大跨度箱型梁结构设计与有限元分析
- 格式:pdf
- 大小:389.91 KB
- 文档页数:3
大跨空间钢结构整体提升施工技术分析摘要:大跨度空间结构钢结构的应用,能够极大提升建筑物的观赏性和建设水平,还能够节省大量的建筑材料,确保建筑物的质量安全。
本文就大跨度空间钢结构的施工技术进行了探析,希望能够对今后的相关研究提供参考。
关键词:大跨空间钢结构;整体提升;施工技术1、大跨度空间钢结构施工技术的特点(1)空间钢结构跨度大,材质高档,钢板厚度大。
随着社会科学技术与经济的不断发展,我国建筑理念产生了巨大的变化,为了充分满足广大客户的实际生活需求,建筑功能技术有了进一步的革新。
其中现代空间钢结构的跨度开始朝着更大范围发展。
为了确保建筑物的质量与施工安全性,国家超限专家审查委员会规定,这种建筑物要利用高强度级别的钢材,通过严格检测,确保钢板材料的厚度与质量。
(2)空间钢结构形式多种多样。
现如今大跨度空间钢结构在原本的形式上进行了创新与发展,已经具备了全新的组合模式。
比如,将大跨度弦支穹顶作为钢结构的奥运会的羽毛球馆,利用泡沫理论式多面体作为空间钢结构的水立方,或者是利用仿生态的设计理念的现代空间钢结构,能够让建筑形式变得更加丰富。
(3)空间钢结构的构件数量多,设计难度大。
在大型工程当中,所需要的构建种类多样,数量大,这就增加了施工难度,直接对施工进程带来了影响。
所以,要通过多次试验以及研究才能确保施工质量同时按时竣工。
(4)构建精确度要求非常严格,焊接施工难度高。
现如今的大部分大跨度空间钢结构的建筑工程都是由国家指派的重点工程项目,它们在施工质量标准方面具有非常高的要求。
所以,有关部门在施工当中要保证空间钢结构的构建精确度与焊缝技术,这就增加了施工困难程度。
另外,施工当中还需要对材质预拼装以及焊接。
为了确保工程施工质量与安全程度,在传统技术手段的基础上来创新钢结构,工作人员要数量掌握好多种技术手段,解决施工当中的困难问题。
(5)空间钢结构的施工与预应力施工技术相结合。
空间钢结构当中的预应力技术具体是指运用预加应力的方式,针对空间钢结构的内力分布情况进行调整,通过向空间钢结构施加压力,加强材料强度,扩大结构刚度。
1山区桥梁特点在我国云南、贵州、四川、重庆、广西等西南山区修建高速公路时,有以下特点:常常需要跨越横断山脉、纵向坡度较大、桥隧比高、造价高昂。
山区高速桥梁常常需要跨越深谷,桥墩高度很高,对抗震性能要求高,大型施工机械设备进场困难。
结合以上特点及连续刚构桥梁本身的力学特性,在80~200m 跨径范围内,连续刚构桥梁成为目前西南山区高速最广泛采用的结构形式之一。
连续刚构桥梁的桥墩与主梁进行刚性连接,上部常常为变截面箱式梁结构,下部墩高较高,常采用较柔的双薄壁桥墩来吸收上部结构由温度、收缩、徐变等产生的变形。
在设计过程中,要进行承载力分析、耐久性分析、施工阶段分析,保证在整个使用寿命周期范围内结构的安全耐久性满足要求。
另外大跨PC 梁桥跨中下挠已经成为该类桥型的普遍共性问题,前期应预留后期补强所需构造。
2云南某大跨连续刚构桥梁结构计算、设计案例2.1工程概况该桥位于云南西部某高速公路,为跨越澜沧江而设,是该高速的控制性工程。
