自行车车架设计
- 格式:docx
- 大小:124.47 KB
- 文档页数:6
自行车车架设计原理自行车车架是支撑整车结构和连接各个部件的重要组成部分。
它承受着骑行者的体重和各种道路条件下的冲击力,因此车架的设计原理至关重要。
在这篇文章中,我将详细介绍自行车车架设计的原理,以及不同类型车架的特点和应用。
首先,自行车车架的设计要考虑到强度和刚度。
车架需要能够承受来自地面的冲击力和骑行者的体重,因此需要具备足够的强度来确保安全。
此外,车架的刚度也很重要,它决定了车架的稳定性和操控性。
一般来说,车架的刚度越高,车辆的操控性越好,但对骑行的舒适性也会有所牺牲。
其次,车架的材料选择也是关键。
常见的车架材料包括钢、铝合金、碳纤维和钛合金。
钢车架是最古老的车架材料,具有出色的强度和耐久性,但相对较重。
铝合金车架具有较轻的重量和较高的刚度,适合于公路自行车和山地自行车。
碳纤维车架是最轻的选择,具有出色的刚度和吸震性能,适合竞技性骑行。
钛合金车架结合了强度、轻量化和耐腐蚀性能,适合长途旅行自行车和高端山地自行车。
另外,车架的几何设计也会影响到骑行的稳定性和舒适性。
车架的几何形状包括上管、下管、座管和前叉的角度和长度等。
较陡的角度和较短的上管和座管会使车辆更加敏捷,适合于竞速和激烈的骑行。
而较平缓的角度和较长的上管和座管会提供更舒适的骑行姿势,适合长途旅行和休闲骑行。
此外,车架的连接方式也值得关注。
常见的车架连接方式有焊接、铆接和胶合。
焊接是最常见的连接方式,它能够提供较强的连接和结构刚度。
铆接则使用螺栓和螺母来连接车架部件,可以方便拆卸和维修。
胶合是一种较新的连接方式,使用特殊的胶水来连接车架部件,能够提供较好的吸震性能和连接强度。
最后,车架的设计还要考虑到空气动力学。
一些高端的竞速自行车采用空气动力学的设计,通过减少空气阻力来提高骑行速度。
这些车架通常具有空气动力学的断面和隐藏式的线路,以减少空气阻力。
总结起来,自行车车架设计的原理涉及强度和刚度、材料选择、几何设计、连接方式和空气动力学等方面。
自行车车架几何设计要点自行车车架几何设计是指为了达到更好的操控性、稳定性和舒适性,对自行车车架的形状和尺寸进行优化设计的过程。
合理的车架几何设计可以提高自行车的性能,使骑行更加轻松和舒适。
下面将介绍一些自行车车架几何设计的要点。
1. 上管长度(top tube length)上管长度是指从头管到座管的水平距离。
合适的上管长度可以影响车手的坐姿和车辆的操控性。
过短的上管长度会导致车手骑行时膝盖容易碰到车把,过长的上管长度则会使车手感到伸展不开。
因此,在设计自行车车架时,需要根据不同车手的身高、臂长等因素,合理选择上管长度。
2. 座管角度(seat tube angle)座管角度是指座管与地面之间的夹角。
合适的座管角度可以影响车手的坐姿和踩踏力量的传递效率。
一般来说,较小的座管角度可以提高踩踏力量的传递效率,但会降低骑行的舒适性;较大的座管角度则可以提高骑行的舒适性,但可能会降低踩踏力量的传递效率。
因此,在设计自行车车架时,需要根据车手的骑行需求和个人喜好,选择合适的座管角度。
3. 头管角度(head tube angle)头管角度是指头管与地面之间的夹角。
合适的头管角度可以影响车辆的操控性和稳定性。
较小的头管角度可以提高操控性,使车辆更加敏捷;较大的头管角度则可以提高稳定性,使车辆更加稳定。
在设计自行车车架时,需要根据车辆的用途和骑行需求,选择合适的头管角度。
4. 后下叉长度(chainstay length)后下叉长度是指脚踏轴中心到后轮轴中心的水平距离。
合适的后下叉长度可以影响车辆的操控性和稳定性。
较短的后下叉长度可以提高操控性,使车辆更加敏捷;较长的后下叉长度则可以提高稳定性,使车辆更加稳定。
在设计自行车车架时,需要根据车辆的用途和骑行需求,选择合适的后下叉长度。
5. 前叉偏移量(fork offset)前叉偏移量是指前叉管与头管之间的水平距离。
合适的前叉偏移量可以影响车辆的操控性和稳定性。
