勾股定理的证明和应用
- 格式:docx
- 大小:65.57 KB
- 文档页数:8
勾股定理的证明与应用勾股定理是数学中的一条重要定理,它表明在直角三角形中,直角边的平方和等于斜边的平方。
本文将对勾股定理的证明方法进行探讨,并结合实际应用场景进行具体分析。
一、勾股定理的证明勾股定理最早可以追溯到中国古代。
相传,公元前11世纪的周朝时期,中国古代数学家祖冲之发现了勾股定理,并给出了一种证明方法。
他的证明方法基于图形的几何性质,被称为“割弦法”。
具体来说,首先假设有一个直角三角形,三边分别为a、b、c。
利用割弦法,我们可以得到如下等式:sin A = a / ccos A = b / c根据三角函数的定义,我们可以将上述两个等式相加:sin^2 A + cos^2 A = (a^2 / c^2) + (b^2 / c^2) = (a^2 + b^2) / c^2由于在直角三角形中,sin A 和 cos A 的平方和等于1,即 sin^2 A + cos^2 A = 1,因此可以得到:1 = (a^2 + b^2) / c^2进一步变换得:c^2 = a^2 + b^2因此,勾股定理得证。
二、勾股定理的应用勾股定理在数学和实际生活中都有广泛的应用。
下面将以几个实际场景为例,介绍勾股定理的应用。
1. 测量直角三角形的边长勾股定理可以用于测量一个直角三角形的边长。
假设我们已知一个直角三角形的两个直角边的长度分别为3和4,我们可以利用勾股定理计算出斜边的长度:c^2 = 3^2 + 4^2= 9 + 16= 25因此,斜边的长度为5。
2. 解决几何问题勾股定理在解决几何问题中有重要作用。
例如,我们可以利用勾股定理来判断一个三角形是否为直角三角形。
如果三条边的长度满足勾股定理的条件,即c^2 = a^2 + b^2,那么该三角形就是直角三角形。
3. 工程应用勾股定理在工程中也有广泛的应用。
例如,在建筑设计中,我们需要确保房间的角度为直角。
通过测量房间的两个边长,可以利用勾股定理来判断是否满足直角条件。
勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。
根据勾股定理,我们有a^2 + b^2 = c^2。
将三条边的
长度代入该等式,进行计算验证即可证明。
2. 几何证明:通过绘制直角三角形,并利用几何原理证明。
例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。
3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。
4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。
通过平行四边形的性质可以得出a^2 + b^2 = c^2。
5. 微积分证明:利用微积分的知识可以证明勾股定理。
通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。
这种证明方法比较复杂,需要较高的数学知识和
技巧。
17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。
其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。
图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。
则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。
(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。
勾股定理还可以解决生产生活中的一些实际问题。
在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。
(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。
勾股定理常见的证明方法摘要:一、引言二、勾股定理的定义及应用三、常见的证明方法1.欧几里得证明法2.切比雪夫证明法3.平方差证明法4.三角函数证明法5.切线证明法四、证明方法的比较与选择五、结论正文:一、引言勾股定理是数学领域中一条著名的定理,距今已有约2500年的历史。
它在我国古代称为“方圆之术”,在几何学中具有广泛的应用。
本文将对勾股定理的常见证明方法进行详细介绍,以帮助大家更好地理解和应用这一定理。
二、勾股定理的定义及应用勾股定理是指在直角三角形中,直角边平方和等于斜边的平方。
用数学公式表示为:a + b = c。
其中a、b为直角边,c为斜边。
勾股定理的应用十分广泛,如在建筑、航海、测量等领域都有涉及。
三、常见的证明方法1.欧几里得证明法:利用勾股定理的逆定理,即如果一个三角形的三边满足a + b = c,那么这个三角形一定是直角三角形。
此证明方法简单易懂,适用于初学者。
2.切比雪夫证明法:利用切比雪夫不等式,即对于任意实数x,有(x +1/x) ≥ 4。
将勾股定理中的斜边c看作x,直角边a、b分别看作1和1/x,代入切比雪夫不等式,可得到a + b ≥ c,从而证明勾股定理。
3.平方差证明法:利用(a + b)(a - b) = a - b,将勾股定理中的a、b、c 分别代入,可得到(a + b)(a - b) + 2ab = a - b + 2ab = (a + b) - c,进而证明勾股定理。
4.三角函数证明法:利用正弦函数和余弦函数的定义,设直角三角形ABC 的角A、B、C分别为90°、45°、45°,可得sinA = a/c,sinB = b/c,从而证明勾股定理。
