北师大版七年级下册《概率初步》测试题.pdf
- 格式:pdf
- 大小:96.20 KB
- 文档页数:4
回顾与思考类型之一可能性大小1.标号为A,B,C,D的四个盒子中装有的白球和黑球的个数如下,则下列盒子最易摸到黑球的是( )A.9个黑球和3个白球B.10黑球和10个白球C.12个黑球和6个白球D.10个黑球和5个白球2.图6-X-1是六个可以自由转动的转盘(每个转盘都被分成8个相同的区域),若将转盘转出阴影的可能性按从小到大的顺序排列,正确的是( )图6-X-1A.①②③④⑤⑥B.④②③①⑥⑤C.④②①③⑥⑤D.④②③①⑤⑥3.国家为鼓励消费者向商家索要发票,制订了一定的奖励措施,其中对100元的发票(外观一样,奖励金额用密封签封盖)设有奖金5元、奖金10元、奖金50元和谢谢索要四种奖励.现某商家有1000张.某消费者消费100元,向该商家索要一张100元的发票,求:(1)中10元奖金的可能性;(2)不中奖的可能性.类型之二频率与概率4.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计小明射击1次击中靶子的概率是( )A.38% B.60%C.63% D.无法确定5.2017·宿迁 如图6-X -2,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________m 2.图6-X -26.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球试验,他们将30个与红球大小、形状完全相同的白球装入袋中,搅匀后从中随机摸出1个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:(1)请估计:当次数很大时,摸到白球的频率将会接近________;假如你去摸一次,你摸到红球的概率是________(精确到0.1).(2)试估算口袋中红球有多少个.(3)解决了上面的问题后,请你从频率与概率的关系方面谈一条启示.类型之三 简单事件概率的计算7.在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.8.2018·汕头模拟 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色外其余均相同.若从中随机摸出1个球,它是白球的概率为23,则黄球的个数为________.9.一个不透明的盒子里装有12张红色卡片、16张黄色卡片、4张黑色卡片和若干张蓝色卡片,每张卡片除颜色外其余都相同,从中任意摸出1张卡片,摸到红色卡片的概率是0.24.(1)从中任意摸出一张卡片,摸到黑色卡片的概率是多少? (2)求盒子里蓝色卡片的数量.类型之四面积法求概率10.小江玩投掷飞镖的游戏,他设计了一个如图6-X-3所示的靶子,E,F分别是长方形ABCD的两边AD,BC上的点,EF∥AB,M,N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )图6-X-3A.13B.23C.12D.3411.图6-X-4是一个可以自由转动的转盘.转盘被分成8个相同的区域,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,指针恰好指在某个区域(指针指向两个区域的交线时,当作指向右边的区域).求下列事件的概率:图6-X-4(1)指针指向红色;(2)指针指向黄色或绿色.12.(1)图6-X-5①是书房地板的示意图,图中每一块地砖除了颜色外其他均相同.现任意抛掷一个乒乓球,若乒乓球最后落在某一块地砖上算一次成功的抛掷,试求所有成功抛掷中,乒乓球抛掷后停留在黑色地砖上的概率是多少;(2)请在图6-X-5②中,重新设计地砖的颜色,使乒乓球最后停留在黑色地砖上的概率为34.图6-X-5类型之五数学活动13.阅读下面的解题过程:妈妈给小明一串钥匙,共有4把,只有一把是防盗门的钥匙,小明决定先试试哪把是防盗门的钥匙.你能说明他第一次试开就成功的概率有多大吗?我们可以采用计算器或其他替代物模拟试验,现给出以下两种方法:方法一:可以用一枚正方体骰子,掷得4点为试开成功;方法二:可以用4张扑克牌,红桃、黑桃、方块、梅花各一张,摸到红桃为试开成功.你认为上述方法对吗?为什么?详解详析1.A [解析] 分别用每个盒子中黑球的数量除以两种球的总量,求出从每个盒子中摸到黑球的可能性各是多少;然后比较大小,判断出从哪个盒子最易摸到黑球即可.2.C3.解:(1)中10元奖金的可能性是150.(2)不中奖的可能性是2325.4.C [解析] 因为小明练习射击,共射击60次,其中有38次击中靶子,所以射中靶子的频率=38÷60=19÷30≈0.63,故小明射击1次击中靶子的概率约是63%.5.1 [解析] 因为经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,所以估计小石子落在不规则区域的概率为0.25.因为正方形的边长为2 m ,所以它的面积为4 m 2.设不规则区域的面积为S m 2,则S 4=0.25,解得S =1,故答案为1.6.解:(1)0.3 0.7(2)设口袋中红球有x 个.由题意,得0.7(x +30)=x ,解得x =70, 所以估计口袋中红球有70个.(3)答案不唯一,如:用概率可以估计物体的数目,试验次数很大时事件发生的频率可以作为概率的估计值.7.13 8.49.解:(1)由题意得卡片的总张数为120.24=50,则任意摸出1张卡片,摸到黑色卡片的概率是450=0.08.(2)盒子里蓝色卡片有50-12-16-4=18(张).10.C [解析] 阴影部分的面积是长方形面积的一半.故选C .11.解:(1)因为转盘被分成8个相同的区域,红色占其中的2个区域,所以P(指针指向红色)=14.(2)因为黄色和绿色各有3个区域,所以P(指针指向黄色或绿色)=P(指针指向黄色)+P(指针指向绿色)=34.12.[解析] (1)先确定黑色地砖的面积与整个地砖面积的比,这个比就是乒乓球停留在黑色地砖上的概率;(2)由乒乓球最后停留在黑色地砖上的概率为34,可知灰色地砖为6块.解:(1)由图可知共有8块地砖,其中4块是黑色地砖,故P(乒乓球抛掷后停留在灰色地砖上)=12.(2)黑色地砖应有6块,画图如下(答案不唯一).13.[解析] 先计算出他第一次试开就成功的概率,然后与模拟试验的概率相比较看是否相等.解:因为共有4把钥匙,只有一把是防盗门的钥匙,所以他第一次试开就成功的概率是14.方法一不正确,方法二正确.因为模拟试验不能改变试验结果,而方法一中事件发生的概率为16.。
新街中学七(下)数学 第六章(概率初步)检测题一、填空题1、游戏的公平性是指双方获胜的概率 。
2、一般地,就事件发生的可能性而言,可将事件分为 、 和 。
3、有一组卡片,制作的颜色,大小相同,分别标有0~10这11个数字,现在将 它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P (抽到两位数)= ; (2)P (抽到一位数)= ; (3)P (抽到的数是2的倍数)= ; (4)P (抽到的数大于10)= ;4、学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若500名学生 中没有穿校服的学生为25名,则任意叫出一名学生,没穿校服的概率 为 ;穿校服的概率为 。
