大学物理 CH4.1 流体力学
- 格式:docx
- 大小:37.98 KB
- 文档页数:4
大一物理流体的运动知识点总结流体力学是研究流体的力学性质和运动规律的学科,是物理学的一个重要分支。
在大一的物理学课程中,我们学习了流体力学的基本概念和运动规律。
下面是对流体的运动知识点的总结。
一、流体的基本性质流体是指能够流动的物质,包括气体和液体。
流体的特点是没有固定的形状,能够适应所处容器的形状。
流体的基本性质包括质量密度、体积密度、压强和浮力等。
1. 质量密度:流体的质量与其体积的比值,常用符号ρ表示,单位是千克/立方米。
2. 体积密度:流体的质量密度的倒数,常用符号ρ'表示,单位是立方米/千克。
3. 压强:流体受到的压力,是垂直于单位面积的力,常用符号P表示,单位是帕斯卡(Pa)。
4. 浮力:流体对物体上浸的部分所施加的向上的力,大小等于被排开的流体重量。
二、流体的运动规律1. 连续性方程:在稳恒流动的条件下,流经一个截面的流体质量速率恒定,即质量守恒定律。
2. 波依恩定律:对于一个稳恒流动的理想流体,沿任意一条流线,流体速度、压力和高度之间满足波依恩定律。
3. 压强和速度的关系:对于一个稳恒流动的理想流体,速度增大,压强减小;速度减小,压强增大。
4. 伯努利定律:对于一个稳恒流动的理想流体,沿一条流线,流体的总机械能保持不变。
5. 流体的黏性:流体黏性是指流体内部的分子间的相互作用力,黏性对流体的流动有一定的阻碍作用。
三、流体的实际应用流体力学在现实生活中有广泛的应用,例如管道输送、飞机和汽车空气动力学、水力发电等。
下面是一些流体在实际应用中的重要现象和原理。
1. 血流动力学:通过研究血液在血管中的流动规律,可以了解心脏和血管的疾病。
2. 鸟类飞行原理:通过研究空气动力学,可以分析鸟类飞行的原理,并应用于飞机设计。
3. 水力发电:利用水流的动能产生电能的过程,通过水轮机转动发电机,将水的动能转化为电能。
4. 管道输送:通过流体在管道中的流动,可以实现将液体或气体从一处运输到另一处,例如输油管道、天然气管道等。
第四章 流体力学#4-1如本题图,试由多管压力计中水银面高度的读数确定压力水箱中A 点的相对压强(P -P 0)。
(所有读数均自地面算起,其单位为米) 解:根据gh P ρ=得)-(汞7.08.103g P P ρ=- )-(水7.0232g P P ρ-=-)-(汞9.0221g P P ρ=- )-(-水9.05.21g P P ρ=- m g m g P P 9.22.20⨯⨯=-∴水汞-ρρ4-2如本题图,将一充满水银的气压计下端浸在一个广阔的盛水银的容器中,其读数为 -25m N 10950.0⋅⨯=p 。
(1)求水银柱的高度h 。
(2)考虑到毛细现象后,真正的大气压强0p 多大? 已知毛细管的直径m 100.23-⨯=d ,接触角π=θ,水银的表面张力系数-1m N 49.0⋅=σ。
解:(1)gh p ρ=cm g p h 3.716.138.910950.05≈⨯⨯==∴ρ(2)Pa d p p 43500106.9100.1cos 49.021095.02cos 2'⨯=⨯⨯+⨯=+=-πθσ 4-3灭火筒每分钟喷出60m 3的水,假定喷口处水柱的截面积为1.5cm 2,问水柱喷到2m 高时其截面积有多大? 解:流量2211S v S v Q ==且 gh v v 22122-=-s m m s m S Q v /107.6105.16060324311⨯≈⨯==∴- 2212235.42cm ghv Q v Q S =-==4-4油箱内盛有水和石油,石油的密度为0.9g /cm 3,水的厚度为1m ,油的厚度为4m 。
求水自箱底小孔流出的速度。
解:如图,流线上1、2点分别是油面和小孔处的两点。
根据伯努利方程水习题4-1图习题4-2图恒量=++p gh v ρρ221 得: 水水水油油gh v gh ρρρ-=221s m h h g v /5.9)(2≈+=∴水油水油ρρ 4-5一截面为5.0cm 2的均匀虹吸管从容积很大的容器中把水吸出。
课时安排:2课时教学目标:1. 了解流体力学的基本概念和研究对象。
