2017年春季学期新版新人教版九年级数学下学期28.2、解直角三角形及其应用教案47
- 格式:doc
- 大小:100.00 KB
- 文档页数:2
28.2 解直角三角形及其应用课题28.2 解直角三角形及其应用(2)授课类型课标依据能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
教学目标知识与技能1.会把实际问题转化为解直角三角形问题,能运用解直角三角形的方法解决问题;2.认识仰角、俯角等概念,学会综合运用所学知识解决实际题.过程与方法经历解直角三角形的实际应用,运用转化思想,学会把实际问题转化为数学问题来解决,培养学生分析问题、解决问题的能力.情感态度与价值观渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识教学重点难点教学重点将实际问题中的数量关系归结为解直角三角形元素之间的关系,从而利用所学的知识解决实际问题.教学难点将实际问题转化为数学模型教学师生活动设计意图过程一、复习引入问题1:什么是解直角三角形?直角三角形的边边、角角、边角之间有哪些关系?问题2 、3.(见PPT)这节课利用解直角三角形的知识解决实际问题,引出课题.二、应用知识问题3. 教材74页例3分析:(1)从飞船上最远能直接看到的地球上的点,应该是视线与地球相切时的切点;(2)所要求的距离应该是点P与切点之间的弧长。
(3)已知哪些条件?求弧长需要知道哪些条件?(4)如图,⊙O表示地球,点F式飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点,弧PQ的长就是地面上P,Q两点间的距离,为了计算弧PQ的长,需要先求出∠POQ的度数.(5)如何求∠POQ的度数?(教师给出问题,引导学生阅读、思考、尝试画出几何图形,结合图形分析,小组讨论,把实际问题中的已知和求解转化为数学问题中的已知和求解。
)归纳:根据题意将实际问题转化为数学问题,该题综合运用了圆和解直角三角形的知识,关于圆的知识用到了切线的性质,弧长公式,解直角三角形用到了已知一条直角边和斜边求它们所夹的锐角.构造出解题所需的几何图形,把已知条件和所求有机的结合进行分析,是解决此类题的关键.问题4. 教材75页例4分析:(1)什么是仰角、俯角?在视线和水平线所成的角中,视线在水平线上方的角是仰角;视线在水平线下方的角是俯角.(2)如何根据题意构造几何图形?(3)怎样求出BC的长?在两个直角三角形中分别求出BD、CD,也可以先求出AB、AC的长,再运用勾股定理求出BC. 通过学生亲自探究实际问题,初步领会把实际问题转化为数学问题的方法,培养学生用数学的能力将实际问题转化为数学问题,培养其分析问题、解决问题能力的能力学生独立完成,教师巡视,选学生板书,之后,师生共同评议,达成共识(教师给出问题,学生独立思考,运用不同方法分析解题思路。
课题 28.2 解直角三角形(一)一、教学目标1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.三、教学步骤(一)复习引入1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系a2 +b2 =c2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)教学过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解 ∵tanA=a b ∴ 60B ∠=∴ 9030A B ∠=-∠=∴C=2b=例 2在Rt △ABC 中, ∠B =35,b=20,解这个三角形. 引导学生思考分析完成后,让学生独立完成 在学生独立完成之后,选出最好方法,教师板书.35B ∠-∠=-=解:A=909055tan b B a=2028.6tan tan 35b a B ∴==≈n 2035.1sin sin 35b si B cb c b =∴==≈完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底注意:例1中的b 和例2中的c 都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
师:尝试写出∠A 的三角函数。
生:∠A 的正弦值:sin A=∠A 所对的边斜边= ac∠A 的余弦值:cos A= ∠A 所邻的边斜边= bc∠A 的正切值:tan A=∠A 所对的边邻边= ab师:将 30°、45°、60°角的正弦值、余弦值和正切值填入下表:生:变式1-1 在Rt △ABC 中,∠C =90°,a = 30, b = 20,根据条件解直角三角形.变式1-2 在△ABC 中,∠C =90∘, AB =6, cosA =13,则AC 等于( )A .18B .2C .12D .118变式1-3在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .msin35° B .mcos35° C .m sin35°D .mcos35°变式1-4 如图,在Rt △ABC 中,∠C=90°,∠B=35° ,b=20,解这个直角三角形(结果保留小数点后一位). 变式1-5 如图,太阳光线与水平线成70°角,窗子高AB =2米, 要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不 能直接射入室内,则遮阳板DC 的长度至少是( ) A .2tan70°米 B .2sin70°米 C .2.2tan70°米 D .2.2cos70°米平线下方的叫做俯角。