5.切线证明法:在直角三角形ABC中,作斜边c上的任一点D,连接AD、BD。
利用切线的性质,可得到AD + BD = AB,即a + b = c,证明勾股定理。
四、证明方法的比较与选择以上五种证明方法各有特点,适用于不同层次的学生和学习阶段。
勾股定理的简单证明与应用勾股定理,又称直角三角形定理,是三角学中最基础和重要的定理之一。
它描述了直角三角形斜边的长度与两条直角边长度的关系。
在这篇文章中,我们将简要介绍勾股定理的证明以及一些实际应用。
一、勾股定理的证明勾股定理的证明可以通过几种方法进行,其中最著名的是毕达哥拉斯的几何证明和代数证明。
这里我们将介绍一种简单的几何证明方法。
假设有一个直角三角形,其中较短的两条直角边长度分别为a和b,斜边长度为c。
根据勾股定理,我们要证明的是:a² + b² = c²首先,以边长a和b为邻边,画两个正方形,如下图所示:(插入图片1)正方形的边长分别为a和b,通过连接这两个正方形的顶点和斜边的两个顶点,形成一个大正方形。
根据几何知识,我们可以知道大正方形的边长为:(a+b)(1)然后,我们将这个大正方形分成四个小三角形,同时将直角三角形从大正方形中取出,如下图所示:(插入图片2)根据几何知识,我们可以知道四个小三角形的面积和等于大正方形的面积,即:a² + b² = (a+b)²(2)将式(1)代入式(2),得到:a² + b² = a² + 2ab + b²化简后得:0 = 2ab由于直角三角形的两条直角边长度不可能为0,所以上式不可能成立。
因此,我们得出结论:a² + b² = c²这就完成了勾股定理的证明。
二、勾股定理的应用勾股定理作为数学中的基础定理,广泛应用于各个领域。
下面我们将介绍一些勾股定理的实际应用。
1. 测量直角三角形的边长和角度勾股定理可以用于测量直角三角形的边长和角度。
通过测量两条直角边的长度,可以计算出斜边的长度。
反过来,如果已知斜边的长度和一条直角边的长度,也可以计算出另一条直角边的长度。
此外,勾股定理还可以用于计算三角形的角度,通过已知的边长可以借助三角函数求解。
勾股定理500种证明方法
勾股定理,即边长为a、b、c的直角三角形满足a^2+b^2=c^2,是几何学中最为重要的定理之一、据说已经有超过500种不同的证明方法。
下面简要介绍其中的一些方法:
1.几何法:通过构造直角三角形,利用图形的性质来证明勾股定理。
例如,将正方形分为两个直角三角形,利用正方形边长的关系得到证明。
2.代数法:通过代数运算来证明勾股定理。
例如,设直角三角形的两条直角边分别为a和b,斜边为c,通过代数运算推导得到a^2+b^2=c^2
3.统计法:通过大量的实例来验证勾股定理。
例如,构造多个直角三角形,随机选择边长,计算并统计结果,验证a^2+b^2=c^2
4.数学归纳法:首先证明直角边长度为1和2的直角三角形满足勾股定理,然后利用数学归纳法证明任意长度的直角三角形都满足勾股定理。
5.微积分法:通过对直角三角形的边长关系进行微分或积分运算,推导出勾股定理。
6.反证法:假设存在一个三角形,满足a^2+b^2=c^2不成立,进而推出矛盾,以此证明勾股定理。
7.证明固定直角三角形的勾股定理,然后通过旋转、平移等变换,得到任意直角三角形的勾股定理。
8.二次函数法:将直角三角形的边长平方表示为二次函数,并证明该函数的图像与勾股定理相符。
9.数列法:通过构造特定的数列,利用数列的性质证明勾股定理。
上述只是列举了部分勾股定理的证明方法,实际上还有许多其他的方法。
不同的证明方法体现了数学的多样性和灵活性。
通过多种证明方法的探索和研究,我们可以更加深入地理解和应用勾股定理。
勾股定理的证明及其应用第一章前言勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。
也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人研究,反复被人论证。
1940 年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367 种不同的证明方法。
实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500 余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。
这是任何定理的证明无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras ,约公元前580 -公元前500 ).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000 多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M •克莱因教授曾经指出:我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5 的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000 年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30 个单位的棍子直立在墙上,当其上端滑下6 个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5 三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1 到15 的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15 组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.勾股定理同时也是数学中应用最广泛的定理之一。