2. 掌握流体力学的基本原理,包括连续性原理、伯努利方程等。
3. 理解流体力学在实际工程中的应用,如流体输送、风力发电等。
教学重点:1. 流体力学的基本概念和研究对象。
2. 连续性原理、伯努利方程等基本原理。
3. 流体力学在实际工程中的应用。
教学难点:1. 连续性原理、伯努利方程等基本原理的理解和运用。
2. 流体力学在实际工程中的应用分析。
教学准备:1. 教学课件:流体力学基本概念、连续性原理、伯努利方程等。
2. 教学视频:流体力学在实际工程中的应用案例。
3. 实验器材:流体力学实验装置。
教学过程:一、导入1. 提问:什么是流体?流体有哪些特性?2. 引入流体力学的研究对象和内容。
二、基本概念1. 流体:由许多彼此能够相对运动的流体元物质微团所组成的连续介质,具有流动性,常被称为流体。
2. 流体元:微团或流体质量元,它是由大量分子组成的集合体。
3. 理想流体:指绝对不可压缩、完全没有黏滞性的流体。
4. 定常流动:指流体的流动状态不随时间发生变化的流动。
三、基本原理1. 连续性原理:理想流体在同一细流管内,任意两个垂直于该流管的截面流速与密度之积相等。
2. 伯努利方程:在稳定流动的不可压缩流体中,流速越快的地方,压力越低。
四、应用分析1. 流体输送:如水泵、管道输送等。
2. 风力发电:如风力发电机、风力提水等。
五、实验演示1. 流体力学实验装置演示,如流体压力、流速测量等。
六、课堂小结1. 总结流体力学的基本概念、原理和应用。
2. 强调流体力学在实际工程中的重要性。
七、作业布置1. 阅读教材相关内容,巩固所学知识。
2. 完成课后习题,加深对流体力学原理的理解。
教学反思:通过本节课的教学,使学生掌握了流体力学的基本概念、原理和应用,提高了学生的实际应用能力。
在教学过程中,注重理论与实践相结合,通过实验演示、案例分析等方式,激发学生的学习兴趣,提高学生的综合素质。
大学物理中的流体力学流体的运动与应用流体力学是研究流体在运动中的行为和性质的学科。
在大学物理课程中,流体力学是一个重要的分支,它涵盖了流体的基本概念、流体静力学、流体动力学以及流体在各种应用中的重要性。
本文将探讨大学物理中的流体力学,重点关注流体的运动和在实际应用中的应用。
一、流体的基本概念1. 流体的定义流体是指那些可以流动的物质,包括液体和气体。
与固体不同,流体具有流动性和变形性。
2. 流体的性质流体具有一些独特的性质,如压缩性、流动性、粘滞性和表面张力等,这些性质对流体的运动和应用产生重要影响。
二、流体静力学1. 流体静力学的基本原理流体静力学研究的是流体处于静止状态时的力学行为。
根据帕斯卡定律,任何外界施加在封闭流体上的压力都会均匀地传递到流体内各个部分。
2. 流体静压力流体静压力是指流体由于受到外界压力作用而产生的压力。
流体静压力与深度、密度及重力加速度相关,可以通过压力公式来计算。
三、流体动力学1. 流体的运动描述流体动力学研究的是流体在运动中的行为和特性。
流体可以分为层流和湍流两种形式,层流是指流体分层无交叉流动的情况,湍流则是流体混乱交织的流动状态。
2. 流体的连续性方程流体的连续性方程表明,在稳态流动中,流体质量的流动速率始终保持不变。
通过连续性方程,可以推导得到质量守恒定律。
3. 流体的伯努利方程伯努利方程是描述流体在不同位置之间压强、速度和高度之间关系的方程。
它说明了在理想流体中,速度增加,压强将降低,而高度会对其产生影响。
四、流体力学在实际应用中的应用1. 水压力的应用水压力广泛应用于水泵、压力表和液压机械等领域。
利用水的压力可以实现液体的输送、提供动力以及进行力的放大。
2. 空气动力学的应用空气动力学研究的是气体在空气中的行为和特性。
该领域的应用包括飞机的设计、汽车的空气动力学外形改进以及建筑物的风阻力研究等。
3. 血液循环的研究血液循环是人体内部的液体流动系统,涉及到心脏和血管等器官的运作。
大学物理 CH4.1 流体力学
第四章流体力学
流动性
静止流体在任何微小的切向力作用下都要发生连续不断的变形,不断的变形,即流体的一部分相对另一部分运动,即流体的一部分相对另一部分运动,这种变形称为流动。
这种变形称为流动。