指南或指北的方向线与目标方向线构成小于900的角,叫做方位角. 师:尝试说出A,B关于坐标原点O的位置?生:点A位于点O北偏东30°位置,点B位于点O南偏西45°位置[多媒体展示]热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)。
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
28.2解直角三角形【探讨目标】1.目的与要求 能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题.2.知识与技术 能依照直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的知识解决有关的实际问题.3.情感、态度与价值观 通过解直角三角形的应用,培育学生学数学、用数学的意识和能力,鼓励学生多接触社会、了解生活并熟悉一些生产和生活中的实际事物.【探讨指导】 教学宫殿在直角三角形中,由已知元素求出未知元素的进程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如以下图:角角关系:两锐角互余,即∠A+∠B =90°;边边关系:勾股定理,即222c b a =+;边角关系:锐角三角函数,即b a B abB c aB c b B a b A b aA c bA c a A ========cot ,tan ,cos ,sin cot ,tan ,cos ,sin解直角三角形,可能显现的情形归纳起来只有以下两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的一起的地方:有一条边.因此,直角三角形可解的条件是:至少已知一条边.用解直角三角形的知识解决实际问题的大体方式是:把实际问题抽象成数学问题(解直角三角形),确实是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)和图形之间的大小或位置关系.借助生活常识和讲义中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰本地作高,化斜三角形为直角三角形再求解.在解直角三角形的进程中,常会碰到近似计算,如没有特殊要求外,边长保留四个有效数字,角度精准到1′.例1 在△ABC 中,∠C =90°,依照以下条件解直角三角形. (1)c =10,∠B =45°,求a ,b ,∠A ; (2)26,62==b a ,求c ,∠A ,∠B思路与技术 求解直角三角形的方式多种多样,如(1)能够先求a 或b ,也能够先求∠A ,依据都是直角三角形中的各元素间的关系,但求解时为了使计算简便、准确,一样尽可能选择正、余弦,尽可能利用乘法,尽可能选用含有已知量的关系式,尽可能幸免利用中间数据.解答 (1)∠A =90°-45°=45°2545sin 10sin =︒⋅=⋅=A c a 25==a b(2)64722422=+=+=b a c ,216462sin ==A 因此︒=∠30A︒=∠-︒=∠6090A B例2 如图,CD 是Rt △ABC 斜边上的高,32=BC ,22=CD ,求AC ,AB ,∠A ,∠B(精准到1′).思路与技术 在Rt △ABC 中,仅已知一条直角边BC 的长,不能直接求解.注意到BC 和CD 在同一个Rt △BCD 中,因此可先解那个直角三角形.解答 在Rt △BCD 中281222=-=-=CD BC BD33322cos 363222sin ======BC BD B BC CD B用计算器求得 ∠B =54°44′ 于是∠A =90°-∠B =35°16′ 在Rt △ABC 中,62366sin 63332cos =⨯=⨯==⨯==B AB AC B BC AB例3 气象台测得台风中心在某口岸A 的正东方向400km 处,正在向正西北方向转移,距台风中心300km 的范围内将受其阻碍,问口岸A 是不是会受到这次台风的阻碍?思路与技术 如图19—48,确实是要求出A 到台风移动线路BC 的距离是不是大于300km ,Rt △ABC 中,∠ACB =90°,∠ABC =45°,AB =400km ,是AC 可求.解答 在Rt △AB C 中,由于ABC AB AC∠=sin因此AC =AB ·sin ∠ABC =400×sin45°300283220022400<≈=⨯=因此口岸A 将受到这次台风的阻碍.