第五章钢热处理
- 格式:doc
- 大小:111.50 KB
- 文档页数:15
第二节模具表面处理工艺概述模具是现代工业之母。
随着社会经济的发展,特别是汽车、家电工业、航空航天、食品医疗等产业的迅猛发展,对模具工业提出了更高的要求。
如何提高模具的质量、使用寿命和降低生产成本,成为各模具厂及注塑厂当前迫切需要解决的问题。
模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。
这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。
这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果;模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。
从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。
在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。
◆提高模具的表面的硬度、耐磨性、摩擦性、脱模性、隔热性、耐腐蚀性;◆提高表面的高温抗氧化性;◆提高型腔表面抗擦伤能力、脱模能力、抗咬合等特殊性能;减少冷却液的使用;◆提高模具质量,数倍、几十倍地提高模具使用寿命。
减少停机时间;◆大幅度降低生产成本与采购成本,提高生产效率和充分发挥模具材料的潜能。
◆减少润滑剂的使用;◆涂层磨损后,还退掉涂层后,再抛光模具表面,可重新涂层。
在模具上使用的表面技术方法多达几十种,从表面处理的方式上,主要可以归纳为物理表面处理法、化学表面处理法和表面覆层处理法。
模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD化学气相淀积、PVD物理气相沉积、PACVD离子加强化学气相沉积、CVA铝化化学气相沉积、激光表面强化法、离子注入法、等离子喷涂法等等。
下面综述模具表面处理中常用的表面处理技术:一、物理表面处理法:表面淬火是表面热处理中最常用方法,是强化材料表面的重要手段,分高频加热表面淬火、火焰加热表面淬火、激光表面淬火。
第五章钢的热处理〔含答案〕一、填空题〔在空白处填上正确的内容〕1、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。
答案:Ac 或Ac 以上50℃、空气3 cm2、钢的热处理是通过钢在固态下、和的操作来转变其内部,从而获得所需性能的一种工艺。
答案:加热、保温、冷却、组织3、钢淬火时获得淬硬层深度的力量叫,钢淬火时获得淬硬层硬度的力量叫。
答案:淬透性、淬硬性4、将后的钢加热到以下某一温度,保温肯定时间,然后冷却到室温,这种热处理方法叫回火。
答案:淬火、Ac15、钢在肯定条件下淬火时形成的力量称为钢的淬透性。
淬透层深度通常以工件到的距离来表示。
淬透层越深,表示钢的越好。
答案:马氏体〔M〕、外表、半马氏体区、淬透性6、热处理之所以能使钢的性能发生变化,其根本缘由是由于铁具有转变,从而使钢在加热和冷却过程中,其内部发生变化的结果。
答案:同素异构、组织7、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。
答案:Ac 或Ac 以上30℃~50℃、空气3 cm8、钢的渗碳是将零件置于介质中加热和保温,使活性渗入钢的外表,以提高钢的外表的化学热处理工艺。
答案:渗碳、碳原子、碳含量9、共析钢加热到Ac 以上时,珠光体开头向转变,通常产生于铁素体和1渗碳体的。
答案:奥氏体〔A〕、奥氏体晶核、相界面处10、将工件放在肯定的活性介质中,使某些元素渗入工件外表,以转变化学成分和,从而改善外表性能的热处理工艺叫化学热处理。
答案:加热和保温、组织11、退火是将组织偏离平衡状态的钢加热到适当温度,保温肯定时间,然后冷却,以获得接近组织的热处理工艺。