勾股定理的应用与证明勾股定理是数学中的重要定理,被广泛应用于各个领域。
本文将介绍勾股定理的应用,并对其证明方法进行探讨。
一、勾股定理的应用勾股定理是解决直角三角形问题的基础,常被应用于以下方面:1. 测量和测绘:在地理测量和测绘学中,勾股定理被用于计算地面上两点间的直线距离。
此外,勾股定理还可应用于测量斜坡的高度、测量建筑物的高度以及绘制地图等。
2. 工程和建筑:在工程和建筑领域,勾股定理可用于计算构建斜面或倾斜物体的长度、高度和角度。
例如,在设计一座大桥时,工程师需要根据两座桥塔之间的距离和高度,以及斜杆的角度,来计算桥索的长度。
3. 电子技术:在电子电路设计中,勾股定理可用于计算电路中的电流、电压和电阻之间的关系。
特别是在直流电路中,应用勾股定理可以更方便地计算电流、电压和电阻的数值。
4. 计算机图形学:在计算机图形学中,勾股定理被广泛应用于三维空间中的几何计算。
通过勾股定理,可以快速计算出点与点之间的距离,从而实现三维图形的绘制和渲染。
二、勾股定理的证明方法勾股定理有多种证明方法,其中最著名的有三种:几何证明、代数证明和进一步发展的解析几何证明。
1. 几何证明:勾股定理最初由古希腊数学家毕达哥拉斯提出,并有他名字命名。
几何证明是最早的一种证明方法,通过构造直角三角形,利用几何图形的性质来证明。
这种证明方法直观清晰,易于理解。
2. 代数证明:代数证明是利用代数运算和方程的性质来证明勾股定理。
一种常见的代数证明方法是基于平方差公式,假设直角三角形的两条直角边长分别为a和b,斜边长为c,则根据平方差公式得到方程a^2 + b^2 = c^2,进而证明了勾股定理。
3. 解析几何证明:解析几何证明是通过引入坐标系和向量的概念,将直角三角形的顶点表示为坐标点,利用向量运算和距离公式来证明勾股定理。
这种证明方法在数学上更为严格,但也更为抽象一些。
三、结语勾股定理作为数学中的重要定理,不仅具有理论意义,更有广泛的实际应用。
勾股定理及其应用勾股定理,也被称为毕达哥拉斯定理,是数学中一个重要的几何定理,被广泛应用于各个领域。
本文将介绍勾股定理的原理和证明,并介绍其在实际应用中的一些重要示例。
一、勾股定理的原理和证明勾股定理是一个关于直角三角形斜边与两个直角边的关系定理。
它的表述可以归纳为:在直角三角形中,斜边的平方等于两个直角边的平方和。
设直角三角形的斜边长度为c,两个直角边的长度分别为a和b。
根据勾股定理,有c² = a² + b²。
证明该定理的方法多种多样,其中一种比较简单的方法是利用面积关系进行证明。
假设直角三角形的两条直角边分别为a和b,斜边为c。
将该三角形移动到一个边长为a、边宽为b的矩形内,如图1所示。
[图1:勾股定理证明过程的示意图]显然,通过镜像方式将三角形补全,可以构成一个边长为c、边宽为c的正方形,如图2所示。
[图2:利用镜像补全三角形后构成正方形]由于正方形的面积等于边长的平方,我们可以得到两个式子:面积1 = a * b面积2 = c * c由于直角三角形的面积1等于正方形的面积2,我们可以得到:a *b =c * c进一步变换可得:c² = a² + b²上述证明过程说明了勾股定理的原理,并证明了定理的正确性。
二、勾股定理的应用示例勾股定理在实际生活中有着广泛的应用,下面将介绍其中一些重要的示例。
1. 测量直角三角形的边长勾股定理可以被用于测量直角三角形的边长。
当我们已知一个直角三角形的两个直角边的长度时,可以通过勾股定理计算出斜边的长度。
例如,如果直角三角形的两个直角边的长度分别为3和4,可以使用勾股定理计算出斜边的长度:c² = 3² + 4²c² = 9 + 16c² = 25c = 5因此,该直角三角形的斜边长度为5。
2. 建筑和工程应用勾股定理在建筑和工程领域中具有重要的应用。
勾股定理16种经典证明方法与在实际生活中的应用ab c ab b a 214214222⨯+=⨯++【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即整理得 .【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF.222c b a =+ab 21∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于.∴ . ∴ .【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2.∵ EF = FG =GH =HE = b ―a ,∠HEF = 90º.()2b a +()22214c ab b a +⨯=+222c b a =+ab 21∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于.∴ .∴ .【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC.∴ ABCD 是一个直角梯形,它的面积等于.∴ .∴ .【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P.∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,()2a b -()22214c a b ab =-+⨯222c b a =+ab 21221c ()221b a +()222121221c ab b a +⨯=+222c b a =+∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形.