例4如图,两幢建筑物的水平距离为56.5m,从较高的建筑物的顶部看较低的建筑物的底部的俯角是42°,从较低的建筑物的顶部看较高建筑物顶部的仰角是22°,求这两幢建筑物的高度(精准到0.1m).思路与技术如图,AB、CD表示两幢建筑物,AB⊥BD,CD⊥BD,BD=56.5m,依照俯角、仰角的意义,∠DAE=42°,∠ACF=22°,于是Rt△ABD、Rt△ACF都可解.解答在Rt△ABD中,∠ADB=∠DAE=42°BD=56.5(m)AB=BD·tan∠ADB=56.5×tan42°≈50.9(m)在Rt△ACF中,AF=CF·tan∠ACF=56.5×tan22°≈22.8(m)因此CD=AB-AF=28.1(m)答:两幢建筑物的高度别离为50.9m,28.1m例5如图,沿水库拦水坝的背水坡,将坝顶加宽2m,坡度由原先的1:2改成1:2.5,已知坝高6m,坝长50m求:(1)加宽部份横断面AFEB的面积;(2)完成这一工程需要多少土方?思路与技术只须求出梯形AFEB的下底EB的长,作AG⊥BC,FH⊥EB ,垂足别离为G 、H ,依照坡度的意义,能够求出坡AB 、坡EF 的水平长度. 解答 (1)作AG ⊥BC ,FH ⊥EB ,垂足别离为G 、H ,由题意得 HG =AF =2(m).AG =FH =6(m) 在Rt △ABG 中,因为21==BG AG i因此BG =2×6=12(m) 在Rt △FEH 中,因为5.21==EH FH i因此EH =2.5×6=15(m)因此EB =EH+HG-BG =15+2-12=5(m)因此()()()2216522121m AG EB AF S AFEB =⨯+=⨯+=梯形()31050502150m S V AFEB =⨯=⨯=梯形答:加宽部份横断面AFEB 的面积为221m ,完成这一工程需要1050方土.例6 海上有两条船,甲船在乙船的正南方向,甲船以每小时40海里的速度沿北偏东60°方向航行,乙船沿正东方向以每小时20海里的速度航行,问两船会可不能相撞?什么缘故?思路与技术 依照题意画出图形,如图19—51,可知甲、乙两船的线路可能会成为直角三角形中60°所对的直角边和斜边,两船同时动身,在相同的时刻内所走路程的比若是正好等于60°的正弦就会相撞,不然可不能.解答 如图,因为乙船的速度为每小时20海里,甲船的速度为每小时40海里,因此乙船与甲船所走路程的比为1:2.又212360sin ≠=︒因此可不能发生相撞.例7 某市为改变城市交通状况,在大街拓宽工程中,要伐掉一棵树AB .在地面上事前划定以B 为圆心,半径与AB 等长的圆形危险区,此刻某工人站在离B 点3m 远的D 点测得树的顶部A 点的仰角为60°,树的底部B 的仰角为30°,如图19—52,问距离B 点8m 远的爱惜物是不是在危险区内?思路与技术 此题的实质是要计算大树的高度,若是大于8m ,说明爱惜物在危险区内,不然不在.由于大树不在哪个直角三角形中,依照条件,过C 作CE ⊥AB ,那么可把AB 放在Rt △ACE 和Rt △BCE 中进行求解.解答 过C 作CE ⊥AB ,垂足为E. 由题意可知,CE =DB =3m 在Rt △CE B 中,()m CE BE 732.133330tan ≈⨯=︒⋅=在Rt △ACE 中,()m CE AE 196.53360tan ≈⨯=︒⋅=因此AB =AE+BE =5.196+1.732=6.928(m)<8(m) 因此距离B 点8m 远的爱惜物不在危险区域内.【探究活动】提出问题 运用解直角三角形的知识能够解斜三角形(锐角三角形或钝角三角形)吗?探讨预备 锐角△ABC(已知b ,a 和∠C).钝角△ABC(已知∠A ,c ,∠B)(∠A ,∠B ,∠C 的对边为a ,b ,c)如图.探讨进程 直角三角形中的边边关系、角角关系、边角关系是解直角三角形的依据,它们只有在直角三角形中才成立,因此要想用它们来解斜三角形,必需把斜三角形转化为直角三角形,转化的方式一样是作高,如图19—53甲能够作AD ⊥BC 于D ,如此构造了两个直 角三角形Rt △ABD 和Rt △ACD ,Rt △ACD 中,CD =b cos ∠C ,AD =b sin ∠C ,因为BC =a ,因此BD =a -b cos ∠C ,在Rt △ABD 中,C b a Cb BD AD B ∠-∠==cos sin tan ,得出∠B ,进而求出∠A =180°-∠B-∠C ,()()2222cos sin C b a C b BD AD AB ∠++∠=+=C ab a b ∠-+=cos 222()1sin cos 22=∠+∠C C 一样方式,图乙中,能够过C 作CD ⊥AB 于D ,先解Rt △ACD .再解Rt △CDB .探讨评析 “化斜为直”是运用解直角三角形的知识解斜三角形的全然方式,其做法是通过作斜三角形的一条高,把斜三角形化为两个直角三角形,再依照条件别离在两个直角三角形中做文章.例8 如图,公路上A 、B 两处相距lkm ,测得城镇C 在A 处的北偏东35°方向,在B 处的北偏西40°方向.求城镇C 到A 处、B 处的距离别离是多少?