七年级数学数据的收集和整理
- 格式:ppt
- 大小:522.00 KB
- 文档页数:26
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
七年级数据的收集与整理方法收集和整理数据是数学学习中的重要环节,也是培养学生数据分析和解决问题能力的关键之一。
本文将介绍七年级数据的收集与整理方法,并提供一些实用的技巧和经验。
一、数据收集方法1. 直接观察法:通过直接观察对象或现象,并记录所需的数据。
例如,统计班级同学的身高、体重等信息,可以通过直接测量和记录来收集数据。
2. 调查法:通过设计问卷、进行访谈等方式,收集所需的数据。
调查法适用于需要了解他人观点、喜好、习惯等方面的数据收集,比如调查同学们对假期旅行目的地的偏好等。
3. 实验法:通过设计实验来获取数据。
实验法常用于科学实验,如测试不同养料对植物生长速度的影响,可以通过设置对照组和实验组,并记录相关数据。
二、数据整理方法1. 制作表格:将收集到的数据整理成表格形式,便于比较和分析。
表格通常有表头和数据行,其中表头用于说明各列数据的含义,数据行记录具体的数据。
2. 绘制图表:使用图表可以更直观地展示数据的特点和规律。
常见的图表类型有柱状图、折线图、饼图等。
选择适当的图表类型可以更好地表达数据之间的关系和趋势。
3. 数据分类与整理:根据需要,可以将数据进行分类和分组,便于比较和分析。
例如,统计同学们的成绩时,可以按科目进行分类,进一步分析各科目的得分情况。
4. 数据计算与统计:对于数字数据,可以进行计算和统计。
常见的统计指标包括平均数、中位数、众数等,通过计算这些指标可以更好地描述数据的特征。
三、数据收集与整理的注意事项1. 样本选择:在进行数据收集时,应该选择具有代表性的样本,以确保数据的准确性和可靠性。
样本的选择应尽量避免主观偏见,并能够反映整体的特点。
2. 数据记录与保存:在数据收集过程中,要确保准确地记录和保存数据。
可以使用纸质记录表或电子表格等工具,将数据整理妥善保存以备后续分析和应用。
3. 数据分析与解读:收集和整理好数据后,应对数据进行分析和解读。
通过分析数据的规律和趋势,可以得出结论和提出问题,启发学生思考和探索。
七年级下册数学数据的收集整理与描述数据的收集、整理与描述数据的收集、整理、描述和分析是统计学中的基本过程。
数据的收集是指从总体中获取数据的过程。
数据的整理是将收集到的数据进行分类、排序和编码等操作。
数据的描述是将整理好的数据以表格、图表等形式呈现出来。
数据的分析是对数据进行统计学分析,得出结论。
知识结构统计调查有两种方式:全面调查和抽样调查。
全面调查是对总体进行调查,抽样调查是从总体中抽取一部分个体进行调查。
全面调查的优点是可靠、真实,抽样调查的优点是省时、省力,减少破坏性。
在进行数据处理时,基本过程是收集数据、整理数据、描述数据、分析数据、得出结论。
数据的表示有两种基本方法,一是统计表,二是统计图。
常见的统计图有条形统计图、扇形统计图和折线统计图。
全面调查全面调查是指对总体进行调查的方式。
在数据处理的基本过程中,全面调查包括收集数据、整理数据、描述数据、分析数据和得出结论。
其中,数据的整理和描述可以使用统计表和统计图的方式进行。
统计表可以清楚地找出数据分布的规律,统计图则可以更直观地反映数据的规律。
常见的统计图有条形统计图、扇形统计图和折线统计图。
抽样调查抽样调查是指从总体中抽取一部分个体进行调查的方式。
抽样调查只考察总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力和财力。
但是,抽样调查得到的结果往往不如全面调查得到的结果准确。
为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性。
在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。
表示数据的两种基本方法表示数据的两种基本方法是统计表和统计图。
统计表可以清楚地找出数据分布的规律,统计图则可以更直观地反映数据的规律。
常见的统计图有条形统计图、扇形统计图和折线统计图。
扇形统计图用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小。
七年级数学第17 讲:数据的收集与整理成果姓名1,普查与抽样调查为了特定目的对全部考察对象进行的全面调查叫做普查;其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体;从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个2,扇形统计图样本;抽样时要留意样本的代表性和广泛性;扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图;(各个扇形所占的百分比之和为1)圆心角度数=360°×该项所占的百分比;(各个部分的圆心角度数之和为360°)该部分所对应的圆心角360 ;在扇形统计图中,每部分占总体的百分比3,频数直方图是一种特别的条形统计图,它将统计对象的数据进行了分组(每组的最大值与最小值的差叫做组距),画在横轴上,纵轴表示各组数据的频数(数据显现的次数);当样本中的数据较多时,用频数直方图能更清晰,更直观地反映数据的整体状况;4,各种统计图的特点条形统计图:能清晰地表示出每个项目的详细数目;折线统计图:能清晰地反映事物的变化情形;扇形统计图:能清晰地表示出各部分在总体中所占的百分比;典型例题:例1,以下调查中,适合用普查方式的是()A. 