍会与原来的圆重合.其中正确的有.(填序号)13.如图,工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则这个小圆孔的宽口AB的长度为mm.(13题)(14题)14.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1则⊙O的半径为.15.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15∘,半径为2,则弦CD的长为.(15题)(16题)(17题)16.如图,在半径为10cm的⊙O中AB=16cm,弦OC⊥AB于点C,则OC等于cm.17.如图,AB为⊙O的直径,弦CD交AB于点P,且PA=1,PB=5,∠DPB=30∘则CD的长为.18.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为m.(保留整数)三、解答题:解答应写出文字说明,证明过程或演算步骤。
24.1.2 垂直于弦的直径测试时间:30分钟一、选择题1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A.①B.②C.③D.④2.(2017贵州黔西南州中考)如图,在☉O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是( )A.3B.2.5C.2D.13.在某岛A的正东方向有台风,且台风中心B距离该岛40 km,台风中心正以30 km/h的速度向西北方向移动,距离台风中心50 km以内(包括边界)都受影响,则该岛受到台风影响的时间为( )A.不受影响B.1 hC.2 hD.3 h二、填空题4.(2017湖南长沙中考)如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.5.(2017四川雅安中考)☉O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.三、解答题6.如图,AB为☉O的弦,☉O的半径为5,OC⊥AB于点D,交☉O于点C,且CD=1.(1)求线段OD的长;(2)求弦AB的长.7.(2018福建龙岩新罗期末)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.24.1.2 垂直于弦的直径一、选择题1.答案 B 第②块有一段完整的弧,可在这段弧上任作两条弦,作出这两条弦的垂直平分线,它们的交点即为圆心,进而可得半径.故选B.2.答案 C 连接OA,设CD=x,∵OA=OC=5,∴OD=5-x,∵OC⊥AB,AB=8,∴由垂径定理可知AD=AB=4,由勾股定理可知52=42+(5-x)2,∴x=2(x=8舍去),∴CD=2.故选C.3.答案 C 如图,假设D、E为刚好受影响的点,过A作AC⊥BE于点C,连接AE、AD,可得出AE=AD=50 km,∵∠ABE=45°,∠ACB=90°,AB=40km,∴AC=BC=40 km,在Rt△ADC中,AD=50km,AC=40 km,∴根据勾股定理得DC==30 km,∴ED=2DC=60 km,又台风速度为30km/h,∴该岛受到台风影响的时间为60÷30=2(h).故选C.二、填空题4.答案 5解析连接OC,∵AB为☉O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设☉O的半径为x,则OC=x,OE=OB-BE=x-1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x-1)2+32,解得x=5,∴☉O的半径为5.5.答案4≤OP≤5解析如图:连接OA,过O作OM⊥AB于M,∵☉O的直径为10,∴半径为5,∴OP的最大值为5.∵OM⊥AB,∴AM=BM,∵AB=6,∴AM=3.在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.三、解答题6.解析(1)∵☉O的半径是5,∴OC=5,∵CD=1,∴OD=OC-CD=5-1=4.(2)如图,连接AO,∵OC⊥AB,∴AB=2AD,在Rt△OAD中,根据勾股定理得AD===3,∴AB=6,因此弦AB的长是6.7.解析设直径CD的长为2x寸,则半径OC=x寸, ∵CD为☉O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5(寸),连接OB,则OB=x寸,根据勾股定理得x2=52+(x-1)2, 解得x=13,∴CD=2x=2×13=26(寸).答:CD的长为26寸.。
24.1.2 垂直于弦的直径
基础闯关全练
拓展训练
1.(2016云南曲靖一模)如图,在☉O中,弦AB⊥AC,OD⊥AB于点D,OE⊥AC于点E,若AB=8 cm,AC=6 cm,则☉O的半径OA的长为( )
A.7 cm
B.6 cm
C.5 cm
D.4 cm
2.(2016贵州一模)☉O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则☉O的半径为( )
A. B.2 C. D.3
能力提升全练
拓展训练
1.
如图,圆心在y轴的负半轴上,半径为5的☉B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与☉B相交于C、D两点,则弦CD的长的所有可能整数值有( )
A.1个
B.2个
C.3个
D.4个
2.在平面直角坐标系中,以原点O为圆心的圆过点A(0,3),直线y=kx-3k+4(k≠0)与☉O交
于B,C两点,则弦BC的长的最小值为.
三年模拟全练
拓展训练
(2018黑龙江哈尔滨尚志期中,16,★★☆)如图,AB为☉O的弦,P为AB上一点,且
PA=8,PB=6,OP=4,则☉O的半径为.