5、轰炸机练习空中投靶,靶子是在空地上的一个巨型正方形铁板,板上画有大 小相同的36个小正方形,其中6个红色,30个黑色,那么投中红色小正方形的 概率为 。
6、某中学学生情况如右表:若任意抽取一名该校的学生,是高中生的概率 是 ;是女生的概率是 。
7、一只口袋中有4只红球和5个白球,从袋中任摸出一个球,则P (抽到红球) P (抽到白球)(填“>”或“<”)。
8、小明和爸爸进行射击比赛,他们每人都射击10次。
小明击中靶心的概率为 0.6,则他击不中靶心的次数为 ;爸爸击中靶心8次,则他击不中 靶心的概率为 。
二、选择题9、如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的 概率是( )A 、21 B 、31 C 、41 D 、6110、某电视综艺节目接到热线电话3000个。
现要从中抽取“幸运观众”10名, 张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为( )A 、B 、C 、D 、0 11、下列各事件中,发生概率为0的是( )A 、掷一枚骰子,出现6点朝上B 、太阳从东方升起C 、若干年后,地球会发生大爆炸D 、全学校共有1500人,从中任意抽出两人,他们的生日完全不同 12、转动下列各转盘,指针指向红色区域的概率最大的是( )13、小明和三名女生、四名男生一起玩丢手帕游戏,小明随意将手帕丢在一名同 学的后面,那么这名同学是女生的概率为( )A 、0B 、83 C 、73D 、无法确定 14、一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( )A 、51 B 、80% C 、2420D 、1 15.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( ) A.能开门的可能性大于不能开门的可能性 B.不能开门的可能性大于能开门的可能性 C.能开门的可能性与不能开门的可能性相等 D.无法确定16.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是( )A.必然事件B.不能确定事件C.不可能事件D.不能确定17.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是 ( )A.2719 B.2712 C.32D.278 三、解答题18、用自己的语言解释下列问题: A B C D(1)一种彩票的中奖率为10001,你买1000张,一定中奖吗? (2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?21、如图是芳芳设计的自由转动的转盘,上面写有10个有理数。
第六章 概率初步自我评估(一)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列事件中是必然事件的是( )A .2月份有31天B .一个等腰三角形中,有两条边相等C .明天的太阳从西边出来D .投掷一枚质地均匀的骰子,出现6点朝上2. 掷一枚质地均匀的硬币3次,其中2次正面朝上,1次正面朝下,若再次掷出这枚硬币,则正面朝下的概率是( ) A .1B .32 C .31 D .123.下列四个袋子中分别装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A B C D 4. 某校七年级(1)班成立了“环保卫士”宣传小组,其中男生2人,女生3人,从中随机抽取一名同学进社区宣传“垃圾分类”,恰好抽到女生的概率为( )5. 如图1,一个游戏盘中,红、黄、蓝三个扇形的圆心角度数分别为40°,120°,200°,让转盘自由转动,指针停止后在黄色区域的概率是( ) A .19B .13C .59D .79图1 图2 图36. 在一个不透明的口袋中放入红球6个,黑球2个,黄球n 个,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球个数n 是()A.3B.4C.5D.67.如图2,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,小红在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中黑色部分的概率,P(乙)表示小球停留在乙区域中黑色部分的概率,下列说法中正确的是()A.P(甲)<P(乙)B.P(甲)>P(乙)C.P(甲)=P(乙)D.P(甲)与P(乙)的大小关系无法确定8.四张完全相同的卡片上,分别画有圆、平行四边形、等腰三角形、长方形,现从中随机抽取一张,恰好抽到轴对称图形的概率是()B.9.小明在一次用频率估计概率的试验中,统计了某一结果出现的频率,并绘制了图3所示的统计图,则符合这一结果的试验可能是()A.掷一枚质地均匀骰子,出现4点的概率B.任意买一张电影票,座位号是2的倍数的概率C.从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率10.如图4,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()图4二、填空题(本大题共6小题,每小题3分,共18分)11. 有下列事件:①如果a,b都是有理数,那么ab=ba;②打开电视,正在播放新闻;③5张相同的小标签分别标有数字1~5,从中任意抽取1张,抽到0号签.其中属于确定事件的是____________.(填序号)12. 甲、乙两人轮流做下面的游戏:掷一枚质地均匀的骰子(每个面上分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是.13. 二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图5,指针落在惊蛰、春分、清明区域的概率是.图5 图6 图714.图6是一条线段,AB的长为10 cm,MN的长为2 cm,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为.15.在一个不透明的暗箱中装有红、黄、蓝三种除颜色外完全相同的小球,其中红球5个,黄球7个,蓝球a个.若每次将球充分搅匀后,随机摸出一个小球记下颜色后,放回盒子里,经过大量的重复试验后发现,摸到红球的频率稳定在25%左右,则a的值约为_________.16.乐乐同学有两根长度为4 cm,7 cm的木棒,他想自己动手钉一个三角形相框,如图7,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是.三、解答题(本大题共6小题,共52分)17. (7分)一个不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)判断摸到什么颜色的球可能性最大?(2)要使摸到这三种颜色的球的概率相等,需要在这个口袋里的球做什么调整?18.(8分)在一个不透明的袋中装有红、黄、白三种颜色的球共50个,且红球比黄球多5个,它们除颜色外都相同.