该桥部分位于整体式的路线段,部分位于分离式的路线段上,单幅桥宽为12.5m ,桥跨布置为:左幅57+主桥(140+180+140)m+57m+(4孔30)m 连续T 梁,桥长697m ;右幅57+主桥(140+180+140)m+57m+(3孔30)m 连续T 梁,主桥墩梁固结,桥长667m 。
本桥平面主要位于直线段。
2.2主要技术标准①公路等级:高速公路;②设计速度:80公里/小时;③桥面布置:净11.5m+2×0.5m=12.5m ;④活载为公路一级荷载;⑤地震基本烈度:Ⅶ度。
本地区地震动峰值水平加速度为0.15g ,场地类别为Ⅱ类。
3主要结构尺寸3.1主桥上部结构———————————————————————作者简介:任朝辉(1990-),男,贵州盘州人,工程师,硕士,主要从浅谈山区大跨连续刚构桥梁结构计算和设计Elementary Discussion on Structural Calculation and Design of Long-span Continuous Rigid Frame Bridgein Mountainous Area任朝辉REN Chao-hui ;张皓ZHANG Hao ;王安民WANG An-min(云南省交通规划设计研究院有限公司,昆明650041)(Broadvision Engineering Consultants ,Kunming 650041,China )摘要:大跨径预应力混凝土连续刚构桥梁由于其特有结构类型,采用墩梁固结可以适用于山区高速公路的峡谷地形。
高速铁路大型箱梁内模刚度研究及结构优化的开题报告
一、研究背景
高速铁路已经成为现代交通行业的重要组成部分,大型箱梁是高速铁路建设中的重要组成部件。
箱梁的刚度是箱梁的重要参数,直接影响到铁路的行车质量和安全。
因此,研究箱梁的刚度并进行结构优化,对于高速铁路建设具有重要的意义。
二、研究目的
本研究旨在通过对高速铁路大型箱梁的内模刚度进行研究和优化,提高箱梁的刚度,并进一步提高高速铁路的行车质量和安全。
三、研究方法
本研究将采用有限元方法分析箱梁内模刚度,建立高速铁路大型箱梁有限元模型,对箱梁的内模刚度进行评估和优化。
同时,本研究将通过设计不同的结构参数和优化
参数,进行结构优化和参数优化,提高箱梁的刚度。
四、研究内容
(1)建立高速铁路大型箱梁有限元模型;
(2)分析箱梁内模刚度,评估箱梁刚度的现状;
(3)通过设计不同的结构参数和优化参数,优化箱梁的刚度;
(4)分析优化结果,得出结论和建议。
五、研究意义
本研究将为高速铁路建设提供宝贵的参考和指导,为高速铁路行车质量和安全提供技术支持。
同时,本研究将为箱梁的设计和制造提供重要的参考,并为相关产业的
发展做出贡献。
大跨度钢结构吊装及安装关键技术分析摘要:钢结构吊装及安装是建筑工程施工的管件,由于大跨度钢结构具有尺寸大、质量大及钢梁跨度大等特点,施工阶段应加强对吊装、安装精度的控制,保证焊接质量。
本文以某工程为实例,结合工程实际,对大跨度钢结构吊装及安装关键技术进行分析,以保证施工质量。
关键词:大跨度钢结构;吊装;安装;关键技术随着建筑行业的发展,钢结构凭借其强度高、抗震性能强、造型美观及施工便捷等优势,得到了工程施工的广泛应用。
大跨度钢结构是工程施工的重点,对于评估工程质量具有重要意义。