连续介质模型
设想流体是由连续分布的流体质点组成的的连续介质,流体质点具有宏观充分小,流体质点具有宏观充分小,微观充分大的特点。
微观充分大的特点。
描述流体的物理量可以表示成空间和时间的连续函描述流体的物理量可以表示成空间和时间的连续函数。
内容提要
流体的主要物理性质
连续性方程、连续性方程、伯努利方程及其应用
粘性流体的两种流动状态、粘性流体的两种流动状态、哈根-哈根-泊肃叶定律斯托克斯定律
一、惯性
惯性是物体保持原有运动状态的性质,惯性是物体保持原有运动状态的性质,表征某一流体的惯性大小可用该流体的密度。
m
均质流体:均质流体:ρ=
V
∆m d m
ρ(x , y , z )=lim =
∆v →0∆V d V
液体的密度随压强和温度的变化很小,液体的密度随压强和温度的变化很小,气体的密
度随压强和温度而变化较大。
度随压强和温度而变化较大。
二、压缩性
流体受到压力作用后体积或密度发生变化的特性称为压缩性。
为压缩性。
通常采用体积压缩率表示流体的压缩性。
d V κ=−单位:单位:m 2/N
d p 体积弹性模量:
d p
E V ==−
κd V 1
单位:单位:N / m2或Pa
不可压缩流体即在压力作用下不改变其体积的流体。
即在压力作用下不改变其体积的流体。
三、粘性
粘性是运动流体内部所具有的抵抗剪切变形的特性。
粘性是运动流体内部所具有的抵抗剪切变形的特性。
它表现为运动着的流体中速度不同的流层之间存在着沿切向的粘性阻力(着沿切向的粘性阻力(即内摩擦力)。
即内摩擦力)。
x
d u
速度梯度d y
d u
F =µA 牛顿粘性公式
d y
µ为动力黏度,为动力黏度,单位Pa ⋅s
d u
黏滞切应力τ=µ
d y
d u x
d u d t
d γ≈tan(dγ) =
d y
d u d γ
=d y d t d γτ=µ
d t
例1如图所示为一旋转圆筒黏度计,如图所示为一旋转圆筒黏度计,外筒固定,外筒固定,内筒由同步电机带动旋转,同步电机带动旋转,内外筒间充入实验液体。
内外筒间充入实验液体。
已知内筒半径r 1=1.93cm,外筒半径r 2=2cm,内筒高h =7cm。
实验测得内筒转速n =10r/min,转轴上扭矩M =0.0045N·m。
试求该实验液体的黏度。
求该实验液体的黏度。
解
内筒壁的粘滞切应力
d u ωr 1
τ=µ=µ
d y r 2−r 1
2πn
角速度ω=
60
扭矩M =τAr 1=τ⋅2πr 1h ⋅r 1
黏度
理想流体(ideal fluid):
绝对不可压缩的、绝对不可压缩的、完全没有粘性的流体。
完全没有粘性的流体。
实际流体都是具有粘性的和可压缩性的。
实际流体都是具有粘性的和可压缩性的。
粘性较小的液体或在流动过程中几乎没有被压缩的气体都可以视为理想流体。
气体都可以视为理想流体。
在一些实际问题中在一些实际问题中,,可压缩性和粘性只是影响运动的次要因素,的次要因素,只有流动性才是决定运动的主要因素,因此往往可以采用理想流体模型。
因此往往可以采用理想流体模型。
四、作用在流体上的力
1表面力
所取定的流体之外的流体或物体通过直接接触,所取定的流体之外的流体或物体通过
直接接触,施加在接触表面上的力,接触表面上的力,表面力的大小与封闭边界面的面积
及表面应力分布有关。
表面应力分布有关。
∆P lim 法向应力p A =∆
S →0∆S S
p 习惯上称为A 点的压强A ∆T
切向应力τA =lim ∆S →0∆S
应力单位: 帕斯卡(Pa),简称帕
1Pa=1N/m2。
2质量力
质量力是流体所处的外力场作用在取定流体的每个质点上的非接触力,上的非接触力,质量力的大小与外力场的强度及流体的质量分布有关。
质量分布有关。
∆F lim 单位质量力f =∆m →0∆m V
单位质量力的单位为m/s2。
在直角坐标系内,角坐标系内,习惯以X ,Y ,Z 来表
示单位质量力的分量。
来表示单位质量力的分量。
若作用在流体上的质量力只有重力,若作用在流体上的质量力只有重力,则
∆F x =0, ∆F y =0, ∆F z =−∆m ⋅g
−∆m ⋅g =−g 单位质量力X =0, Y =0, Z =∆m。