已知从袋中随机摸出一个球,摸到的球是白球的概率为310.(1)求原来袋中白球的个数;(2)现从原来装有50个球的袋中随机摸出一个球,求摸到的球是红球的概率.19. (9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?20.(9分)密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…,9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××(注:中旬为某月中的11日-20日),小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.21.(9分)某公司的一批某品牌衬衣的质量抽检结果如下:(1)将上表补充完整;(2)结合表格数据直接写出这批衬衣中任抽1件是次品的概率;(3)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?22.(10分)一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x 个,其他均为黄球,现从布袋中随机摸出一个球,若是红球,则甲同学胜,若是黄球,则乙同学胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?附加题(20分,不计入总分)(1)把一个木制正方体的表面涂上红颜色,然后将其分割成64 个大小相同的小正方体,如图所示.若将这些小正方体均匀地搅混在一起,则任意取出一个正方体,其两面涂有红色的概率为;各面都没有红色的概率为;(2)若将大正方体用同样的方法分割成n3(n为正整数,n≥5)个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体,其两面涂有红色的概率是多少?各面都没有红色的概率是多少?第六章概率初步自我评估(一)参考答案一、1. B 2. D 3. D 4. A 5. B 6. B 7. C 8. C 9. D 10. D二、11. ①③12.甲13.1814.1515. 816.25三、17. 解:(1)因为红球个数最多,所以摸到红球的可能性最大.(2)要使摸到这三种颜色的球的概率相等,要把袋子里的1个红球变成白球即可.18. 解:(1)3501510⨯=,即白球的个数是15.(2)设红球的个数为x,由题意,得x+(x-5)+15=50,解得x=20.所以摸出一个球是红球的概率为202505=. 19. 解:(1)当n=5或6时,这个事件必然发生; (2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件,可能发生. 20. 解:(1)1或2(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920, 其中能被3整除的有912,915,918,所以密码数能被3整除的概率为310. 21. 解:(1)表格中从左到右依次填:0,0.04,0.08,0.06,0.06,0.06.(2)观察表格,可得随着抽检件数的增多,抽到次品的频率稳定在0.06,由频率估计概率可得这批衬衣中任抽1件是次品的概率为0.06.(3)根据(2)的结论,这批衬衣中任抽1件是次品的概率为0.06,则600×0.06=36(件). 答:要准备36件正品衬衣供顾客调换.22. 解:(1)当x=3时,红球有3个,白球有6个,黄球有16-3-6=7(个). 所以甲同学获胜可能性为316,乙同学获胜可能性为163671616--=. 因为316﹤716,所以当x=3时,乙同学获胜的可能性大. (2)要使游戏对双方公平,则有1616136x x-=,解得x=4. 答:当x=4时,游戏对双方是公平的. 附加题解: (1) 两面涂有红色正方体的每条棱有 2 个, 共有 12 条棱, 则有2×12=24(个), 概率为243648=;各面都没有红色的正方形有23=8(个),概率为81648=. (2) 两面涂有红色正方体的每条棱有(n -2)个, 共有 12 条棱, 则有12(n -2)个,概率为312(2)n n-; 各面都没有红色的正方形有(n -2)3个,概率为33(2)n n-.。
北师大版七年级数(下)第六章《概率初步》单元测试题(附答案)(本卷满分120分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分,共30 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率。
A.1B. 2C. 3D. 42.一个布袋内只装有1 个黑球和2 个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()3.用写有数字0,1,2 的三张卡片排成三位数是偶数的概率为()4.某十字路口的交通信号灯每分红灯亮30 s,绿灯亮25 s,黄灯亮5 s,当你抬头看信号灯时,是黄灯的概率为()5.如图所示的两个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的概率均等.同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()6.下列事件中是随机事件的是()A.水中捞月B. B.明天太阳从西方升起C.抛一枚硬币,落地后硬币的正面朝上D.三角形的内角和是180°7.将只有颜色不同的3 个白球,2 个黑球放在一个不透明的布袋中.下列四个选项中不正确的是()A.摸到白球比摸到黑球的可能性大B.摸到白球和黑球的可能性相等C.摸到红球是不可能事件D.摸到黑球或白球是确定事件8.做“抛掷—枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法中正确的是()A.概率等于频率B.频率为B.概率是随机的 D.9.在一个不透明的盒子里装有若干个白球和15 个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到红球的频率稳定在0.6 左右,则袋中白球约有()A.5个B.10个C. 15个D.25个10.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大; ②“抛一枚硬币正面朝上的概率为”;③“某彩票中奖的概率是1%”表示买10 ;④“抛一枚硬币正面朝上的概率为表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在一附近.其中正确的说法是()A.①④B.②③C. ②④D.①③二、填空题(本大题共 5 小题,每小题4分,共20 分,把答案填写在题中横线上)11.某辅导机构为了招生,贴出一则广告“本机构辅导的学生中95%考取了重点高中”;这则广告中的数据.(填“可信”或“不可信”)12.蓝猫走进迷宫,迷宫中的每一个门都相同,第一道关口有三个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,蓝猫一次就能走出迷宫的概率是.13.有三张正面分别标有数字3,4,5 的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗勾后再抽取一张,则两次抽得卡片上数字的差的绝对值大于1 的概率是.14.有朋友约定明天上午8:00~12:00 的任一时刻到学校与王老师会面,王老师明天上午要上三节课,每节课45 min,朋友到学校时王老师正巧不在上课的概率是.15.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”现从1,2,3,4 这四个数字中任取3个数字,组成无重复数字的三位数,甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜。