近年来随着社会经济的飞速发展,我国大跨度钢结构建筑数量明显增加,但是其施工方案较为复杂,施工整体难度较大,存在钢结构吊装、安装精确性等主动问题。
因此加强对大跨度钢结构吊装及安装技术的研究具有重要意义。
1.工程概况1.1 项目概况自贡市展览中心一期工程项目,整体结构的建筑面积为37960平方米,主要结构框架-钢结构。
基础形式为独立柱基与筏板基础,主体结构为圆形钢柱型结构。
多功能办公楼约58m,地下2层,地上7层,报告厅37.5m地下2层,地上3层,展城地下2层,地上2层,观光塔44m。
主体结构为圆形钢柱型结构为主,核心筒为箱型柱;楼层H型钢梁结构,幕墙支架挑梁为箱型梁,屋面网架及桁架楼层板结构主构件采用Q345B钢, 钢构件总重量约7000t。
1.2 钢结构施工重难点钢结构具有单件尺寸、质量大、分布范围广以及工期长等特点,这也是制作运输和吊装施工的难点。
本工程钢柱主要分为两类,一类主要圆管柱,另一类方管柱(箱型)钢柱,材质Q345B。
本工程钢梁多为H型钢梁,局部为箱型梁。
本工程中钢梁的跨度较大,辐距较远,工程钢结构施工的难点在于安装精度、焊接质量、高处作业等方面。
其主要工序包括钢结构的加工及拼装、钢梁分段部位明确、大型构件运输、吊装设备选型以及吊装后焊接等[1]。
1.大跨度钢结构吊装及安装关键技术2.1 预埋件的安装本工程预埋件主要为地脚螺栓埋件,具体包括钢柱的埋件、网架埋件。
219 2021年第8期工程设计孙龙龙台州市交通勘察设计院有限公司,浙江 台州 318000摘 要:经综合考虑施工工期及桥下道路和航道的通行需求,台州路桥机场进场道路工程小伍份立交桥主跨采用1~55m 大跨径简支钢-混凝土组合梁。
钢-混凝土组合梁桥由槽型钢结构主梁与混凝土桥面板组合而成,中间通过剪力键连接,充分利用了钢结构的受拉性能和混凝土的受压性能,实现了工厂化制作,具有现场操作少、结构适应性强的优点。
文章通过对1~55m简支钢-混凝土组合梁桥设计进行计算分析,旨在为同类项目的设计提供参考。
关键词:钢-混凝土组合梁桥;大跨径;简支中图分类号:U442.5 文献标志码:A 文章编号:2096-2789(2021)08-0219-03钢结构桥梁具有跨越能力强、结构自重轻、建筑高度小、施工方便、周期短、对交通影响小等优点,而钢-混凝土组合梁桥除具有钢结构桥梁的优点外,还具有节省钢材、增加结构刚度和稳定性、减少钢梁腐蚀等优点,近年来得到了广泛的应用,但其也存在工程造价高、后期维护费用高等不足。
钢-混凝土组合梁桥可分为钢板组合梁桥、钢箱组合梁桥、钢桁架组合梁桥和波形钢腹板组合梁桥等,其施工过程一般是先由工厂制作钢梁节段,运至现场后进行吊装,拼装完成后施工桥面板,桥面板可采用预制和现浇两种施工方法制作。
钢-混凝土组合梁桥施工过程及施工方法的不同会影响最终主梁结构受力,可通过一些措施改善桥梁受力状况。
1 工程概况台州路桥机场进场道路工程为双向四车道一级公路,设计速度为80km/h,路基宽度为28m,预留远期拓宽条件。
路线总体呈南北走势,起点位于椒江区下陈街道,与椒新路平交,终点位于路桥区蓬街镇,与东方大道相交,路线全长约5.2km。