设多边形GHCBE 的面积为S ,则, ∴ .【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P. 过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵ ∠BCA = 90º,QP ∥BC ,,21222ab S b a ⨯+=+abS c 2122⨯+=222c b a =+∴ ∠MPC = 90º,∵ BM ⊥PQ ,∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c ,∴ Rt ΔBMQ ≌ Rt ΔBCA.同理可证Rt ΔQNF ≌ Rt ΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L.∵ AF = AC ,AB = AD ,∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =.同理可证,矩形MLEB 的面积 =.∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积221a 2a 2b∴ ,即 .【证法8】(利用相似三角形性质证明)如图,在Rt ΔABCa 、b ,斜边AB 的长为c ,过点C 作在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90∠CAD = ∠BAC ,∴ ΔADC ∽ ΔACB.AD ∶AC = AC ∶AB ,即 .同理可证,ΔCDB ∽ ΔACB ,从而有 .∴ ,即 .【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA.∴ DH = BC = a ,AH = AC = b.由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.222b ac +=222c b a =+AB AD AC ∙=2AB BD BC ∙=2()222AB AB DB AD BC AC =∙+=+222c b a =+∵ Rt ΔDGT ≌ Rt ΔBCA ,Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ).用数字表示面积的编号(如图),则以c 为边长的正方形的面积为①∵=,,∴ = . ②把②代入①,得= = .∴ .【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).543212S S S S S c ++++=()[]()[]a b a a b b S S S -+∙-+=++21438abb 212-985S S S +=824321S ab b S S --=+812S S b --98812212S S S S b S S c ++--++=922S S b ++22a b +222c b a =+∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90º,BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE.∴ HT = AE = a.∴ GH = GT ―HT = b ―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC. 即 .过Q 作QM ⊥AG ,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE= ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 .由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE ,∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC. 即.∵ ,,,又∵ ,,,27S S =58S S =64S S =543212S S S S S c ++++=612S S a +=8732S S S b ++=27S S =58S S =64S S =∴ ==,即 .【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c. 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a. 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=== ,即,∴ .【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有,∵ AB = DC = c ,AC = BD = b ,∴ ,即 8736122S S S S S b a++++=+52341S S S S S ++++2c 222c b a =+ADAE AC ∙=2()()BD AB BE AB -+()()a c a c -+22a c -222a cb -=222c b a =+BD AC BC AD DC AB ∙+∙=∙222AC BC AB +=22b ac +=a b aa B ACD c∴ .【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c. 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r.