2023年北师大版七年级数学下册第六章《概率初步》试题卷一、单选题1.下列事件中,是确定事件的是()A.掷一枚硬币,正面朝上B.三角形的内角和是180C.明天会下雨D.明天的数学测验,小明会得满分2.下列语句所描述的事件是随机事件的是()A.两点决定一直线B.清明时节雨纷纷C.没有水分,种子发芽D.太阳从东方升起3.小明过马路时,恰好是红灯.这个事件是()A.必然事件B.随机事件C.不可能事件D.不确定事件4.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件5.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出球的颜色可能性最大的是()A.红色B.黄色C.白色D.可能性一样大6.一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是()A.12B.14C.18D.387.不透明的袋子中装有3个红球和2个白球,这些球除了颜色外都相同,从袋子中随机地摸出1个球,则这个球都是红球..的概率是()A.15B.35C.23D.138.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910 B.110 C.118 D.1209.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一枚质地均匀的硬币,落地时结果是“正面向上”C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.从一副扑克牌中随机抽取一张,抽到的牌是梅花10.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从布袋里任意摸出1个球是红球的概率为14,则a等于()A.1B.2C.3D.4二、填空题11.一只不透明的袋子中有1个白球,100个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球;这一事件是___________事件.(填“必然”、“随机”、“不可能”)12.一个不透明的布袋里装有6个只有颜色不同的球,其中有1个黑球、2个白球、3个红球,从布袋里随机摸出1个球,摸出白球的概率为_________.13.现分别有长2cm和5cm的两条线段,再从下列长度:1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm的线段中随机选取一条组成一个三角形,那么能组成三角形的概率是_____.14.在一个不透明的箱子中有黄球和红球共6个,它们除颜色外都相同,若任意摸出一个球,摸到红球的概率为23,则这个箱子中红球的个数为________个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),则击中阴影区域的概率是___________.17.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为_______.18.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m ________.19.不透明袋子中装有7个球,其中有4个红球,3个白球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.20.因疫情原因,杭州亚运会定于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.莲莲从网上购买杭州2022年第19届亚运会吉祥物(如图)一件,则物流配送的恰好是“莲莲”的概率为________.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.21.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?26如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?解答1.B2.B3.B4.B5.A6.A7.B8.A9.C10.C11.随机12.1313.3814.415.0.116.5917.6018.2194720.1321.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.(1)解:∵红球3个,白球5个,黑球若干个,从中任意摸出一个白球的概率是1 3,∴盒子中球的总数为:15153÷=(个),∴盒子中黑球的个数为:15357--=(个);∴任意摸出一个球是黑球的概率为:7 15;(2)解:∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:13124÷=,∴可以将盒子中的白球拿出3个.14.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?解:(1)享受七折优惠的概率为802 3609=;(2)得20元的概率为901 3604=;(3)得10元的概率为1201 3603=;(4)中奖得钱的概率是906060736012++=.24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是3162=;(3)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是4263=.25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?解:(1)转盘共分为5份,数字3占其中一份,故转出的数字是3的概率为15(2)共有5种等可能结果,转出的数字小于4的有1、2、3共3个,所以转出的数字小于4的概率为35(3)共有5种等可能结果,转出的数字是偶数的有2、4两个数字,所以转出的数字是偶数的概率为25(4)不公平,转出的数字是偶数的概率为5转出的数字是奇数的概率为35.2355<,所以这样的游戏规则对甲、乙两人不公平26.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.。
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。