2 桥梁方案选择小伍份立交桥需要跨越石八线与青龙浦,由于石八线位于青龙浦北侧岸边,两者之间无设墩条件,桥梁与被交路和河流交叉角度约为124°,受通航净空限制,水中无条件设墩,需要采取一跨跨越。
2020年第03期总第261期福㊀㊀建㊀㊀建㊀㊀筑FujianArchitecture&ConstructionNo03 2020Vol 261大跨度曲线简支钢箱梁设计及受力分析叶坚波(福州市规划勘测设计研究总院㊀福建福州㊀350108)摘㊀要:城市跨线桥设计ꎬ随着路网密度的不断发展ꎬ难免出现在已修建的高速路或城市快速路上方修建跨越式桥梁ꎬ但该类桥梁的构建ꎬ又往往会受到桥下构造物的影响ꎮ为了减少对桥下跨越道路交通的影响ꎬ加快施工进度ꎬ大都倾向于采用自身重量小㊁高跨比小㊁结构轻盈且施工简便的钢箱梁桥ꎮ基此ꎬ以一座跨越城市快速路的58m简支钢箱梁桥为工程实例ꎬ采用Midas/Civil软件建立单梁模型ꎬ并对其纵向㊁横向㊁刚度及抗倾覆验算分析ꎮ工程实践结果表明ꎬ钢箱梁可以较好适应道路线型ꎬ相较于预应力梁桥ꎬ高跨比小㊁受力简单ꎬ尤其适应小半径桥梁ꎮ关键词:钢箱梁ꎻ大跨度ꎻ小半径ꎻ有限元分析ꎻ抗倾覆中图分类号:TU997㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1004-6135(2020)03-0106-04DesignandstressanalysisoflongspancurvedsimplysupportedsteelboxgirderYEJianbo(FuzhouplanningsurveyingdesignresearchinstituteꎬFuzhou350108)Abstract:Withthecontinuousdevelopmentofroadnetworkdensityꎬthedesignofurbanoverpassbridgesinevitablyappearsinthebuiltex ̄presswayorurbanexpresswayꎬbuttheconstructionofsuchbridgesisoftenaffectedbythestructureunderthebridge.Inordertoreducetheimpactontheroadtrafficunderthebridgeandspeeduptheconstructionprogressꎬmostofthemtendtoadoptthesteelboxgirderbridgewithsmallweightꎬsmallheightspanratioꎬlightstructureandsimpleconstruction.Basedonthisꎬtakingasimplesteelboxgirderbridgeof58macrosstheurbanexpresswayasanexampleꎬasinglegirdermodelisestablishedbyMIDAS/civilsoftwareꎬanditslongitudi ̄nalꎬtransverseꎬstiffnessandantioverturningcheckingcalculationanalysisarecarriedout.Theresultsofengineeringpracticeshowthatthesteelboxgirdercanadapttotheroadlinebetter.Comparedwiththeprestressedgirderbridgeꎬthehighspanratioissmallandthestressissimpleꎬespeciallyforthesmallradiusbridge.Keywords:SteelboxgirderꎻLargespanꎻSmallradiusꎻFiniteelementanalysisꎻAntioverturning作者简介:叶坚波(1987.06-㊀)ꎬ男ꎬ工程师ꎮE ̄mail:jianbo-ye@foxmail.com收稿日期:2019-11-240㊀引言在城市快速发展进程中ꎬ互通式立交在城市交通中起到了至关重要的作用ꎬ随着路网密度的不断发展ꎬ难免出现在已修建的城市快速路或高速路上方修建跨越式桥梁ꎮ由于受到桥下构造物的影响ꎬ如采用普通的预应力钢筋混凝土结构ꎬ需要搭设大型的临时支架系统ꎬ施工时间长ꎬ从而加大被交路的交通倒改难度和时间ꎬ影响被交路交通通行效率ꎬ且施工过程对周边环境影响较大ꎮ而钢箱梁则在工厂制造ꎬ现场安装ꎬ施工质量得到保证ꎬ对周边的环境影响小ꎮ同时其自身重量小ꎬ高跨比小ꎬ结构轻盈且施工简便ꎬ更加适合应用于城市桥梁中[1]ꎮ基于此ꎬ为对其他类似桥梁设计提供借鉴ꎬ本文拟以福州市北向第二通道工程为例ꎬ介绍其设计及受力分析ꎮ1㊀工程概述福州市北向第二通道工程园中枢纽互通位于福州东区水厂与上浦岭村之间ꎬ主要实现国道G104线㊁新店片区与福州市三环快速路及辅路的交通转换ꎬ其中三环路为既有快速通达ꎬ交通流量大ꎬ行车速度快ꎮ本次案例桥梁就位于园中互通C匝道ꎬC匝道上跨三环快速路ꎬ匝道宽9mꎬ为单车道匝道ꎮ相交处三环快速路宽45 6mꎬ相交处位于三环快速路上浦岭大桥桥台处ꎬ无法在中央分隔带设置永久性桥墩ꎬ故只能采用一跨跨越三环快速路ꎬ经综合比较后ꎬ上跨三环速C4~C5联采用1m~58m简支钢箱梁ꎬ其与三环快速路交角为80ʎꎬ位于R=150m圆曲线上ꎮ该联桥梁平面图如图1所示ꎮ2020年03期总第261期叶坚波 大跨度曲线简支钢箱梁设计及受力分析 107㊀图1㊀C匝道平面图2㊀钢箱梁设计方案C4~C5联简支钢箱梁梁宽9mꎬ为单箱双室结构ꎬ由于处于道路超高段ꎬ横坡大ꎬ横断面采用梁底水平设置ꎬ横坡通过箱梁顶板结构设置ꎬ箱梁中心梁高2 8mꎬ为跨径的1/21ꎮ钢箱梁底板设计厚度为28mmꎬ底板厚度为25mmꎬ腹板跨中厚14mmꎬ支点处加厚为20mmꎬ加厚长度为4mꎮ钢箱梁上部两侧各设1500宽挑臂ꎬ挑臂下翼缘板件截面为200mmˑ12mmꎬ挑臂处横隔板为12mmꎮ箱梁顶板下设置T形和板式加劲肋ꎻ底板上设T形加劲肋ꎮ腹板设板式加劲肋及竖向加劲肋ꎬ板式加劲肋截面140mmˑ12mmꎻ腹板竖向加劲肋间距以道路中心线为基准ꎬ按2m标准间距布置ꎮ横隔板间距以道路中心线为基准ꎬ按2m标准间距布置横隔板ꎬ与腹板竖向加劲肋间距1mꎬ中间横隔板厚14mmꎮ端支点横梁的腹板厚度为24mmꎬ端支点支座间距为7mꎮ钢箱梁断面如图2~图3所示ꎮ图2㊀钢箱梁跨中断面图3㊀钢箱梁端支点断面3㊀钢箱梁计算模型进行钢梁整体强度㊁刚度验算分析时ꎬ采用Mi ̄das/Civil软件ꎮ计算模型采用建立单梁模型ꎬ模拟施工阶段ꎬ边界条件按照实际设置ꎬ空间分析计算模型如图4所示ꎮ图4㊀计算模型桥梁荷载包括:①自重(包括横隔板㊁腹板竖向加劲肋等ꎬ转化为梁单元均布荷载ꎬ并考虑由钢箱梁内外侧质量不均匀分布而产生的扭矩)ꎻ②二期荷载(铺装及混凝土护栏)ꎻ③汽车荷载及冲击力(城-A级ꎬ按两车道最不利布置)ꎻ④温度荷载(梯度温度及整体升降温)ꎻ⑤汽车离心力ꎻ⑥汽车制动力ꎻ⑦支座沉降(取10mm)ꎮ4㊀钢箱梁计算分析4 1㊀钢梁正应力验算根据«公路钢结构桥梁设计规范»[2]第5 3 1条的规定进行受弯构件抗弯承载能力验算ꎬ计算结果如图5~图6所示ꎮ图5㊀基本组合主梁上缘应力图(MPa)图6㊀基本组合主梁下缘应力图(MPa)㊀㊀该基本组合下主梁最大拉应力为190MPaꎬ出现在跨中下缘附近ꎻ最大压应力为165Mpaꎬ出现在跨中上缘附近ꎮ主梁应力计算时ꎬ考虑剪力滞和局部稳定影响ꎬ钢梁最大拉应力为209MPaꎬ钢梁的最大压应力108㊀ 福㊀㊀建㊀㊀建㊀㊀筑2020年为181 5MPaꎬ钢材拉压应力容许值均为270MPaꎬ均满足规范要求ꎮ4 2㊀腹板剪应力验算在基本组合作用下对钢箱梁截面腹板剪应力进行验算ꎬ结果如图7所示ꎮ图7㊀基本组合主梁剪力图(MPa)从图7可以看出ꎬ基本组合下主梁剪应力最大值为96MPaꎬ满足规范要求ꎮ根据«公路钢结构桥梁设计规范»[2]5 3 3-1条的规定ꎬ腹板设置一道横向加劲肋和一道纵向加劲肋时ꎬ腹板最小厚度:ηhw/240=2627/240=11mmꎬ该桥腹板厚度支点加厚段采用20mmꎬ跨中采用14mmꎬ均满足规范要求ꎮ4 3㊀支点横梁验算纵向腹板将荷载传递至端横梁ꎬ横梁再传递至支座ꎬ横梁为横向受弯构件ꎬ按简支梁模拟ꎬ计算原理按照恒荷载纵向由腹板传导至横梁ꎬ以集中荷载的方式加载ꎻ活载按照单列车道产生的活载反力在横梁车道范围内自动布载ꎮ端支点横梁截面翼缘板考虑顶底板作用ꎬ翼缘宽度分别取24倍顶底板板厚ꎮ经计算ꎬ端支点横梁下缘最大拉应力为151MPaꎬ上缘最大压应力为140MPaꎬ腹板最大剪应力为76MPaꎬ均满足规范要求ꎮ4 4㊀挠度验算及预拱度计算根据«公路钢结构桥梁设计规范»[2]第4 2 3条规定ꎬ验算汽车荷载作用下的挠度ꎮ汽车荷载作用下的竖向位移图如图8所示ꎮ图8㊀汽车荷载下最小竖向挠度(MPa)由图8可见ꎬ活载最大挠度绝对值为42mmꎬ为跨度58m的1/1360ꎬ规范容许值为1/500ꎬ满足规范要求ꎮ根据«公路钢结构桥梁设计规范»[2]第4 2 4条规定ꎬ主梁预拱度设置大小为恒载标准值加1/2车道荷载频遇值产生的挠度ꎬ频遇值系数为1 0ꎮ主梁挠度如图9所示ꎮ图9㊀结构自重标准值+1/2车道荷载频遇值产生的挠度(mm)由图9可知ꎬ跨中预拱度取跨中挠度的最大值156mmꎬ其它位置处按抛物线设置ꎮ4 