同济大学《数学建模》数学规划模型
- 格式:ppt
- 大小:2.65 MB
- 文档页数:240
数学规划模型
数学规划模型是一种数学建模方法,它使用数学方法来解决决策问题。
数学规划模型可以用来优化资源的利用,最大化或最小化某个目标函数。
首先,数学规划模型需要明确目标函数和约束条件。
目标函数是我们希望优化的指标,约束条件则是限制我们优化的条件。
例如,如果我们要找到一种最佳的生产计划,那么目标函数可以是产量的最大化,约束条件可以是原料的限制、生产设备的限制等。
接下来,数学规划模型需要定义决策变量。
决策变量是我们可以调整的变量,通过调整决策变量的值,我们可以达到最优解。
例如,对于生产计划问题,决策变量可以是每种产品的生产数量。
然后,将目标函数和约束条件用数学公式表示出来。
例如,如果我们的目标是最大化产量,那么目标函数可以表示为一个关于决策变量的函数。
同时,约束条件也可以用一组不等式来表示。
接下来,我们需要使用数学方法来求解这个数学规划模型。
常用的数学方法包括线性规划、整数规划、非线性规划等。
具体的求解方法取决于模型的特点和目标函数的形式。
最后,我们需要把数学模型的结果解释给决策者,帮助他们做出更明智的决策。
这个过程通常包括分析和解释模型的结果,
以及提供关于如何操作和调整决策变量的建议。
总结来说,数学规划模型是一种解决决策问题的数学方法。
通过明确目标函数和约束条件,定义决策变量,使用数学方法求解,并将结果解释给决策者,我们可以通过数学规划模型得到最优的决策方案。
这种方法在供应链管理、生产计划、资源分配等领域有着广泛的应用。
数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
数学建模,第五章数学规划模型数学建模:第五章数学规划模型在数学的广袤领域中,数学规划模型是解决实际问题的有力工具之一。
它帮助我们在各种限制条件下,寻找最优的解决方案,从而实现资源的合理分配、效益的最大化等目标。
数学规划模型的应用场景极为广泛。
比如在生产制造领域,企业需要决定生产何种产品、生产多少数量,以在有限的资源和时间内获得最大的利润;在物流运输中,如何规划运输路线,使得运输成本最低、时间最短;在资源分配方面,如电力分配、水资源分配等,怎样做到公平且高效。
数学规划模型主要包括线性规划、非线性规划、整数规划和动态规划等类型。
线性规划是其中最为基础和常见的一种。
它的目标函数和约束条件都是线性的。
举个简单的例子,一家工厂生产两种产品 A 和 B,生产A 产品每件需要 2 小时的加工时间和 1 公斤的原材料,生产B 产品每件需要 3 小时的加工时间和 2 公斤的原材料。
工厂每天有 10 小时的加工时间和 8 公斤的原材料可用,A 产品每件利润 3 元,B 产品每件利润 5 元。
那么,为了获得最大利润,应该分别生产多少件 A 和 B 产品呢?我们可以设生产 A 产品 x 件,生产 B 产品 y 件,目标函数就是利润最大化 3x + 5y,约束条件则是 2x +3y ≤ 10 和 x +2y ≤ 8 以及x ≥ 0,y ≥ 0。
通过求解这个线性规划问题,我们就能得出最优的生产方案。
非线性规划则是目标函数或约束条件中至少有一个是非线性的。
比如在一个生产过程中,成本函数可能不是简单的线性关系,而是与产量的平方或者其他非线性函数相关。
整数规划要求决策变量取整数值。
例如在人员安排问题中,只能安排整数个人,不能有半个人的情况。
动态规划则适用于多阶段决策问题。
比如在项目投资中,每年都要决定是否投资以及投资多少,需要考虑不同阶段的收益和成本。
建立数学规划模型的一般步骤包括:首先,明确问题的目标和约束条件。
这需要对实际问题进行深入的分析和理解,将其转化为数学语言。
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107模型:已知 ⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x xx c注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max 4.8() 5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥2.1解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。