一、选择题1.投掷一枚质地均匀的硬币4次,其中3次正面向上,1次反面向上,则第5次掷出反面向上的概率为()A.12B.13C.14D.152.下列说法正确的是()A.抛掷一枚质地均匀的硬币两次,必有一次正面朝上B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D.“0a≥”是必然事件3.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一4.下列属于必然事件的是()A.任意画一个三角形,其内角和是360°B.2020年春节这一天是晴天C.任意写出一个偶数,一定是2的倍数D.射击运动员射击一次,命中靶心5.下列说法正确的是()A.扔100次硬币,都是国徽面向上,是不可能事件B.小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大C.王明同学一直是级部第一名,他能考上重点高中是必然事件D.投掷一枚均匀的骰子,投出的点数是10,是一个确定事件6.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书,正好是第38页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是67.从-5,-1,0,83,π这五个数中随机抽取一个数,恰好为负整数的概率为()A.15B.25C.35D.458.“用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上都不是9.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.“随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件C.一组数据的中位数可能有两个D.一组数据的波动越大,方差越小10.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( )A.6 B.16 C.22 D.2411.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.012.下列语句中描述的事件必然发生的是()A.15个人中至少有两个人同月出生B.一位同学在打篮球,投篮一次就投中C.在1,2,3,4中任取两个数,它们的和大于7 D.掷一枚硬币,正面朝上二、填空题13.从箱子中摸出红球的概率为14,已知口袋中红球有4个,则袋中共有球__________个.14.一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出白球可能性____摸出红球可能性(填“等于”或“小于”或“大于”)15.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要__位.16.在甲,乙两个不透明口袋中各装有10个和3个形状大小完全相同的红色小球,则从中摸到红色小球的概率是P甲_____P乙(填“>”,“<”或“=”);17.在数学课上,同学们经历了摸球的实例分析和计算过程后,对求简单随机事件发生的可能性大小的计算方法和步骤进行了归纳. 请你将下列求简单随机事件发生的可能性大小的计算方法和步骤的正确顺序写出来___________.(填写序号即可)①确定所有可能发生的结果个数n和其中出现所求事件的结果个数m②计算所求事件发生的可能性大小,即P (所求事件)m n③列出所有可能发生的结果,并判断每个结果发生的可能性都相等18.甲袋中有3只白球,7只红球,15只黑球;乙袋中有10只白球,6只红球,9只黑球,现从两袋中取一只白球,选____袋成功的机会大.19.下列说法:①一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点.②可能性很小的事件在一次实验中也有可能发生.③天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨.④抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等.正确的是________(填序号)20.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是 ______.三、解答题21.某校随机选取了1000名学生,对他们喜欢的运动项目进行调查,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200√×√√300×√×√150√√√×200√×√×150√×××(1)估计该校学生同时喜欢短跑和跳绳的概率;(2)估计该校学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;22.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.23.小明与小刚玩掷骰子游戏,按所得的数字是几,棋子就向前走几格,每人可连续投掷两次,棋子最终落到哪一格,就可获得相应格子中的奖品.现在轮到小明掷骰子,棋子处于如图所示的地方.求:(1)小明掷一次骰子能得到奖品吗?(2)小明下一次投掷有没有可能获得奖品?若能获奖,概率是多少?24.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.25.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?26.有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.平行四边形,B.菱形,C.矩形,D.正方形,将这四张卡片背面朝上洗匀后.(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定掷硬币共有正面和反面两种可能性,后根据概率计算公式计算即可.【详解】∵掷硬币共有正面和反面两种可能性,∴第5次掷出反面向上的概率为:1;2故选A.【点睛】本题考查了简单概率的计算,准确计算事件的所有等可能性和事件A的等可能性是解题的关键.2.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.3.D解析:D【分析】试验次数足够大时,频率才可以表示概率,A选项试验次数过少,所以错误;5%是每张均有%的可能中奖,而不是100张彩票一定会有5张中奖,偷换概念;概率题一定要考虑样本空间,然后确定样本,C中还有脱靶的可能,所以错误;抛掷一枚均匀硬币,结果只有两种正面朝上和正面朝下,且每次发生的可能是相等的,每做一次,正面朝上的概率都是二分之一.【详解】小智说,做3次掷图钉试验,发现2次钉尖朝上,但是试验次数少,因此不能确定钉尖朝上的概率,所以A错误;小慧说,某彩票的中奖概率是5%,那么如果买100张彩票不一定会有5张中奖,所以B错误;小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是1 2不正确,中靶与不中靶不是等可能事件,一般情况下,还有脱靶的可能,所以C错误;小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一,所以D正确.故选:D.