五年中考全练
拓展训练
1.(2017青海西宁中考,8,★★☆)如图,AB是☉O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A. B.2 C.2 D.8
2.(2016四川南充中考,15,★★☆)下图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.
核心素养全练
拓展训练
1.(2017河南鹤壁模拟)如图,点C是☉O上一点,☉O的半径为2,D,E分别是弦AC,BC上一动点,且OD=OE=,则AB的最大值为( )
A.2
B.2
C.2
D.4
2.如图,AB是☉C的弦,直径MN⊥AB于O,MN=10,AB=8,以直线AB为x轴,直线MN为y轴建立坐标系.
(1)试求A,B,C,M,N五点的坐标;
(2)我们把横纵坐标都是整数的点叫做整数点,请写出☉C上的其他整数点的坐标: .
24.1.2 垂直于弦的直径
基础闯关全练
拓展训练
1.答案 C ∵弦AB⊥AC,OD⊥AB于点D,OE⊥AC于点E,AB=8 cm,AC=6 cm,∴四边形OEAD是矩形,AD=AB=4 cm,AE=AC=3 cm,∴OD=AE=3 cm,
∴OA===5(cm).故选C.
2.答案 C 过A作AD⊥BC于点D,由题意可知AD必过点O,连接OB.∵△ABC是等腰直角三角形,AD⊥BC,BC=6,∴BD=CD=AD=3,∴OD=AD-OA=2.在Rt△OBD中,根据勾股定理,得
OB===.故选C.
能力提升全练
拓展训练
1.答案 C 半径为5的☉B与y轴的正半轴交于点A(0,1),可知OB=4,所以点B(0,-4).因为P(0,-7),所以BP=3.当弦CD⊥AB时,弦CD最短,连接BC,由勾股定理得
CP===4,由垂径定理可知CD=2CP=8;当弦CD是☉B的直径时,CD最长,CD=10.所以8≤CD≤10,所以弦CD的长的所有可能整数值为8、9、10,共3个.
2.答案4
解析连接OB,过点O作OD⊥BC于点D,∵直线y=kx-3k+4必过点(3,4),∴点D的坐标为(3,4)
时,弦BC最短,此时OD=5,∵以原点O为圆心的圆过点A(0,3),∴圆的半径为3,∴OB=3,∴BD===2,∴弦BC的长的最小值为4.
答案8
解析如图,过O作OE⊥AB,垂足为E,
连接OA.∵AP=8,PB=6,∴AE=BE=AB=7,PE=BE-PB=7-6=1,在Rt△POE 中,OE===.
在Rt△AOE中,OA===8.
五年中考全练
拓展训练
1.答案 C
如图,作OH⊥CD于H,连接OC.∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,
∴OA=4,∴OP=OA-AP=2.在Rt△OPH中,∵∠OPH=∠APC=30°,
∴∠POH=60°,∴OH=OP=1.在Rt△OHC中,∵OC=4,OH=1,
∴CH==,∴CD=2CH=2.故选C.
2.答案50
解析设符合条件的圆为☉O,由题意知,圆心O在对称轴l上,且点A、B都在☉O上.设OC=x mm,则OD=(70-x)mm,由OA=OB,得OC2+AC2=OD2+BD2,即x2+302=(70-x)2+402,解得
x=40,∴OA===50 mm,即能完全覆盖这个平面图形的圆面的最小半径
是50 mm.
1.答案 A 如图,连接OC,取OC的中点F,连接DF.当OD⊥AC,OE⊥BC时,∠ACB最大,AB最大.∵☉O的半径为2,∴OF=CF=,∵OD=,∴△DOF是等边三角形,∴∠DOF=60°,∴∠
ACO=30°,AC⊥OD,∴AC=2CD=2=2=2.同理可得∠BCO=30°,∴∠ACB=60°.∵OD=OE,OD⊥AC,OE⊥BC,
∴AC=BC,∴△ABC是等边三角形,∴AB=AC=2,即AB的最大值为2.故选A.
2.解析(1)连接AC,∵MN是直径,MN⊥AB于O,AB=8,∴AO=BO=4.
∵MN=10,∴AC=MC=CN=5.在Rt△AOC中,OC===3,
∴OM=8,ON=2.∴所求五点的坐标分别为A(-4,0),B(4,0),C(0,3),M(0,8),N(0,-2).
(2)(-4,6),(4,6),(-3,7),(3,7),(-3,-1),(3,-1),(-5,3),(5,3).。