明白一批炮弹的杀伤半径明白扬州电视台《关注》栏目的收视率B.C. 明白长江中鱼的种类明白某班同学对“小强热线”的知晓率D.例2,要明白全校同学的课外作业情形,你认为以下抽样方法中比较合理的是()A. 调查全体女生B. 调查全体男生C. 调查九年级全体同学调查七,八,九年级各100 名同学D.例3,为了明白一批电视机的寿命,从中抽取100 台电视机进行试验,这个问题的样本是()A. 这批电视机这批电视机的寿命B.C. 所抽取的100 台电视机的寿命D. 100例4,为了检查一批皮鞋的质量, 从中抽取了50 双作质量检查, 此问题中数目50 是( )A. 样本样本容量总体个体B. C. D.例5,为了考查某校初三年级800 名同学期末数学测试成果, 从中抽取了100.名同学的试卷进行统计分析, 这100 名同学的数学成果是()A. 个体B. 样本C. 总体D. 样本容量例6,为了明白某校八年级500 名同学的睡眠时间, 从中抽调了50 名同学进行明白. 就这个问题来说, 下面说法正确选项()A.500 名同学是总体名同学睡眠时间是样本; ;C. 每名同学是个体这种调查方式是普查; D.例7,在2021 年的世界无烟日( 5 月31 日),小明学习小组为明白本地区大约有多少成年人吸烟,随机调查了100 个成年人,结果其中有个成年人吸烟. 对于这个数据收集与处理15的问题,以下说法正确选项(A. 调查的方式是普查)本地区只有85 个成年人不吸烟B.C. 样本是15 个吸烟的成年人本地区约有15℅的成年人吸烟D.例8,如下列图的两个统计图,女生人数多的学校是()A. 甲校C. 甲,乙两校女生人数一样多B. 乙校D.无法确定例9,某校七(1)班的全体同学喜爱的球类运动用如下列图的统计图来表示,下面说法正确选项()A. 从图中可以直接看出喜爱各种球类的详细人数;B. 从图中可以直接看出全班的总人数;C. 从图中可以直接看出全班同学中学三年来喜爱各种球类的变化情况;D,从图中可以直接看出全班同学现在喜爱各种球类的人数的大小关系;例10,在扇形统计图中,其中一个扇形的圆心角为72°,就这个扇形所表示的占总体的百分数是;例11,为明白某中学男生的身高情形,随机抽取如干名男生进行身高测量,将所得到的数据整理后,画出频数直方图(如图),图中从左到右依次为第1,2,3,4,5 组.(1) 求抽取了多少名男生测量身高.(2) 身高在哪个范畴内的男生人数最多?(答出是第几个小组即可)(3) 如该中学有人数.300 名男生,请估量身高为170 cm 及170 cm 以上的例12,某省为进一步扩大内需,积极响应国务院的“家电下乡”政策.第一批列入家电下乡的产品为彩电,冰箱,洗衣机和手机四种产品.今年一季度对以上四种产品的销售情形进行了统计,绘制了如下的统计图,请你依据图中信息解答(1)该家电销售公司一季度四种电器销售的总数量是台.(2)请补全条形统计图和扇形统计图.例13,为了进一步明白七年级同学的身体素养情形,体育老师对七(1)班50 位同学进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:频数(人数)组别次数第1 组第2 组第3 组第4 组第5 组请结合图表完成以下问题:(1)补全表格中的数据;(2)把频数分布直方图补充完整;例14,小强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,答以下问题:人数1614121086420绘制的两幅不完整的统计图.请你依据图中供应的信息,解跳绳30%跳远18%其他排球跳绳跳远排球其他项目(1)该班共有(2)补全条形统计图;名同学;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为(4)如全校有1080 名同学,请运算出全校“其他”部分的同学人数.°;课内练习:1. 为了明白七年级同学的数学成果,在全校七年级同学中抽取了50 名同学进行检测,在这个问题中,总体是,样本是__.2. 在进行数据描述时,要显示每组中的详细数据,应采纳统计图;要显示部分在总体中所占的百分比,应采纳统计图;要显示数据的变化趋势,应采纳统计图;要显示数据的分布情形,应采纳 图 .3. 为了明白某商品促销广告中所称中奖率的真实性,某人买了 100 件该商品调查其中奖率,那么他采纳的调查方式是4. 依据猜测, 21 世纪中叶我国劳动者构成比例绘制成扇形统计图如下列图, 就第一,二,三产业劳动者的构成比例是∶∶;5. 完成以下表格:小明一周内总共花了 24 元钱,各项消费金额及其所占百分比如下表所示:消费项目 消费金额 / 元 交通 文具 4 1 6午餐 105 12消遣 4 合计 24 百分比6. 小刚在学校组织的社会调查活动中负责明白他所居住的小区450 户居民的家 庭收入情形 . 他从中随机调查了 40 户居民家庭收入情形(收入取整数,单 位:元),并绘制了如下的频数分布表和频数分布直方图 户数 .分组 频数(人数)百分比 20 16600≤ x < 800 800≤ x < 1000 1000≤ x < 1200 1200≤ x < 14005% 2 12 15% 68445%600 800 1000 1200 1400 1600 1800元%依据以上供应的信息,解答以下问题:(1)补全频数分布表;(2) 9补全频数分布直方图 . ( 3)绘制 1600≤ x < 1800合计5% 2 相应的频数分布折线图 . (4)请 你估量该居民小区家庭属于中等 100%40收入(大于 1000 不足 1600 元)的大约有多少户?7.