思路与技术 弄清楚两个方向角是解决问题的第一步,依照题意∠1=35°,∠2=40°,AB =lkm ,发觉△ABC 不是直角三角形,故通过“化斜为直”转化,作CD ⊥AB 于D ,如图19—55,那么∠ACD =∠l =35°,∠BCD =∠2=40°,可是Rt △ACD 与Rt △BCD 都无法直接求解,因此可利用CD 是这两个直角三角形的公共边和AD +DB =AB =lkm 的条件,设法列方程求解.解答 作CD ⊥AB ,垂足为D ,设CD =x 那么在Rt △ACD 中,AD =x ·tan ∠ACD =x ·tan35° 在Rt △CDB 中,BD=x·tan∠BCD=x·tan40°因为AD+BD=AB=1因此x(tan35°+tan40°)=1x=1÷(tan35°+tan40°)≈0.6496(km)于是()()kmCDBCkmCDAC848.050sin,793.055sin≈︒=≈︒=答:城镇C到A处的距离约93km,到B处的距离约是0.848km.。
初中数学试卷桑水出品新人教版数学九年级下册第28章28.2解直角三角形及其应用课时作业一、选择题1.如图是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=33,则边BC的长为()A.303cmB.203cmC.103cmD.53cm知识点:解直角三角形解析:解答:在直角三角形ABC中,根据三角函数定义可知:tan∠BAC=BCAC,又AC=30cm,tan∠BAC=33,则BC=ACtan∠BAC=30×33=103cm.故选C.分析:此题考查学生掌握三角函数正弦、余弦及正切的定义,是一道基础题.要求注意观察生活中的数学问题,培养学生利用数学知识解决实际问题的能力,体现了数学来自于生活且服务于生活.因为教学用的直角三角板为直角三角形,所以利用三角函数定义,一个角的正切值等于这个角的对边比邻边可知∠BAC的对边为BC,邻边为AC,根据∠BAC的正切值,即可求出BC的长度.2. 在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()A.24米 B. 20米 C. 16米 D. 12米答案:D知识点:解直角三角形的应用解析:解答:∵AB⊥BC,BC=24米,∠ACB=27°,∴AB=BC·tan27°,把BC=24米,tan27°≈0.51代入得,AB≈24×0.51≈12米.故选D.分析:本题考查的是解直角三角形的应用,熟记锐角三角函数的定义是解答此题的关键.直接根据锐角三角函数的定义可知,AB=BC·tan27°,把BC=24米,tan27°≈0.51代入进行计算即可.3.如图,在塔AB前的平地上选择一点C,测出看塔顶的仰角为30°,从C点向塔底走100米到达D点,测出看塔顶的仰角为45°,则塔AB的高为()A.503米B. 1003米C 10031+米 D.10031-米知识点:解直角三角形的应用-仰角俯角问题解析:解答:在Rt△ABD中,∵∠ADB=45,°∴BD=AB.在Rt△ABC中, ∵∠ACB=30°,∴ABBC=tan30°=33.∴BC=3AB. 设AB=x(米), ∵CD=100,∴BC=x+100. ∴x+100=3x,∴x=10031米.故选D.分析:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.首先根据题意分析图形;本题涉及到两个直角三角形,设AB=x(米),再利用CD=BC-BD=100的关系,进而可解即可求出答案.4.某水坝的坡度i=1:3,坡长AB=20米,则坝的高度为()答案:A.知识点:解直角三角形的应用-坡度坡角问题解析:解答:如图:∵坡度i=1:3,∴设AC=x,BC=3x.根据勾股定理得AC2+BC2=AB2,则x2+(3x)2=202,解得x=10.故选A .分析:此题考查了坡比的概念,不仅要熟悉解直角三角形的知识,还要熟悉勾股定理.画出图形,根据坡度的定义__-直角三角形中,坡角的正切值,然后利用解直角三角形的知识解答. 5. 如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为( )A .103米B .10米C .203米D .2033米 答案:A知识点:解直角三角形的应用-仰角俯角问题 解析:解答:∵在直角三角形ADB 中,∠D=30°, ∴ABBD=tan30°, ∴BD=tan 30ABo=3AB . ∴在直角三角形ABC 中,∠ACB=60°. ∴BC=tan 60ABo =33AB.∵CD=20,∴CD=BD-BC=3AB-33AB=20. 解得:AB=103. 故选A .分析:本题考查仰角的定义,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB 及CD=DC-BC=20构造方程关系式,进而可解,即可求出答案.6. 如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则迎水坡面AB 的长度是( )A .100mB .1003mC .150mD .503 m 答案:A知识点:解直角三角形的应用-坡度坡角问题解析:解答:∵堤坝横断面迎水坡AB 的坡比是1:3, ∴BC AC =33.