TCR 6500 捷安特自行车高级铝合金公路自行车Frame design/车架设计籍由自行研发的ALUXX铝合金技术,GIANT将一般标准的铝合金材料推向极限,这是一种结构技术与先进材料的完美融合。
从原子纹理结构的显微操控到液态注模HYDRO FORMED管材的引进,GIANT的工程师三十年以来一直是铝合金管材的技术先锋。
而 ALUXX铝合金技术,正是他们不懈努力的成果。
Features /特点(1)车架采用ALUXX SL材质、热塑成型、液压成型技术、多段式厚薄管以及有限元素分析(2)车首管1-1/8”to1/4”加大设计(3)POWERCORE BB加大五通设计,提供最大的踩踏效率(4)碳纤维前叉,全SMOOTH焊接,整车碳纤维外观(5)SHIMANO TIAGRA变速下面的图表代表最新配置,取代任何打印或PDF格式的信息。
规格和价格如有变更,恕不另行通知。
FRAME/车架尺寸700C*430/465/500/535MM颜色亮白,咖啡黑车架GIANT ALUXX SL COMPACT 公路车架前叉GIANT 碳纤维前叉Components/组件车把GIANT TWINS SL横把座垫GIANT TCR座垫Drivetrain/传动系统前变速器SHIMANO TIAGRA 变速系统 20S 刹车SHIMANO TIAGRA 夹器大齿盘SHIMANO TIAGRA 大齿盘Wheels/轮组轮圈XERO CXR260 公路车培林轮组轮胎MICHELIN 700X25C 轮胎TCR 6600 捷安特自行车高级铝合金公路自行车Frame design/车架设计籍由自行研发的ALUXX铝合金技术,GIANT将一般标准的铝合金材料推向极限,这是一种结构技术与先进材料的完美融合。
从原子纹理结构的显微操控到液态注模HYDRO FORMED管材的引进,GIANT的工程师三十年以来一直是铝合金管材的技术先锋。
而 ALUXX铝合金技术,正是他们不懈努力的成果。
基于ANSYS的自行车车架结构有限元分析自行车车架是连接自行车各个部件的重要结构,其设计优化对于提高整车性能和骑行舒适度至关重要。
有限元分析是一种常用的工程分析方法,可以用来评估自行车车架的结构强度、刚度和耐久性等特性。
在ANSYS软件中进行自行车车架有限元分析可以帮助设计师更好地理解和改进车架的设计。
首先,进行自行车车架有限元分析的第一步是建立几何模型。
可以使用ANSYS中的建模工具来创建车架的三维几何模型。
在建模过程中,需要考虑车架各个部件的几何形状、连接方式和材料参数等。
接下来,需要为车架模型分配材料属性。
车架材料的选择对于整体结构的强度和刚度具有重要影响。
可以利用ANSYS中的材料库来选择合适的材料,并为车架的不同部件分配相应的材料属性。
然后,需要进行约束和加载设置。
在真实的使用条件下,车架会受到各种力的作用,如骑行时的重力、路面不平和操控力等。
在有限元分析中,应根据实际工况和设计要求来设置适当的约束和加载。
例如,在车架的连接点设置约束,模拟骑行时的力加载。
随后,进行网格划分和网格质量检查。
网格划分是将车架模型离散化为有限元网格的过程。
在ANSYS中,可以使用自动划网工具或手动划网。
划分好网格后,还需要进行网格质量的检查和优化,以确保计算结果的准确性和可靠性。
然后,进行有限元分析求解。
有限元分析是通过将车架模型离散化为多个有限元单元,并根据材料特性、加载条件和边界条件来计算结构的应力、变形和刚度等参数。
在ANSYS中,可以选择不同的分析类型和求解器来进行分析。
根据需要,可以进行静力学、动力学、热力学和疲劳分析等。
最后,进行结果评估和优化。
通过有限元分析,可以得到车架在各个部件的应力分布图、变形图和刚度分析结果。
根据这些结果,可以评估车架的结构强度和刚度,并进行优化设计。
例如,可以优化车架的几何形状、材料选用和连接方式,以提高车架的性能。
总结起来,基于ANSYS的自行车车架结构有限元分析是一种重要的工程分析方法,可以帮助设计师评估和改进车架的设计。
自行车之车架篇车架也称大梁。