答案:缓慢〔随炉〕、平衡状态12、将钢加热到温度,保温肯定时间,然后冷却到室温,这一热处理工艺叫退火。
答案:适当、缓慢〔随炉〕13、V 是获得的最小冷却速度,影响临界冷却速度的主要因素是。
临答案:全部马氏体〔全部M〕、钢的化学成分14、钢的热处理是将钢在肯定介质中、和,使它的整体或外表发生变化,从而获得所需性能的一种工艺。
钢的化学热处理三个基本过程
钢的化学热处理包括三个基本过程:分解、吸收和扩散。
分解是指渗剂中生成能渗入钢表面的活性原子的化学反应,通常包括分解反应、置换反应和还原反应。
化学反应速度除取决于反应物的本性外,还与温度、压力、浓度、催化剂有关。
一般增加浓度和升高温度,能增加反应速度。
添加催化剂可以使反应速度剧增。
吸收是指一切固体都能或多或少地把周围介质中的分子、原子或离子吸附到自己的表面上来。
粗糙的表面比平滑的表面吸附作用强,晶界比晶内吸附作用强。
扩散是指活性原子从工件表层向内部的扩散,这是化学热处理过程中的重要环节。
扩散速度与温度和浓度梯度有关,通常温度越高,扩散越快。
以上三个过程是相互联系、相互影响的,必须同时进行,以保证化学热处理的顺利进行。
1/ 1。
第五章钢的热处理本章重点:热处理工艺主要介绍钢的普通常见的热处理方法,1.退火2.正火3.淬火4.回火。
难点:各种热处理方法的区别和应用§5.3 钢的退火和正火退火和正火是应用最为广泛的热处理工艺。
在机械零件和工、模具的制造加工过程中,退火和正火往往是不可缺少的先行工序,具有承前启后的作用。
机械零件及工、模具的毛坯退火或正火后,可以消除或减轻铸件、锻件及焊接件的内应力与成分、组织的不均匀性,从而改善钢件的机械性能和工艺性能,为切削加工及最终热处理(淬火)作好组织、性能准备。
一些对性能要求不高的机械零件或工程构件,退火和正火亦可作为最终热处理。
一. 退火目的及工艺退火是钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织、提高加工性能的一种热处理工艺。
其主要目的是减轻钢的化学成分及组织的不均匀性,细化晶粒,降低硬度,消除内应力,以及为淬火作好组织准备。
退火工艺种类很多,常用的有完全退火、等温退火、球化退火、扩散退火、去应力退火及再结晶退火等。
不同退火工艺的加热温度范围如图5.25所示,它们有的加热到临界点以上,有的加热到临界点以下。
对于加热温度在临界点以上的退火工艺,其质量主要取决于加热温度、保温时间、冷却速度及等温温度等。
对于加热温度在临界点以下的退火工艺,其质量主要取决于加热温度的均匀性。
1. 完全退火完全退火是将亚共析钢加热到A C3以上20~30℃,保温一定时间后随炉缓慢冷却至500℃左右出炉空冷,以获得接近平衡组织的一种热处理工艺。
它主要用于亚共析钢,其主要目的是细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性能。
低碳钢和过共析钢不宜采用完全退火。
低碳钢完全退火后硬度偏低,不利于切削加工。
过共析钢完全退火,加热温度在A cm以上,会有网状二次渗碳体沿奥氏体晶界析出,造成钢的脆化。
2. 等温退火完全退火所需时间很长,特别是对于某些奥氏体比较稳定的合金钢,往往需要几十小时,为了缩短退火时间,可采用等温退火。
等温退火的加热温度与完全退火时基本相同,钢件在加热温度保温一定时间后,快冷至A r1以下某一温度等温,使奥氏体转变成珠光体,然后出炉空冷。
图5.26为高速钢的完全退火与等温退火的比较,可见等温退火所需时间比完全退火缩短很多。
A r1以下的等温温度,根据要求的组织和性能而定;等温温度越高,则珠光体组织越粗大,钢的硬度越低。
3. 球化退火球化退火是使钢中渗碳体球化,获得球状(或粒状)珠光体的一种热处理工艺。
主要用于共析和过共析钢,其主要目的在于降低硬度,改善切削加工性能;同时为后续淬火作好组织准备。