∵ AE = AF ,BF = BD ,CD = CE ,∴ = = r + r = 2r,即 ,∴ .∴ ,即 ,∵ ,∴ ,又∵ = = == ,∴ ,∴ ,∴ , ∴ .【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设,即假设 ,则由==可知 ,或者 . 即 AD :AC ≠AC :AB ,或者 BD :222c b a =+()()()BF AF CD BD CE AE AB BC AC +-+++=-+CD CE +r c b a 2=-+c r b a +=+2()()222c r b a +=+()222242c rc r ab b a ++=++ab S ABC 21=∆ABC S ab ∆=42AOC BOC AOB ABC S S S S ∆∆∆∆++=br ar cr 212121++()r c b a ++21()r c c r ++221rc r +2()ABC S rc r ∆=+442()ab rc r 242=+22222c ab ab b a +=++222c b a =+222c b a ≠+222AB BC AC ≠+AB AB AB ∙=2()BD AD AB +BDAB AD AB ∙+∙AD AB AC ∙≠2BD AB BC ∙≠2c b a r r r O F D B ABC ≠BC :AB.在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :∠ADC ≠∠ACB.在ΔCDB 和ΔACB ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾.所以,的假设不能成立.∴ .【证法15】(辛卜松证明)222AB BC AC ≠+222c b a =+ab 21ab 21ab 21ab 212c2b 2a B C b a b a b a b a b ac c c cb ab ab b a b a设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 =.∴ ,∴ .【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c.∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ―a = b.又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b ,∴ Rt ΔAED ≌ Rt ΔDMC.∴ ∠EAD = ∠MDC ,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,∴ ∠BAF=∠DAE.连结FB ,在ΔABF 和ΔADE 中,()ab b a b a 2222++=+()22214c ab b a +⨯=+22c ab +22222c ab ab b a +=++222c b a =+()a b +∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE ,∴ ΔABF ≌ ΔADE.∴ ∠AFB = ∠AED = 90º,BF = DE = a.∴ 点B 、F 、G 、H 在一条直线上.在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a ,∴ Rt ΔABF ≌ Rt ΔBCG.∵ , , , ,∴ ===∴ .勾股定理在实际生活中的应用勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数54322S S S S c +++=6212S S S b ++=732S S a +=76451S S S S S +===6217322SS S S S b a ++++=+()76132S S S S S ++++5432SS S S +++2c222c b a =+量关系,是我们在直角三角形中解决边长计算问题的重要理论依据,同时勾股定理在我们实际生活中应用也很广泛。
一、勾股定理是什么
中国是发现和研究勾股定理最古老的国家之一。
中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。
在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。
既方之,外半其一矩,环而共盘,得成三四五。
两矩共长二十有五,是谓积矩。
”因此,勾股定理在中国又称“商高定理”。
在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系:以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
二、勾股定理的主要意义
1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。
勾股定理的10种证明方法常见勾股定理证明方法
勾股定理的10种证明方法:课本上的证明勾股定理的10种证明方法:邹元治证明勾股定理的10种证明方法:赵爽证明
勾股定理的10种证明方法:1876年美国总统Garfield证明勾股定理的10种证明方法:项明达证明
勾股定理的10种证明方法:欧几里得证明勾股定理的10种证明方法:杨作玫证明
勾股定理的10种证明方法:切割定理证明
勾股定理的10种证明方法:直角三角形内切圆证明勾股定理的10种证明方法:反证法证明。
认识勾股定理及其应用勾股定理是数学中的一条重要定理,它在几何学和实际应用中具有广泛的应用。
本文将介绍勾股定理的概念、证明以及实际应用,并探讨其在各个领域的重要性。