【点睛】本题考察了频率和概率的区别,等可能时间概率的计算;在初中课程中认为当试验次数足够大时,频率可以表示概率;等可能事件中,n件事发生的概率都是相等的,因此每件事发生的概率是1n.4.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A.任意画一个三角形,其内角和是360°,是不可能事件,不符合题意;B.2020年春节这一天是晴天, 是随机事件,不符合题意;C.任意写出一个偶数,一定是2的倍数,是必然事件,符合题意;D.射击运动员射击一次,命中靶心,是随机事件,不符合题意.故选C.【点睛】本题考查了必然事件,解题的关键是需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D【分析】利用概率的意义、随机事件的定义及可能性的大小的知识分别判断后即可确定正确的选项.【详解】解:A、扔100次硬币,都是国徽面向上,是随机事件,故错误;B、扔10次,有6次都是钉尖朝下,不能说明钉尖朝下的可能性大,故错误;C、王明同学一直是级部第一名,他能考上重点高中是随机事件,故错误;D、投掷一枚均匀的骰子,投出的点数是10,是一个确定事件,正确,故选D.【点睛】考查了可能性的大小及随机事件的知识,解题的关键是了解概率的意义、随机事件的定义及可能性的大小的知识,难度不大.6.C解析:C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】A、抛掷一枚硬币,硬币落地时正面朝上是随机事件,正确,不合题意;B、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,正确,不合题意;C、任意打开九年级下册数学教科书,正好是第38页是随机事件,故此选项错误,符合题意;D、一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6,正确,不合题意.故选:C.【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.7.B解析:B【解析】【分析】五个数中有两个负整数,根据概率公式求解可得.【详解】解:∵在-5,-1,0,83,π这五个数中,负整数有-5和-1这2个,∴恰好为负整数的概率为25,故选:B.【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵5+1<12,∴用长分别为5cm、12cm、1cm的三条线段不能构成三角形,则“用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是不可能事件,故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.B解析:B【解析】【分析】利用必然事件的定义,中数的定义,方差的定义即可作出判断.【详解】解:A. “打开电视机,正在播放《新闻联播》”是随机事件,错误.B. “随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,正确.C. 一组数据的中位数有1个,错误.D. 一组数据的波动越大,方差越大,错误.故选B.【点睛】本题考查了必然事件的定义,中位数的定义,方差的性质,难度适中.10.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.11.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).12.A解析:A【分析】根据事件发生的可能性的大小逐一判断即可得答案.【详解】A.∵一年只有12个月,∴15个人中至少有两个人同月出生是必然事件,故该选项符合题意,B.一位同学在打篮球,投篮一次就投中是随机事件,故该选项不符合题意,C.在1,2,3,4中任取两个数,它们的和大于7是不可能事件,故该选项不符合题意,D.掷一枚硬币,正面朝上是随机事件,故该选项不符合题意,故选:A.【点睛】本题考查随机事件和必然事件,熟练掌握概念是解题关键.二、填空题13.16【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x个则解得x=16即箱子中共有16个球故答案为:16【点睛】此题考查了概率解析:16【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x个,则414x,解得x=16,即箱子中共有16个球,故答案为:16. 【点睛】此题考查了概率的求法:如果一个事件有n 中可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 14.大于【解析】【分析】分别求出摸出两种颜色球的概率再比较摸出两个颜色球的可能性大小即可【详解】∵袋子中有1个红球1个黑球和2个白球共4个小球其中摸出1个球摸出白球有2种可能摸出红球有1种可能∴摸出白球解析:大于. 【解析】 【分析】分别求出摸出两种颜色球的概率,再比较摸出两个颜色球的可能性大小即可. 【详解】∵袋子中有1个红球、1个黑球和2个白球共4个小球,其中摸出1个球,摸出白球有2种可能、摸出红球有1种可能,∴摸出白球的概率为24=12、摸出红球的概率为14, ∴摸出白球可能性大于摸出红球可能性, 故答案为:大于. 【点睛】本题主要考查了可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目,难度适中.15.4【解析】【分析】先根据概率公式得到密码为三位数时一次就拨对密码的概率密码为4位数时一次就拨对密码的概率于是得到要使不知道密码的人一次就拨对密码的概率小于则密码的位数至少需要4位【详解】∵每个数位上解析:4 【解析】 【分析】先根据概率公式得到密码为三位数时,一次就拨对密码的概率11000=, 密码为4位数时,一次就拨对密码的概率110000=,于是得到要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要4位. 【详解】∵每个数位上的数都是从0到9的自然数, ∴密码为三位数时,一次就拨对密码的概率111010101000==⨯⨯,密码为四位数时,一次就拨对密码的概率11 1010101010000 ==⨯⨯⨯,∴要使不知道密码的人一次就拨对密码的概率小于12018,则密码的位数至少需要4位.故答案为:4.【点睛】考查了概率公式,掌握概率的计算方法是解题的关键.16.=【解析】【分析】根据必然事件的定义及其概率可得答案【详解】由题意知从甲口袋的10个小球中摸出一个小球是红色小球是必然事件概率为1;从乙口袋的3个小球中摸出一个小球是红色小球是必然事件概率为1;∴P解析:=【解析】【分析】根据必然事件的定义及其概率可得答案.【详解】由题意知,从甲口袋的10个小球中摸出一个小球,是红色小球是必然事件,概率为1;从乙口袋的3个小球中摸出一个小球,是红色小球是必然事件,概率为1;∴P甲=P乙,故答案为:=.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.P(必然事件)=1.P(不可能事件)=0.17.