球化退火是将钢件加热到A c1以上20~30℃,充分保温使未溶二次渗碳体球化,然后随炉缓慢冷却,或在A r1以下20℃左右进行较长时间保温,使珠光体中的渗碳体球化,随后出炉空冷。
上述两种工艺如图5.27所示。
(1分钟)对于有网状二次渗碳体的过共析钢,在球化退火之前应进行一次正火,以消除粗大的网状渗碳体。
近年来,球化退火工艺应用于亚共析钢也取得较好的效果,只要工艺控制恰当,同样可使渗碳体球化,从而有利于冷成形加工。
4. 扩散退火扩散退火是将钢锭或铸钢件加热到略低于固相线的温度,长时间保温,然后缓慢冷却,以消除化学成分不均匀现象的一种热处理工艺,扩散退火加热温度通常为A c1以上150~300℃,具体加热温度视钢种及偏析程度而定,保温时间工般为10~15h。
扩散退火后钢的晶粒非常粗大,需要再进行完全退火或正火。
由于高温扩散退火生产周期长、消耗能量大、生产成本高,所以一般不轻易采用。
5. 去应力退火为了消除冷加工以及铸造、焊接过程中引起的残余内应力而进行的退火,称为去应力退火。
去应力退火还能降低硬度,提高尺寸稳定性,防止工件的变形和开裂。
钢的去应力退火加热温度范围较宽,但不能超过A c1点,一般在500-650℃之间;去应力退火后的冷却应尽量缓慢,以免产生新的应力。
二. 正火目的及工艺正火是将钢加热到A c3或A ccm以上30~50℃,保温一定时间,然后在空气中冷却以获得珠光体类组织的一种热处理工艺。
正火与退火主要区别在于冷却速度不同,正火冷却速度较快,获得的珠光体组织较细,强度和硬度也较高。
正火与退火的目的相似,但正火态钢的机械性能较高,而且正火生产效率高,成本低,因此在工业生产中应尽量用正火代替退火。
正火的主要应用是:1. 作为普通结构零件的最终热处理。
2. 作为低、中碳结构钢的预先热处理,可获得合适的硬度,便于切削加工。
3. 用于过共析钢消除网状二次渗碳体,为球化退火作妤组织准备。
综上所述,为改善钢的切削性能,低碳钢宜用正火;共析钢和过共析钢宜用球化退火,且过共析钢宜在球化退火前采用正火消除网状二次渗碳体;中碳钢最好采用退火,但也可采用正火。
§5.4 钢的淬火淬火是将钢加热到A c3或A c1以上的一定温度,保温后快速冷却,以获得马氏体(或下贝氏体)组织的一种热处理工艺。
马氏体强化是钢最有效的强化手段,因此,淬火也是钢的最重要的热处理工艺。
一. 淬火加热温度淬火加热温度是淬火工艺的主要参数。
它的选择应以得到均匀细小的奥氏体晶粒为原则,以使淬火后获得细小的马氏体组织。
为防止奥氏体晶粒粗化,淬火加热温度一般限制在临界点以上30~50℃范围。
碳钢淬火加热温度范围如图50.28所示。
亚共析钢淬火加热温度为A c3+(30~50℃)。
这样可获得均匀细小的马氏体组织,若淬火加热温度过高,不仅会出现粗大马氏体组织,还会导致淬火钢的严重变形。
若淬火加热温度过低,则会在淬火组织中出现铁素体,造成淬火钢硬度不足,甚至出现“软点”现象。
共析钢和过共析钢的淬火加热温度为A c1+(30~50℃)。
淬火后,共析钢组织为均匀细小的马氏体和少量残余奥氏体;过共析钢则可获得均匀细小的马氏体加粒状二次渗碳体和少量残余奥氏体的混合组织。
过共析钢的这种正常淬火组织,有利于获得最佳硬度和耐磨性。
若过共析钢的淬火加热温度过高,则会得到较粗大的马氏体和较多的残余奥氏体。
这不仅降低了淬火钢的硬度和耐磨度性,而且会增大淬火变形和开裂倾向。
对于合金钢,由于大多数合金元素有阻碍奥氏体晶粒长大的作用,所以淬火加热温度可以稍微提高一些,以利于合金元素的溶解和均匀化,从而获得较好的淬火效果。
二. 淬火冷却介质冷却也是影响淬火质量的一个重要因素。
因此选择合适的淬火冷却介质,对于达到淬火目的和保证淬火质量具有十分重要的煮义。
为了保证淬火能得到马氏体组织,淬火冷却速度就必须大于临界冷却速度(Vc)而快冷总是不可避免地要造成较大的内应力,以致往往要引起钢件的变形或开裂。
要解决这一矛盾,理想的淬火冷却曲线应如图50.29所示。
由图可知,淬火并不需要整个冷却过程都是快冷,只要求在C曲线鼻尖附近快冷;而在M S点以下则应尽量慢冷,以减小马氏体转变时的内应力。