∵BC=50m, ∴AC=503m. ∴AB=22AC BC =100m.故选:A .分析:此题主要考查了解直角三角形的应用-坡度问题,关键是掌握坡度是坡面的铅直高度h 和水平宽度l 的比. 根据题意可得BCAC =33,把BC=50m ,代入即可算出AC 的长,再利用勾股定理算出AB 的长即可.7. 如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(3+1)米 答案:D知识点:解直角三角形的应用-仰角俯角问题解析:解答:由已知,得∠A=30°,∠B=45°,CD=100,∵CD⊥AB于点D,∴在Rt△ACD中,∠CDA=90°,tanA=CDAD.∴AD=tanCDA=10033=1003.在Rt△BCD中,∠CDB=90°,∠B=45°,∴DB=CD=100米.∴AB=AD+DB=1003+100=100(3+1)米.故选D.分析:本题考查了解直角三角形的应用,解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.8.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组知识点:解直角三角形的应用解析:解答:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用EF FDAB BD,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C .分析:本题考查相似三角形的应用和解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.根据三角形相似可知,要求出AB ,只需求出EF 即可.所以借助于相似三角形的性质,根据EF FDAB BD=即可解答. 9. 如图,△ABC 中,cosB=22,sinC=35,AC=5,则△ABC 的面积是( )A.212B. 12C.14D.21 知识点:解直角三角形的应用 解析:解答:过点A 作AD ⊥BC , ∵△ABC 中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB .∴∠B=45°. ∵sinC=35=AD AC =5AD ,∴AD=3.∴CD=2253-=4. ∴BD=3.则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.分析:此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.10.(2011 荆州)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A. 5714B.35C.217D.2114知识点:解直角三角形的应用解析:解答:延长BA作CD⊥BD,∵∠A=120°,AB=4,AC=2,∴∠DAC=60°,∠ACD=30°.∴2AD=AC=2,∴AD=1,CD=3,∴BD=5,∴BC=27,∴sinB=327=2114.故选:D.分析:此题主要考查了解直角三角形以及勾股定理的应用,根据题意得出∠DAC=60°,∠ACD=30°是解决问题的关键.根据∠A=120°,得出∠DAC=60°,∠ACD=30°,得出AD=1,CD=3,再根据BC=27,利用解直角三角形求出.11.如图所示,渔船在A处看到灯塔C在北偏东60°方向上,渔船正向东方向航行了12海里到达B处,在B处看到灯塔C在正北方向上,这时渔船与灯塔C的距离是()A.123海里B.63海里C. 6海里D. 43海里 知识点:解直角三角形的应用-方向角问题 解析:解答:由已知得:∠BAC=90°-60°=30°, 在直角三角形ABC 中, BC=ABtan30°=12×33=43(海里). 故选:D .分析:此题考查的知识点是解直角三角形的应用,关键是先得∠BAC=30°,再解直角三角形ABC 即可.此题易得∠BAC=30°,再由直角三角形ABC 运用三角函数求得渔船与灯塔C 的距离BC . 12. 如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB=α,那么AB 等于( )A. msin α米B.mtan α米C.mcos α米D. tan mα米 知识点:解直角三角形的应用解析:解答:在直角△ABC 中,tan α=AB m,∴AB=mtan α. 故选B .分析:此题考查了三角函数的基本概念,主要是正切概念及运算.在直角△ABC 中,已知∠α及其邻边,求∠α的对边,根据三角函数定义即可求解.13. 如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( )A. (533+32)m B. (53+32)m C.533m D.4m知识点:解直角三角形的应用-仰角俯角问题解析:解答:∵AD=BE=5米,∠CAD=30°,∴CD=ADtan30°=5×33=533(米).∴CE=CD+DE=CD+AB=533+32(米).