③①②【解析】【分析】根据求简单随机事件发生的可能性大小的计算方法和步骤求解即可【详解】求简单随机事件发生的可能性大小的计算方法和步骤是:③列出所有可能发生的结果并判断每个结果发生的可能性都相等;①解析:③①②【解析】【分析】根据求简单随机事件发生的可能性大小的计算方法和步骤求解即可.【详解】求简单随机事件发生的可能性大小的计算方法和步骤是:③列出所有可能发生的结果,并判断每个结果发生的可能性都相等;①确定所有可能发生的结果个数n和其中出现所求事件的结果个数m;②计算所求事件发生的可能性大小,即P (所求事件)mn =;故答案为:③①②.【点睛】本题主要考查了可能性的大小,利用实验的方法进行概率估算,要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.18.乙【解析】【分析】分别根据概率公式求得从两个袋子中取到白球的概率然后比较大小即可【详解】从甲袋中取出1只白球的概率是:从乙袋中取出1只黑球的概率是:则从乙袋中取出1只白球的概率大故答案为乙【点睛】此解析:乙【解析】【分析】分别根据概率公式求得从两个袋子中取到白球的概率,然后比较大小即可.【详解】从甲袋中取出1只白球的概率是:33=3+7+1525,从乙袋中取出1只黑球的概率是:1010=10+6+925,则从乙袋中取出1只白球的概率大.故答案为乙.【点睛】此题主要考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.19.②④【解析】【分析】概率是反映事件发生机会的大小的概念只是表示发生的机会的大小机会大也不一定发生【详解】①概率是针对数据非常多时趋近的一个数所以一颗质地均匀的骰子已连续抛掷了2000次其中抛掷出5点解析:②④【解析】【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】①概率是针对数据非常多时,趋近的一个数,所以一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,但并不能说第2001次一定抛掷出5点,错误,不符合题意;②可能性很小的事件在一次实验中也有可能发生,正确,符合题意;③明天本市的降水概率为50%,即明天下雨的可能性是50%,而明天可能下雨也可能不下,因而是随机事件,错误,不符合题意;④由于图钉的质地不均匀,故抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,正确,符合题意;故答案为:②④.【点睛】本题考查的知识点是概率的意义,解题关键是熟记概率是通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率.20.减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿则原先有受贿裁判评分的概率是现在有受贿裁判评分的概率为所以这样做的目的是减少有效分中有受贿裁判评分的可能性故答案为减少有效分中有受贿裁判评分的可解析:减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿,则原先有受贿裁判评分的概率是79,现在有受贿裁判评分的概率为714,所以这样做的目的是减少有效分中有受贿裁判评分的可能性,故答案为减少有效分中有受贿裁判评分的可能性.三、解答题21.(1)同时喜欢短跑和跳绳的概率为320;(2)同时喜欢三个项目的概率为720【分析】(1)观察表格可知1000名学生中同时喜欢短跑和跳绳的学生有150名,根据概率公式即可求得该校学生同时喜欢短跑和跳绳的概率;(2)观察表格可知:1000名学生中,在长跑、短跑、跳绳、跳远中同时喜欢三个项目的学生有(200+150)名,根据概率公式即可求得该校学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率.【详解】(1)同时喜欢短跑和跳绳的概率为:1503 100020=;(2)同时喜欢三个项目的概率为:2001507 100020+=.【点睛】本题考查了求简单事件的概率,熟练运用概率公式是解决问题的关键.22.(1)可能性最大的是④,最小的是②;(2)由题意得:②<③<①<④【分析】分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大.【详解】∵共3红2黄1绿相等的六部分,∴①指针指向红色的概率为36=12;②指针指向绿色的概率为16;③指针指向黄色的概率为26=13;④指针不指向黄色为56,(1)可能性最大的是④,最小的是②;(2)由题意得:②<③<①<④,故答案为②<③<①<④.【点睛】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.23.(1)不能;(2).【解析】【分析】(1)骰子的最大数为6;(2)投两次骰子共有36种等可能情况,用列表法列出两次所投数字之和为7的情况,运用概率公式计算即可.【详解】解:(1)不能.∵骰子的最大数为6,且1+6=7,而奖品位于第8格,∴小明掷一次骰子不能得到奖品;(2)小明投两次骰子共有6×6=36种等可能情况,其中两次所投数字之和为7的情况有:第一次123456第二次654321∴能获得奖品的概率是:.故小明下一次投掷有可能获得奖品,获奖的概率为.【点睛】本题考查了概率公式的应用.24.(1)树状图见解析;(2)1 3 .【解析】试题分析:先根据题意画树状图,再根据所得结果计算两个数字之和能被3整除的概率.试题(1)树状图如下:。
第六章概率初步达标测试卷一、选择题(每题3分,共30分)1.下列事件属于必然事件的是()A.太阳从西边升起B.若今天星期一,则明天星期二C.两条直线被第三条直线所截,同位角相等D.抛掷1枚质地均匀的骰子,出现5点向上2.下列成语中,描述的事件是不可能事件的是()A.守株待兔B.猴子捞月C.旭日东升D.水涨船高3.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是试验中的几组数据,则摸到白球的概率约是()A.0.4 B.0.5 C.0.6 D.0.74.有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为()A.14 B.12 C.34D.15.下列说法正确的是()A.概率很小的事情不可能发生B.抛掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次C.从1、2、3、4、5中任取一个数是偶数的可能性比较大D.在13名同学中,至少有两人的出生月份相同是必然事件6.下列试验中,结果具有“等可能性”的是()A.掷一枚质地均匀的骰子B.篮球运动员定点投篮C.掷一个矿泉水瓶盖D.从装有若干个小球的透明袋子中摸球7.如图是一个可自由转动的转盘,转动转盘一次,当转盘停止转动时,指针落在数字“Ⅳ”所示区域内的概率是()A.13 B.16 C.14 D.388.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.公平D.无法确定对谁有利9.已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是25,则n的值是()A.10 B.12 C.13 D.1410.