汽车的基体,一般由两根纵梁和几根横梁组成,经由悬挂装置﹑前桥﹑后桥支承在车轮上。
具有足够的强度和刚度以承受汽车的载荷和从车轮传来的冲击。
车架设计和结构的好坏,首先应该清楚了解的是车辆在行驶时车架所要承受的各种不同的力。
如果车架在某方面的韧性不佳,就算有再好的悬挂系统,也无法达到良好的操控表现。
而车架在实际环境下要面对4种压力。
影响车架刚性的外力,通常是来自于路面摩擦力以及加减速或过弯时产生的G值。
早期的汽车由于引擎及底盘设计不像现在发达,轮胎的抓地力也不如今日优异,因此车架刚性的重要性并不容易被关注。
目录∙• 早期车架∙• 车架设计∙• 车架刚性∙• 操作压力[显示全部]早期车架编辑本段回目录车架“车架”这个名称原本是从法文的“Chassis”衍生而来的,早期汽车所使用的车架,大多都是由笼状的钢骨梁柱所构成的,也就是在两支平行的主梁上,以类似阶梯的方式加上许多左右相连的副梁制造而成。
车体建构在车架之上,至于车门、沙板、引擎盖、行李厢盖等钣件,则是另外再包覆于车体之外,因此车体与车架其实是属于两个独立的构造。
这种设计的最大好处,在于轻量化与刚性得以同时兼顾,因此受到了不少跑车制造商的青睐,早期的法拉利与兰博基尼都是采用的这种设计。
由于钢骨设计的车架必须通过许多接点来连结主梁和副梁,加之笼状构造也无法腾出较大的空间,因此除了制造上比较复杂、不利于大量生产之外,也不适合用在强调空间的四门房车上。
随后单体结构的车架在车坛上成为主流,笼状的钢骨车架也逐渐改由这种将车体与车架合二为一的单体车架所取代,这种单体车架一般以“底盘”称之,也就是衍生自英文的“Platform”。
车架设计编辑本段回目录车架要评价车架设计和结构的好坏,首先应该清楚了解的是车辆在行驶时车架所要承受的各种不同的力。
如果车架在某方面的韧性(stiffness)不佳,就算有再好的悬挂系统,也无法达到良好的操控表现。
自行车车架焊接工艺设计说明书成控0708班070201214高浩天1 拟用的焊接方式某车辆厂长久以来主要采用液化石油气焊从事自行车前叉、车架等的生产,积累了一定的经验,但产品成本较高且焊接质量有时不够稳定。
近年来,随着生产的发展先后开发了BMX一20轻便自行车、人力三轮车和电动车车架等新产品,为了降低产品成本,提高生产效率,企业考虑改用其他焊接方法。
首先考虑采用手工电弧焊,但因其飞溅多、电流易击穿管壁,焊接质量不能保证而被放弃。
然后选用了CO2 气体保护焊,并首先在BMX一20轻便车车架上应用。
2 BMX一20自行车车架构件及其焊接要求2.1 车架构件及焊缝BMX一20自行车车架如图1所示。
它由10种13件管、板类零件构成,其配套零件见表1。
需拼装施焊的计有33条焊缝(直缝、环缝和曲线焊缝),多数是“无接头”(焊缝无堆起现象)的焊接结构。
2.2 对施焊的主要要求(1)焊缝要有足够的强度,用250YPM 偏心度250的凸轮,经4次冲击后,各焊接部位不得有裂纹、断裂和脱焊现象。
(2)焊缝要均匀美观,无明显缺陷。
(3)焊后车架变形要小,能保证各零件与主管的几何位置和相关尺寸公差;在施焊后免予校正或减少校正工作量。
3 BMX一20自行车车架CO2气体保护焊的应用方案3.1 拟用的焊接设备及辅助装置主要设备由焊机(包括焊接电源、控制系统等)、送丝机构、焊枪、供气装置等几部分组成。
(1)焊机NBC一200型,其技术数据符合产品要求。
其中电源用硅整流式直流电源,它和旋转式电源相比具有性能好、无噪声、结构简单等优点。
电源的技术数据如表2所示。
表 2 电源技术参数控制系统主要是对供气、送丝和供电等实施控制。
控制程序如下:(2)送丝机构采用等速送丝系统,送丝方式为推丝式。
根据所选的焊丝直径(φ0.8 mm),选用弹簧钢丝软管,内径为φ1.5 mm,长度取2.5 m左右。
(3)焊枪选用手枪式焊枪。
使用前在喷嘴的内外表面涂以硅油,以便于清除飞溅物。
美利达车架全解在自行车王国中,山地自行车有着不可替代的地位。
它的种类、花样之繁多,是其他的车种所不可比拟的。