1. 勾股定理的概念与证明勾股定理是指在直角三角形中,直角边的两条边的平方和等于斜边的平方。
具体表达式为:c² = a² + b²,其中a、b为直角边的长度,c为斜边的长度。
为了证明这一定理,我们可以利用平面几何的知识进行推导。
首先,我们将直角三角形的直角边沿着斜边的延长线平移,形成一个边长相等的正方形。
然后,利用几何定理和面积的计算公式,我们可以推导出正方形的面积。
再根据直角三角形与正方形的关系,得到勾股定理的证明过程。
2. 勾股定理的应用勾股定理在实际生活中有着广泛的应用,下面将介绍其中的几个重要领域。
2.1 建筑工程在建筑工程中,勾股定理被广泛应用于测量和规划。
例如,在房屋建设中,我们可以利用勾股定理计算房屋的斜边长度,从而确定合适的位置和尺寸。
此外,勾股定理还可以用于测量建筑物之间的距离、角度等,为建筑工程提供基础数据支持。
2.2 地理测量勾股定理在地理测量中也扮演着重要的角色。
通过使用勾股定理,地理学家可以测量山脉、河流、湖泊等地理要素之间的距离和角度,进而揭示地球表面的地理特征。
同时,勾股定理还能够帮助测算地球的周长和半径等重要参数。
2.3 物理学在物理学中,勾股定理被广泛应用于描述力、速度和加速度之间的关系。
例如,在运动学中,我们可以利用勾股定理计算物体在斜面上滑动时的加速度和速度。
此外,勾股定理还可以用于解决力学、光学等领域中的复杂问题。
2.4 金融学在金融学中,勾股定理可以应用于计算利息、资产回报率等关键指标。
通过利用勾股定理,金融分析师可以准确计算投资回报的预期收益率,并作出相应的决策。
综上所述,勾股定理是一条重要的数学定理,它在各个领域都有着广泛的应用。
无论是建筑工程、地理测量、物理学还是金融学,勾股定理都以其简洁而强大的原理为人们提供了极大的便利。
勾股定理五种证明方法1. 几何证明法勾股定理是数学中的基本定理之一,用于描述直角三角形的边长关系。
根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。
几何证明法是最直观的证明方法之一。
我们可以通过绘制一个正方形来证明勾股定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以将这个三角形绘制在一个边长为a+b的正方形内。
将正方形分成四个小正方形,其中三个小正方形的边长分别为a,b和c。
通过计算小正方形的面积,我们可以得出结论:c^2 = a^2 + b^2。
2. 代数证明法代数证明法是另一种常用的证明勾股定理的方法。
这种方法使用代数运算和方程的性质来证明定理。
假设直角三角形的两个直角边分别为a和b,斜边为c。
我们可以通过使用平方的性质来证明勾股定理。
根据勾股定理,我们有:c^2 = a^2 + b^2。
我们可以将c^2展开为(a + b)2,即:c2 = (a + b)^2 = a^2 + 2ab + b^2。
通过对比等式两边的表达式,我们可以得出结论:2ab = 0。
由于直角三角形的边长必须为正数,因此我们可以得出结论:ab = 0。
这意味着a或b至少有一个为0。
如果a为0,那么直角三角形就变成了一个直角边长为b的直角三角形,此时勾股定理显然成立。
同样地,如果b为0,那么直角三角形就变成了一个直角边长为a的直角三角形,此时勾股定理也成立。
综上所述,勾股定理成立。
3. 数学归纳法证明数学归纳法是一种常用的证明数学命题的方法,它通常用于证明自然数的性质。
虽然勾股定理是针对直角三角形的,但我们可以通过数学归纳法证明勾股定理对于所有正整数的直角三角形都成立。
首先,我们证明当直角三角形的直角边长度为1时,勾股定理成立。
这是显而易见的,因为直角三角形的斜边长度必然大于1,所以直角边长度为1的直角三角形一定满足勾股定理。
然后,我们假设当直角三角形的直角边长度为k时,勾股定理成立。
即假设a^2 + b^2 = c^2,其中a和b分别为直角三角形的直角边,c为斜边。
勾股定理的证明及其在几何学中的应用勾股定理,又称毕达哥拉斯定理,是数学中的一条基本定理,它揭示了直角三角形中边与边之间的关系。
在几何学中,勾股定理具有广泛的应用,不仅在解决实际问题时有重要意义,也在研究纯粹的几何问题时扮演着关键角色。
一、勾股定理的证明勾股定理的证明历史悠久,最早可追溯至公元前中国和印度。
欧几里德给出了一种经典的证明方法,被广泛接受并应用至今。
欧几里德的证明方法基于几何关系,具体来说就是利用三角形的相似性和平行线的性质来展开。
首先,取一个直角三角形,假设较短的两条边分别为a和b,斜边为c。
然后,通过作图,将三角形分割成两个直角三角形,其中一个直角三角形的两条边长度分别是a和b,另一个直角三角形的两条边分别是b和c-a。
接下来,我们可以看出这两个直角三角形的内角和相等,并根据相似三角形的性质得到下述等式:a/b = c-a/b进一步计算可得:a^2 + b^2 = c^2这就是勾股定理的证明过程。
这个证明方法简洁明了,且具有普适性,适用于各种类型的直角三角形。
二、勾股定理在几何学中的应用勾股定理在几何学中有广泛的应用,下面将介绍它在几何学中的两个经典应用。
1. 测量三角形的边长勾股定理可以应用于测量三角形的边长。
当我们已知一个直角三角形的两个边长时,可以利用勾股定理求解第三条边的长度。
例如,我们已知一个直角三角形的两条边分别为3 cm和4 cm,通过勾股定理,可以计算出斜边的长度为5 cm。
这种应用在实际测量及工程设计中非常常见。
2. 判断三角形是否为直角三角形勾股定理也可用于判断一个三角形是否为直角三角形。
当一个三角形的边长符合勾股定理时,我们就可以得出结论,该三角形是个直角三角形。
例如,如果一个三角形的边长分别为5 cm、12 cm和13 cm,通过计算可以得到:5^2 + 12^2 = 13^2,满足勾股定理。