但是到目前为止,还没有找到一种淬火冷却介质能符合这一理想淬火冷却曲线的要求,也就是说,至今还没有一种十分理想的淬火冷却介质。
淬火最常用的冷却介质是水、盐水和油。
水是既经济又有很强冷却能力的淬火冷却介质。
其不足之处是在650~550℃的范围内冷却能力不够强,而在300~200℃范围内冷却能力又偏强,不符合理想淬火冷却介质的要求。
盐水的淬火冷却能力比清水更强,尤其在650~550℃范围内具有很强的冷却能力,这对尺寸较大的碳钢件的淬火是非常有利的。
采用盐水淬火时,由于盐晶体在工件表面的析出和爆裂,可不断有效地打破包围在工件表面的蒸汽膜和促使附着在工件表面上的氧化铁皮的剥落。
因此用盐水淬火的工件容易获得高硬度和光洁的表面,且不会产生淬不硬的软点,这是清水淬火所不及的。
但是盐水在300~200℃以下温度范围内,冷却能力仍像清水那样相当强,能使工件变形加重,甚至发生开裂。
此外,盐水对工件有锈蚀作用,淬过火的工件必须进行清洗。
总之,水和盐水主要适用于形状简单、硬度要求高而均匀、变形要求不严格的碳钢零件的淬火。
油是一类冷却能力较弱的淬火冷却介质。
淬火用油主要为各种矿物油。
油在高温区冷却速度不够,不利于碳钢的淬硬,但有利于减少工件的变形。
因此,在实际生产中,油主要用作过冷奥氏体稳定性好的合金钢和尺寸小的碳钢零件的淬火冷却介质。
熔融状态的碱浴和硝盐浴也常用作淬火冷却介质。
碱浴在高温区的冷却能力比油强而比水弱,而硝盐在高温区的冷却能力比油略弱。
在低温区域,碱浴和硝盐浴的冷却能力都比油弱。
因此碱浴和硝盐浴广泛作截面不大、形状复杂、变形要求严格的工具钢的分级淬火或等温淬火的冷却介质。
表5.1和表5.2分别为常用淬火冷却介质水、盐水、碱水和油的冷却能力与碱浴、硝盐浴的成分、熔点使用温度。
三. 淬火冷却方法由于淬火介质不能完全满足淬火质量的要求,所以要选择适当的淬火方法,以保证获得所需要的淬火组织和性能的前提下,尽量减小淬火应力、工件变形和开裂倾向。
;最常用的几种淬火方法如下:1. 单液淬火单液淬火是将奥氏体化后的钢件淬入一种介质中连续冷却获得马氏体组织的一种淬火方法(如图5.30曲线-1所示)这种方法操作简单,易实现机械化与自动化热处理;但它只适用于形状简单的碳钢和合金钢零件的淬火。
(1分钟)2. 双液淬火双液淬火是先将奥氏体化后的钢件淬入冷却能力较强的介质中冷至接近M S点温度时快速转人冷却能力较弱的介质中冷却,直至完成马氏体转变(如图5.30曲线2所示)。
这种淬火法利用了两种介质的优点,获得了较为理想的冷却条件;在保证工件获得马氏体组织的同时,减小了淬火应力,能有效防止工件的变形或开裂。
在工业生产常以水和油分别作为两种冷却介质,故又称之为水淬油冷法。
双液淬火法要求操作人员必须具有丰富的实践经验,否则难以保证淬火质量。
(1分钟)3. 分级淬火分级淬火是将奥氏体化后的钢件淬入稍高于M S点温度的盐浴中,保持到工件内外温度接近后取出,使其在缓慢冷却条件下发生马氏体转变(如图5.30曲线3所示)。
这种淬火方法显著降低了淬火应力,因而更为有效地减小或防止了淬火工件的变形和开裂。
因受熔盐冷却能力的限制,它只适用于处理尺寸较小的工件。
4. 等温淬火等温淬火是将奥氏体化后的钢件淬入高于M S点温度的盐浴中,等温保持,以获得下贝氏体组织的一种淬火工艺(如图5.30曲线4所示)。
这种淬火方法处理的工件强度高、韧性好;同时因淬火应力很小,故工件淬火变形极小。
它多用于处理形状复杂、尺寸较小的零件。
§5.5 钢的回火回火是将淬火钢加热到临界点A cl以下的某一温度,保温后以适当方式冷却到室温的一种热处理工艺。
回火的主要目的是:降低脆性:消除或减少内应力。
淬火钢存在很大的内应力,如不及时回火,往往会导致工件的变形和开裂。
稳定组织和工件尺寸:回火过程中,不稳定的淬火马氏体和残余奥氏体会转变为较稳定的铁素体和渗碳体或碳化物的两相混合物,从而保证了工件在使用过程中形状和尺寸的稳定性。