可是也正因为如此,许多入门的自行车爱好者并没有买到最适合他们自己的山地车。
美利达自行车从1972年开始,就定位中高端自行车产品。
目前,美利达在市面上销售的车架只有3种。
其中,山地车两种,公路车一种。
中端的有sub(舒伯)山地车架,市场售价在980元左右。
其性能和勇士肯的基本相同,但贴花不同,有很大的个性选择,颜色有平备膏黄、石珠白、法拉利红、亚黑。
材料为matts6061铝材,其“双管合一”的造型很有立体美感,同时也最大的加大了整车在颠簸等中级强度的野外环境中更坚固。
高端的有名驹TFS,目前市场售价在1580左右;轻量化的3D立体6061铝合金材料,使整架重不超过1400g,还配有提升强度的造型化车架首管。
车架管跳脱单调的传统圆管,拥有3d立体效果、巨蛋形首管、3d锻造后铁、造型化后下叉,同时后叉因有减震功能,使您的车在平路上和一般硬尾车没有任何区别,但在高强度的训练恶劣环境下还有软尾车的特殊功能,它的细节处理非常到位。
美利达车架造型很大气,和最大的竞争者G车比起来尤其突出,G车瘦窄的架行不像美利达一样舒展,这在xc里面尤其忌讳。
G车更象是一款爬山车,在下坡和过弯时因其轴距和座管、首管角度过进而让新手更加紧张。
在我们周围经常可以看到这样的爱好者,他们看到FR或DH车看起来很COOL,就跑去买FR和DH,完全没有考虑到自己只是公路骑行,结果因为FR和DH那过大的重量而叫苦不迭;又或者看到碟刹的外型很COOL,并且相对其他的刹车来说很贵,就以为碟刹一定很好,非碟刹不买。
这种盲目消费的最终结果就是资金和精力的大量浪费。
运动自行车的零配件无论是在使用设计上还是在搭配上都具有很强的针对性,涉及其中的原理和细节部分完全可以成为一门学问。
但是有一个不变的准则:适合自己。
如果不适合自己,那么无论是多么高档的零件,都不能发挥它的原有的作用。
自行车设计理论知识点总结自行车是一种广泛应用于交通工具和运动休闲领域的机械装置。
在自行车设计中,需要综合考虑力学、材料学、工程学等多个学科的知识。
本文将总结自行车设计的一些重要理论知识点。
一、车架设计车架是自行车的骨架,承载着整个车辆的重量和外界的各种力。
在车架设计中,应考虑以下几个关键因素:1. 材料选择:常见的自行车车架材料有铝合金、碳纤维等。
不同的材料具有不同的优势和限制,设计师要根据需求进行合理选择。
2. 结构设计:车架的结构设计要考虑刚性和稳定性,以保证车辆在行驶中的稳定性和安全性。
3. 悬挂系统:部分自行车配备前叉和后避震器,悬挂系统设计要考虑减震效果和舒适性。
二、传动系统设计传动系统是自行车实现前进的核心部件,其中包括链条、曲柄等。
在传动系统设计中,需要注意以下几个要点:1. 齿轮比选取:齿轮比是指前齿盘和后齿盘的齿数比值,影响自行车的爬坡能力和速度范围。
设计师应根据使用环境和目标用户需求来合理选取齿轮比。
2. 变速系统:部分自行车配备变速系统,设计师需要考虑变速系统的可靠性和换挡平顺性。
3. 链条设计:链条的设计要考虑传动效率和使用寿命,需要适当润滑和保养。
三、制动系统设计制动系统是自行车安全的关键部件,设计合理的制动系统能够确保行车的安全性。
在制动系统设计中,需要注意以下几个要点:1. 制动器类型:常见的制动器类型有V型制动器、碟刹等,设计师应根据自行车的用途和需求选择合适的制动器类型。
2. 刹车力:制动器的刹车力要能够满足自行车的制动需求,同时要保证操作的便捷性和稳定性。
3. 制动系统调整:制动系统需要定期检查和调整,确保其正常运行和安全性。
四、车轮设计车轮是自行车行驶的支撑部件,其设计要考虑刚性、舒适性和耐久性等因素。
在车轮设计中,需要注意以下几个要点:1. 材料选择:常见的车轮材料有铝合金、碳纤维等,设计师需要根据需求平衡轻量性和强度。
2. 结构设计:车轮的结构设计要保证刚性和稳定性,避免轴偏摆和不稳定的问题。