因此,可以确定该三角形是一个直角三角形。
勾股定理还有很多其他的应用,如在导航中计算位置、在工程建设中测算角度及角度变化等等。
勾股定理的证明与应用勾股定理是数学中一条经典的几何定理,它描述了直角三角形三边之间的关系。
本文将就勾股定理的证明以及其在实际应用中的意义进行阐述。
1. 勾股定理的证明勾股定理的证明有多种方式,其中一种经典的证明方法是使用几何图形。
假设有一个直角三角形,其中两个直角边的长度分别为a和b,斜边的长度为c。
根据勾股定理,有a² + b² = c²。
证明勾股定理时,可以利用平面几何的知识。
首先,画出一个正方形,边长为a+b。
然后,根据直角三角形的性质,将正方形的四个角分别连接成四个直角三角形。
这四个直角三角形的两条直角边分别为a、b和b、a,斜边分别为c。
根据几何知识可知,这四个直角三角形的面积之和等于正方形的面积。
而正方形的面积为(a+b)²,即(a+b)² = 2ab + c²。
同时,这四个直角三角形的面积之和也等于a² + b² + a² + b² = 2(a² + b²)。
因此,得到等式2(a² + b²) = 2ab + c²,即a² + b² = c²。
证明完毕。
2. 勾股定理的应用勾股定理在实际应用中具有广泛的意义。
以下将介绍几个常见的应用领域。
2.1. 测量与导航勾股定理在测量与导航领域中被广泛应用。
例如,在三角测量中,勾股定理能够帮助测量人们无法直接测量的距离。
通过测量两个已知距离和一个已知角度,可以利用勾股定理计算出未知距离。
此外,在导航系统中,勾股定理也用于计算航空和航海中的飞行距离和航程。
2.2. 工程建设勾股定理在工程建设中起到关键作用。
例如,在建筑设计中,根据勾股定理可以计算建筑物的对角线长度,从而确保建筑结构的稳定性。
此外,勾股定理还常用于计算电线杆、铁路轨道等工程中的距离和角度。
2.3. 三角学与物理学勾股定理是三角学的基础,广泛应用于物理学中的力学、光学等领域。
第3章勾股定理知识结构:勾股定理1.勾股定理(1)直角三角形中两直角边的平方和等于斜边的平方(2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明(3)应用1.在直角三角形中已知两边求第三边2.在直角三角形中已知两边求第三边上的高2.勾股定理的逆定理(1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形(2)勾股数1.满足a2+b2=c2的三个正整数a,b,c称为勾股数2.常见的勾股数(1)3,4,5(2)5,12,13(3)8,15,173.应用(1)勾股定理的简单应用求几何体表面上两点间的最短距离解决实际应用问题(2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角形勾股定理一、求网格中图形的面积求网格中图形的面积,通常用两种方法:“割”或“补”。
二、勾股定理直角三角形两条直角边的平方和等于斜边的平方。
拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。
(2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。
三、勾股定理的验证运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。
勾股定理的逆定理一、勾股定理的逆定理如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。
注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。
(2)不是所有的c都是斜边,要根据题意具体分析。
当满足a2+b2=c2时,c是斜边,它所对的角是直角。
勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:二、勾股数满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。
详解:(1)如:32+42=52,所以3,4,5是一组勾股数,常见的勾股数有3,4,5;5,12,13;6,8,10等。
(2)勾股数必须是正整数。
(3)一组勾股数中各数的相同的正整数倍也是一组新的勾股数。
(4)记住常用的勾股数可以提高做题速度。
勾股定理的简单应用一、勾股定理的应用运用勾股定理可以解决生活中的一些实际问题。
在应用勾股定理解决实际问题时,应先构造出直角三角形,然后把直角三角形的某两条边表示出来。
注意:应用勾股定理解决实际问题时,先弄清直角三角形中哪边是斜边,哪两条边是直角边,以便进行计算或推理。
对于实际问题,应从中抽象出直角三角形或通过添加辅助线构造出直角三角形,以便正确运用勾股定理。
二、勾股定理的逆定理的应用在日常生活中,经常遇到要求一些不规则图形的面积问题。
解决这样的问题常常需要借助辅助线将其转化成三角形的相关问题。
有时图形中并没有明显地给出直角三角形,但是其中一些已知的边长满足直角三角形的条件,所以可考虑利用勾股定理的逆定理解决。
【勾股定理的证明】例1如图,是用硬纸版作成的两个小直角三角形和一个大直角三角形,两个小直角三角形直角边长分别为a和b,斜边为c,大直角三角形直角边都为c,请你动动脑筋,将它们拼成一个能证明勾股定理的图形。
(1)画出所拼图形的示意图,说出图形的名称。
(2)用这个图形证明勾股定理。
例2数学实验室:实验材料:硬纸板、剪刀、三角板实验方法:剪裁、拼图、探索实验目的:验证勾股定理,拼图填空。
操作:剪裁出若干个全等的直角三角形,三边长分别记为a、b、c,如图①。