故选A.分析:此题主要考查学生对坡度坡角的理解及解直角三角形的综合运用能力.应先根据相应的三角函数值算出CD长,再加上AB长即为树高.14.一艘轮船从港口O出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A处,此时观测到其正西方向50海里处有一座小岛B.若以港口O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B所在位置的坐标是()A. (303-50,30)B. (30, 303-50)C. (303,30)D.(30, 303)知识点:解直角三角形的应用-方向角问题解析:解答:过点A作AC⊥x轴于C.在直角△OAC中,∠AOC=30°,OA=4×15=60海里,则AC=12OA=30海里,OC=303海里.因而A所在位置的坐标是(303,30).小岛B在A的正西50海里处,因而小岛B所在位置的坐标是(303-50,30).故选A.分析:本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.过点A作AC⊥x轴于C,根据已知可求得点A的坐标,从而根据已知求点B的坐标.15.在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为()A. 1033km B.533km C.52km D.53km知识点:解直角三角形的应用-方向角问题解析:解答:如图.由题意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.∵EF∥PQ,∴∠1=∠EAB=60°又∵∠2=30°,∴∠ABC=180°-∠1-∠2=180°-60°-30°=90°.∴△ABC是直角三角形.又∵MN∥PQ,∴∠4=∠2=30°.∴∠ACB=∠4+∠3=30°+30°=60°.∴AC=sinABACB=532=1033(km).故选A.分析:本题是方向角问题在实际生活中的运用,解答此类题目的关键是根据题意画出图形利用解直角三角形的相关知识解答.根据已知作图,由已知可得到△ABC是直角三角形,从而根据三角函数即可求得AC的长.1.数学实践探究课中,老师布置同学们测量学校旗杆的高度.小民所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60°,则旗杆的高度是____答案:3知识点:解直角三角形的应用-仰角俯角问题解析:解答:如图,根据题意得:AC=10米,∠ACB=60°,∵∠A=90°,∴在Rt△ABC中,AB=ACtan∠ACB=10×tan60°=10×3=103(米).故答案为:103.分析:本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.由根据题意得:AC=10米,∠ACB=60°,然后再在Rt△ABC中,利用正切函数,即可求得旗杆的高度.2.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC 的长度是____答案:210cm.知识点:解直角三角形的应用-坡度坡角问题解析:解答:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD-AD=270-60=210(cm).∴AC的长度是210cm.故答案为:210.分析:此题考查了解直角三角形的应用:坡度问题.此题难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,求得CD的长,继而求得答案.3.如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°=____答案:2-3.解析:解答:由已知设AB=AC=2x,∵∠A=30°,CD⊥AB,∴CD=12AC=x,则AD2=AC2-CD2=(2x)2-x2=3x2,∴AD=3x,∴BD=AB-AD=2x-3x=(2-3)x,∴tan15°=BDCD=(23)xx=2-3.故答案为:2-3.分析:此题考查的知识点是解直角三角形,关键是由直角三角形中30°角的性质与勾股定理先求出CD与AD,再求出BD.此题可设AB=AC=x,由已知可求出CD和AD,那么也能求出BD=AB-AD,从而求出tan15°.4.如图,为测量旗杆AB的高度,在与B距离为8米的C处测得旗杆顶端A的仰角为56°,那么旗杆的高度约是____米(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)答案:12解析:解答:由题意知BC=8,∠C=56°,故AB=BCtan56°≈8×1.483≈12米,故答案为12.分析:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.在直角三角形ABC中,根据BC=8,∠ACB=56°即可求得AB的长.5.如图,为了测量电线杆AB的高度,小明将测量仪放在与电线杆的水平距离为9m的D处.