某市“每天锤炼一小时,幸福生活一辈子”活动已开展了一年,为明白该市此项活动的 开展情形,某调查统计公司预备采纳以下调查方式中的 一种进行调查:①从一个社区随机选取 200 名居民; ②从一个城镇的不同住宅楼中随机选取 ③从该市公安局户籍治理处随机抽取200 名居民;200 名城乡居民作为调查对象,然后进行调查. (1)在上述调查方式中,你认为比较合理的一种是 ( 填序号 ).(2) 由一种比较合理的调查方式所得到的数据制成了如下列图的频数直方图,在这个调 查中,这 200 名居民每天锤炼 2 小时的人数是多少?(3)如该市有 100 万人,请你利用 (2)中的调查结果, 估量该市每天锻 炼 2 小时及以上的人数是多少?(4) 你认为这个调查活动的设计有没有不合理的地方?谈谈你的理 由.。
第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。
像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。
人教版七年级下册数学知识点归纳第十章数据的收集、整理与描述全面调查:考察全体对象的调查方式叫做全面调查。
抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
总体:要考察的全体对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:被抽取的所有个体组成一个样本。
样本容量:样本中个体的数目称为样本容量。
频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比为频率。
组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
1、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
(1)通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论(2)收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
2、数据的表示方法:(1)统计表:直观地反映数据的分布规律(2)折线图:反映数据的变化趋势(3)条形图:反映每个项目的具体数据(4)扇形图:反映各部分在总体中所占的百分比(5)频数分布直方图:直观形象地反映频数分布情况6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点3、调查方式:(1)全面调查,优点是可靠,、真实;(2)抽样调查,优点是省时、省力,减少破坏性;随机抽样调查具有广泛性和代表性。
4、总体和样本:(1)总体:要考察的所有对象(2)个体:组成总体的每一个考察对象(3)样本:从总体中抽出的所有实际被调查的对象组成一个样本。
(4)样本容量:样本中给个体的数目5、组距:每个小组两个端点之间的距离6、画直方图的一般步骤:(1)计算最大值与最小值的差;(2)决定组距与组数,先根据数据个数确定组距,再计算组数,注意无论整除与否,组数总是比商的整数位数多1;(3)确定分点,并分组;(4)列频数分布表;(5)绘制频数分布直方图。
初中数学知识点整理数据的收集与整理初中数学知识点整理:数据的收集与整理在我们的日常生活和学习中,数据无处不在。
从考试成绩的统计到市场调查的分析,从天气预报的数据收集到人口普查的信息整理,数据都扮演着重要的角色。
而在初中数学中,数据的收集与整理是一个基础且关键的知识点,它不仅能够帮助我们更好地理解和处理各种信息,还为后续的数据分析和统计推断打下坚实的基础。
一、数据的收集数据收集是获取信息的第一步,其目的是为了得到能够反映研究对象特征和规律的数据。
在初中数学中,我们主要学习了两种常见的数据收集方法:普查和抽样调查。
普查是对全体研究对象进行调查的一种方法。
例如,要了解一个班级学生的视力情况,我们可以对班级里的每一位学生进行视力检查。
普查能够得到全面、准确的信息,但它往往需要耗费大量的时间、人力和物力。
抽样调查则是从全体研究对象中抽取一部分个体进行调查,并根据这部分个体的调查结果来估计全体研究对象的情况。
比如,要了解一个城市居民的平均收入水平,由于城市居民数量众多,不可能对每一个居民都进行调查,这时就可以抽取一定数量的居民作为样本进行调查。
抽样调查具有省时省力的优点,但抽样时需要保证样本的代表性和随机性,以确保调查结果的准确性。
在进行数据收集时,我们还需要确定收集数据的对象和内容。
比如,如果要研究学生的学习情况,可能需要收集学生的考试成绩、作业完成情况、课堂表现等方面的数据。
二、数据的整理收集到的数据往往是杂乱无章的,为了便于分析和使用,我们需要对数据进行整理。
常见的数据整理方法包括分类、排序和分组。
分类是将数据按照一定的标准分成不同的类别。
例如,将学生的考试成绩分为优秀、良好、及格和不及格等类别。
排序则是将数据按照一定的顺序排列,如从小到大或从大到小。
通过排序,我们可以更直观地看出数据的分布情况。
分组是将数据分成若干个组,并统计每组中数据的个数。
比如,将学生的身高分成若干个区间,然后统计每个区间内学生的人数。