一个小钢球在如图所示的区域内运动,三个圆的半径分别为r,2r,3r,则小钢球停止在蓝色区域的概率为()A.19 B.13 C.49 D.59 (第10题)(第15题)二、填空题(每题3分,共15分)3 11.生活中,为了强调某件事情一定会发生,有人会说“这件事百分之二百会发生”,这句话是______的.(填“正确”或“错误” )12.在不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是______.13.事件A 发生的概率为125,大量重复地做这种试验,事件A 平均每1 000次发生的次数是______.14.有5张相同的卡片,卡片正面分别标有-2,|-3|,(-2)2,-⎝ ⎛⎭⎪⎫140,(-1)-2,将卡片背面朝上,从中随机抽取1张,则抽取的卡片正面上的数是正数的概率为______.15.如图,是一张三角形纸板,其中AD =DF ,BE =ED ,EF =FC ,一只蚂蚁在这张纸板上自由爬行,则蚂蚁爬到阴影部分的概率为______. 三、解答题(一)(每题8分,共24分)16.下面的事件各属于随机事件、必然事件、不可能事件中的哪一类? (1)明年8月5日广东沿海没有台风;(2)抛掷一枚质地均匀的硬币,硬币落地时正面朝上; (3)投出铅球后,经过一段时间铅球落到地面上; (4)从一副扑克牌中任意抽出两张,都是“红桃A”; (5)买一张电影票,排号和座位号都是奇数.17.手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到. (1)以下说法正确是__________. A .甲抢到的红包金额一定最多B.乙抢到的红包金额一定最多C.丙抢到的红包金额一定最多D.丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?18.在一个不透明的袋子中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋子中的球摇匀后,求从袋子中随机摸出一个球是黄球的概率;(2)若向这个袋子再加入5个红球,求从袋子中随机摸出一个球,摸到不是红球的概率.四、解答题(二)(每题9分,共27分)19.现有四根长度为2cm,3cm,4cm,5cm的木棒,小明任意取一根木棒,能与手中长度为3cm,6cm的木棒拼成一个三角形木框的概率是多少?20.“草莓音乐节”组委会设置了甲、乙、丙三种门票,初一二班购买了甲种门票3张,乙种门票7张,丙种门票10张,班长采取在全班同学中随机抽取的方式来确定观众名单,且每名同学只有一次机会,已知该班有50名学生,请根据题意解决以下问题:(1)该班某名学生恰能去参加“草莓音乐节”活动的概率是多少?(2)该班同学强烈呼吁甲种门票太少,要求每人抽到甲种门票的概率要达到20%,则还要购买甲种门票多少张?521.小蒙设计了两个抽奖游戏,游戏一是转盘游戏,如图,转盘被等分成了4个扇形,共有红、黄和蓝三种颜色,自由转动转盘,指针停在红色时会得到奖励;游戏二是摸球游戏,袋子里有2个红球、2个黄球和1个蓝球,每个球除颜色外其他都相同,任意摸出一个球,摸到红球会得到奖励.小雨要参加抽奖游戏,应选择参加哪一个游戏获得奖励的可能性比较大?请说明理由.五、解答题(三)(每题12分,共24分)22.“校园手机”现象越来越受到社会的关注.九(1)班学生在“统计实习”实践活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的态度,统计整理并制作了如下的统计图.(1)在图②中,AB是圆O的直径,求这次被调查的家长总人数,并补全图①;(2)求图②中表示家长“基本赞成”的圆心角的度数;(3)从这次接受调查的家长中,随机抽取一名,恰好是“无所谓”态度的家长的概率是多少?23.如图,端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客每购买200元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针对准红色、黄色、绿色的区域,顾客就可以分别获得50元、20元、10元的奖金,对准无色区域则无奖金(转盘被等分成16个扇形).(1)王老师购买了210元的商品,他获得奖金的概率是多少?(2)张老师购买了370元的商品,他获得20元奖金的概率是多少?(3)现商场想调整获得10元奖金的概率为14,其他金额的获奖率不变,则需要将多少个无色区域涂上绿色?7答案一、1.B 2.B 3.C 4.B 5.D 6.A7.D8.C9.B10.B点拨:蓝色区域的面积为π(2r)2-πr2=3πr2,总面积为π(3r)2=9πr2,则小钢球停止在蓝色区域的概率为3πr29πr2=13.故选B.二、11.错误12.2513.4014.3515.17三、16.解:(1)(2)(5)属于随机事件,(3)属于必然事件,(4)属于不可能事件.17.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.18.解:(1)因为不透明的袋子中装有2个黄球,3个黑球和5个红球,所以从袋子中随机摸出一个球是黄球的概率是22+3+5=15.(2)因为向这个袋子再加入5个红球,所以红球共有10个,球的总数为2+3+5+5=15(个),所以从袋子中随机摸出一个球,摸到不是红球的概率是15-1015=13.四、19.解:因为小明手中两根木棒的长度分别为3cm和6cm,所以易得第三边的长度应满足大于3cm,小于9cm.所以能与小明手中两根木棒拼成三角形的木棒的长度是4cm或5cm,所以能与长度为3cm,6cm的木棒拼成一个三角形木框的概率是24=12.20.解:(1)因为该班有50名学生,且每名同学抽中的可能性相等,三种门票共有3+7+10=20(张),所以该班某名学生恰能去参加“草莓音乐节”活动的概率是2050=25.(2)设还要购买甲种门票x张,则根据题意得3+x 50=20%,解得x=7.答:还要购买甲种门票7张.21.解:游戏一:由于转盘被等分成了4个扇形,红色占2个,因此指针停在红色的概率为24=12.游戏二:袋子里有2个红球、2个黄球和1个蓝球,摸出一个球是红色的概率为22+2+1=25,因为12>25,所以应选择参加游戏一获得奖励的可能性较大.五、22.解:(1)由于AB是圆O的直径,所以“不赞成”占被调查总人数的50%,所以这次调查的家长总人数为200÷50%=400(人).“非常赞成”的人数为400×26%=104(人),“基本赞成”的人数为400-200-104-16=80(人),补全的统计图如下.(2)360°×80400=72°.答:题图②中表示家长“基本赞成”的圆心角的度数为72°.(3)在这次被调查的400名家长中,“无所谓”态度的家长有16名,所以恰好是“无所谓”态度的家长的概率是16400=125.23. 解:(1)王老师购买了210元的商品,能获得一次转动转盘的机会,获得奖金的概率是616=38.(2)张老师购买了370元的商品,能获得一次转动转盘的机会,获得20元奖金的概率是216=18.(3)设需要将x个无色区域涂上绿色,则由题意得x+316=14,解得x=1.所以需要将1个无色区域涂上绿色.9。
第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。