若测角仪CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为____(精确到0.1m).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).答案:8.1 m.知识点:解直角三角形的应用解析:解答:如图,在Rt△ACE中,∴AE=CEtan36°=BDtan36°=9×tan36°≈6.57米,∴AB=AE+EB=AE+CD=6.57+1.5≈8.1(米).故答案为:8.1.分析:本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.根据CE和tan36°可以求得AE的长度,根据AB=AE+EB即可求得AB的长度,即可解题.三、解答题1.为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,t an54°≈1.38,3≈1.73,精确到个位)知识点:解直角三角形解析:解答:过点C 作CD ⊥AB 于D , ∵BC=200m ,∠CBA=30°, ∴在Rt △BCD 中,CD=12BC=100m ,BD=BCcos30°=200×32=1003≈173(m ), ∵∠CAB=54°, 在Rt △ACD 中,AD=tan 45oCD ≈1001.38≈72(m ), ∴AB=AD+BD=173+72=245(m ). 答:隧道AB 的长为245m .分析:此题考查了解直角三角形的应用.此题难度适中,注意掌握辅助线的作法,注意把实际问题转化为数学问题求解.首先过点C 作CD ⊥AB 于D ,然后在Rt △BCD 中,利用三角函数的知识,求得BD ,CD 的长,继而在Rt △ACD 中,利用∠CAB 的正切求得AD 的长,继而求得答案.2. 如图所示,两个建筑物AB 和CD 的水平距离为30m ,张明同学住在建筑物AB 内10楼P 室,他观测建筑物CD 楼的顶部D 处的仰角为30°,测得底部C 处的俯角为45°,求建筑物CD 的高度.(3取1.73,结果保留整数.)知识点:解直角三角形的应用-仰角俯角问题解析:解答:过点P作PE⊥CD于E,则四边形BCEP是矩形.∴PE=BC=30.在Rt△PDE中,∵∠DPE=30°,PE=30,∴DE=PE×tan30°=30×33=103.在Rt△PEC中,∵∠EPC=45°,PE=30,∴CE=PE×tan45°=30×1=30.∴CD=DE﹢CE=30﹢103=30﹢17.3≈47(m)答:建筑物CD的高约为47 m.分析:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.过点P作PE⊥CD于E,则四边形BCEP是矩形,得到PE=BC=30,在Rt△PDE中,利用∠DPE=30°,PE=30,求得DE的长;在Rt△PEC中,利用∠EPC=45°,PE=30求得CE的长,利用CD=DE﹢CE即可求得结果.3.如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1(1)如果∠BCD=30°,求AC;10知识点:解直角三角形解析:解答:(1)∵CD⊥AB,∴∠BDC=90°,答案:A、C之间的距离为10.3海里.知识点:解直角三角形的应用-方向角问题解析:解答:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°,设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x,又∵BC=20,即x+3x=20,解得:x=10(3-1)∴AC=2x≈10.3(海里).答:A、C之间的距离为10.3海里.分析:此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.5.如图,拦水坝的横断面为梯形ABCD,坝顶宽AD=5米,斜坡AB的坡度i=1:3(指坡面的铅直高度AE与水平宽度BE的比),斜坡DC的坡度i=1:1.5,已知该拦水坝的高为6米.(1)求斜坡AB 的长;(2)求拦水坝的横断面梯形ABCD 的周长.(注意:本题中的计算过程和结果均保留根号) 答案:(1)斜坡AB 的长为610m ;(2)拦水坝的横断面梯形ABCD 的周长为(37+610 +313)m .知识点:解直角三角形的应用-坡度坡角问题 解析:解答:(1)∵AE BE =i =13,AE=6, ∴BE=3AE=18,在Rt △ABE 中,根据勾股定理得: AB=22AE BE +=610,答:斜坡AB 的长为610m ; (2)过点D 作DF ⊥BC 于F , 可得四边形AEFD 是矩形, 故EF=AD ,∵AD=5,∴EF=5, ∵DF CF =i=23, DF=AE=6, ∴CF=32DF=9, ∴BC=BE+EF+CF=18+5+9=32, 在Rt △DCF 中,根据勾股定理得: DC=22DF CF + =313,∴梯形ABCD 的周长为:AB+BC+CD+DA=610+32+313+5=37+610+313,——————————新学期新成绩新目标新方向——————————桑水。