(1)拼图一:分别用4张直角三角形纸片,拼成如图②、图③的形状,观察图②、图③可发现,图②中两个小正方形的面积之和图③中小正方形的面积(填“大于”“小于”“等于”),用关系式可表示为;(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有3个正方形,它们的面积按大小顺序分别记为S 大、S 中、S 小,其关系是 ,用a 、b 、c 可表示为 ;(3)拼图三:用8张直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积按大小顺序分别记为S 大、S 中、S 小,其关系是 ,用a 、b 、c 可表示为 .(思考题)如图,在△ABC 中AB 2=AC 2=3,D 是BC 上一点,且AD=1,则BD?DC= . 【勾股定理的应用】例1 (基础题)利用勾股定理求三角形的边长已知△ABC 中,∠C=90°,AB=c ,AC=b (c 为斜边、a 、b 为直角边) (1)如果a=7,b=24,求c ; (2)如果a=15,c=17,求b.例2 已知直角三角形的一边和另外两边的关系,求另外两边的长 填空:(1)直角三角形的一条直角边和斜边的比是3:5,已知这条直角边的长是12,则斜边长为 .(2)在Rt △ABC 中,∠C=90°,∠B=60°,b=6(c 为斜边,a 、b 为直角边)则c= ,a= .例3 利用勾股定理说明边的关系如图,AD 是△ABC 的中线,试说明:AB 2+AC 2=2(AD 2+CD 2) 例4 利用勾股定理求面积:EDCBA如图,有一块直角三角形纸片,两直角边AC =6cm , BC =8cm ,现将直角边AC 沿直线折叠,使它落在斜边AB 上,且点C 落到E 点,求△ACD 的面积是多少? 例5 求等腰三角形底边上的高如图,在△ABC 中,AB=AC=5,BC=6,AD 是BC 边上的中线,求AD 的长。
例6 利用勾股定理的逆定理判断一个三角形是不是直角三角形 已知a 、b 、c 为△ABC 的三边,且满足a 2+b 2+c 2+338=10a +24b +26c 试说明:这个三角形是直角三角形。
例7 勾股定理及其逆定理的综合应用:(1)如图,四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD 的面积。
(2)、下列几组数中是勾股数的是 (填序号)①32、42、52 ②5、12、13 ③31、41、51④、、(3)如图,在Rt△ABC 中,∠ACB=90°,AD 、BE 、CF 分别是三边上的中线.①若AC =1,BC =2.求证:AD 2+CF 2=BE 2;②是否存在这样的Rt△ABC,使得它三边上的中线AD 、BE 、CF 的长恰好是一组勾股数?请说明理由.(提示:满足关系a 2+b 2=c 2的3个正整数a 、b 、c 称为勾股数.) 例8 构造直角三角形求角的度数如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3.把△ACP 绕C 点逆时针旋转90°使点A 和点B 重合,得到四边形ABDC ,求∠BPC 的度数。
例9 勾股定理在实际生活中的应用BACDA市接到台风警报时,台风中心位于A市正南方向125 km的B处,正以15km/h的速度沿BC方向移动。
(1)已知A市到BC的距离AD=35 km,那么台风中心从B点移到D点经过多长时间?(2)如果在距台风中心40 km的圆形区域内都将受到台风影响,那么A市受到台风影响的时间是多长(结算结果精确到1分钟)?例10 最短路径问题1、有一圆柱体如图,高4cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最短距离 .2、如图1,长方体的长为20,宽为10,高为25,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?3、如图是一个三级台阶,它的每一级的长、宽、高分别为20cm、3cm、2cm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为 .4、如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A点爬到B点,那么这只蚂蚁爬行的最短路径为米。
总结1:利用勾股定理求最短路径问题都转化为两个方面:(1)两点之间线段最短;(2)垂线段最短。
总结2:利用勾股定理求最短路径问题一般步骤:(1)画出展开图;(2)确定点的位置;(3)连接线段;(4)用勾股定理求解。
简化步骤是:①画图②定点③连线④求解注意:如果不是两个相对顶点的最短路径,不能用之前给的公式去求解。
例11 探究题1、探索与研究:方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?2、已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所对的边分别记作a、b、c.如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有S1+S2=S3;(1)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分别记作S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2、S3,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;(3)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.。