5㊀抗倾覆验算钢箱梁自重轻ꎬ恒载反力较混凝土小ꎬ支座在最不利荷载下有脱空可能ꎮ该桥跨径大ꎬ平曲线半径小ꎬ曲线梁在扭矩与竖向荷载的共同作用下ꎬ弯扭耦合效应明显ꎬ在弯扭共同作用下ꎬ当车道荷载偏置布置时ꎬ弯桥内侧支座极有可能出现脱空ꎬ抗倾覆问题不容忽视[4]ꎮ小半径桥梁ꎬ由于曲线内外侧质量分布影响ꎬ桥梁内侧支座恒载反力较外侧小ꎬ当半径一定时ꎬ跨径越大这种支座反力分配不均现象越明显ꎬ需要通过采取一些措施来减轻这种现象[3]ꎮ该桥为简支梁桥ꎬ仅有两端支座提供抗扭效应ꎬ因此采取以下两种措施:(1)尽量拉大两端支座的支座间距ꎬ即在支座反力一定的情况下贡献更大的抗扭效应ꎮ(2)梁端采用无收缩混凝土压重ꎬ加大恒载作用下内侧支座反力ꎬ避免内侧支座产生脱空ꎮ因此ꎬ在总体设计上通过以上两种措施ꎬ避免倾覆的发生ꎮ进行抗倾覆验算时ꎬ在曲线外侧布置车道ꎬ根据该桥横向宽度ꎬ分别按曲线外侧布置1个车道与2个车道ꎬ根据支座反力影响线布载ꎬ取失效支座所对应荷载最不利布置情况下各支座的并发反力进行抗倾覆验算ꎮ验算结果详见表1ꎬ有效支座平面如图10所示ꎮ图10㊀有效支座平面示意图根据«公路钢结构桥梁设计规范»[2]第4 2 2条规定ꎬ在持久状况下整体式截面的简支梁其结构体系应保持不变且作用效应应满足抗倾覆要求:(1)作用基本组合下ꎬ受压支座不能发生支座脱空ꎬ应一直处于受压状态ꎻ(2)恒载产生的稳定效应/活载产生的失稳效应ȡ2 5ꎮ2020年03期总第261期叶坚波 大跨度曲线简支钢箱梁设计及受力分析 109㊀表1㊀抗倾覆验算表项目支座编号1-11-22-12-2支座间距li(m)7070支座竖向力(kN)RGKi(永久作用标准值效应)1723457717984650失效支座对应最不利汽车荷载的标准值效应RQKiꎬ11-2441015-2231145RQKiꎬ21-2231146-2431014支座反力验算1 0RGKi+1 4RQKiꎬ1113815998148662531 0RGKi+1 4RQKiꎬ211411618114586070结论满足要求稳定系数验算稳定效应RGKili(kN m)120610125860失稳效应(kN m)RQKiꎬ11li-17080-15610RQKiꎬ21li-15610-17010稳定系数ðRGKili/ðRQKiꎬ11li7 54ðRGKili/ðRQKiꎬ21li7 56结论满足要求㊀㊀由验算结果可见ꎬ该桥通过拉开梁端支座间距和设置梁端混凝土压重两种措施ꎬ梁端支座均不产生脱空ꎬ抗倾覆稳定系数最小值为7 54ꎬ均满足规范要求ꎮ5㊀结论(1)根据承载能力极限状态下对钢箱梁的纵向及横向验算结果表明ꎬ桥梁结构顶底板及腹板厚度均满足要求ꎬ支点横隔板厚度满足要求ꎮ(2)根据在正常使用极限状态下对结构挠度及预拱度进行验算ꎬ结果表明桥梁结构刚度满足要求ꎮ(3)小半径桥梁ꎬ由于曲线内外侧质量分布影响ꎬ内外侧支座恒载反力不均ꎬ且由于简支钢箱梁自重轻ꎬ抗扭支座少ꎬ梁端支座更容易产生脱空现象ꎬ从而导致倾覆ꎮ对此ꎬ可通过加大梁端支座间距ꎬ加强抗扭效应并设置一定的梁端压重ꎬ可避免支座脱空和主梁倾覆情况发生ꎮ(4)在城市跨线桥中ꎬ钢箱梁可以较好地适应道路线型ꎬ相较于预应力混凝土梁桥ꎬ钢箱梁桥更适应于小半径桥梁ꎬ高跨比小ꎬ受力简单ꎬ但在设计过程中ꎬ应特别注意曲线梁桥所产生的弯扭耦合效应ꎬ设计时应加强抗倾覆验算ꎬ避免倾覆的发生ꎮ参考文献[1]㊀吴冲.现代钢桥:上[M].北京:人民交通出版社ꎬ2006. [2]㊀JTGD64-2015公路钢结构桥梁设计规范[S].北京:人民交通出版社ꎬ2015.[3]㊀熊诚ꎬ汪斌ꎬ梁庆学.城市高架连续钢箱梁计算分析[J].2018(3).[4]㊀谭伟.钢箱梁桥抗倾覆稳定性分析[J].城市道桥与防洪ꎬ2000(1):15-18.。