涂装工艺课程设计说明书题目:自行车车架涂装工艺设计学院:环境与化学工程学院专业:应用化学班级学号: 1108030324学生姓名:孙冰峰导师姓名:赵春英完成日期: 2013年6月19日成绩评定表课程设计任务书目录摘要----------------------------------------------------------------------1引言----------------------------------------------------------------------1 设计思路----------------------------------------------------------------1设计方案----------------------------------------------------------------2 论述正文----------------------------------------------------------------2 第一章:工艺流程图------------------------------------------2第二章:工艺设计过程---------------------------------------31.前处理--------------------------------------------------------------------32.涂装-----------------------------------------------------------------------5第三章:设备选用---------------------------------------------7第四章:工艺中的废液处理---------------------------------81.三废的治理----------------------------------------------------------------82.废液处理方法-------------------------------------------------------------83.化工废水处理工艺-------------------------------------------------------9第五章:设计评述---------------------------------------------9 参考文献------------------------------------------------------------------9自行车车架涂装工艺设计【摘要】本文首先介绍了自行车车架涂装工艺的现状和发展动态。
喜德盛自行车碳纤车架设计
一.双模成型技术
杜绝管壁褶皱性能极致发挥
运用内、外双模具打造出的中空车架,内壁、外观均达到极致光滑,杜绝因凹凸不平的表面对碳纤维材料造成的性能折损,激发车架最强性能。
二.一体成型技术
一体成型,高精度,更稳定
车架三角一体成型,结构之间无任何粘合,各部位零误差精密连接,车架结构形成稳定的整体,性能表现更出色。
三.锥形头管
最高水平的稳定
锥形结构被认为是力学结构中最稳定的结构。
头管上端轴承1-1/8“、下端轴承1-1/2”,科学的比例,在最大限度减轻重量的同时,使头管的稳定性与耐用性达到最高水平,保证动力传输高效无阻。
四.隐藏式导线工艺
降低风阻
卓越的工艺,旨在不破坏外观结构的完美流线,最大化降低风阻,创造速度优势。
易于保养
导线内置,使外观极致简洁,易于清洗保养。
自行车车架角度详解放一张图让我们对车架上的各个部分有一个认识,来看一看什么是车架角度,什么样的角度算好。
A:中管centertotop长度(中管也叫座管,entertotop是说中轴轴心到中管顶端)B:水平上管长度C:实际上管长度D:头管角度E:中管角度F:头管长度G:轮距H:不清楚中文是什么。
可以叫“中轴沉距”I:后平叉长度(也有人叫传动距)E座管角度seattubeangle座管角度是指座管向后倾斜的角度,用以补偿骑士腿长。
当座垫在合适的高度时,也就是脚可以完美伸展的状态下,在大齿盘曲柄指向三点钟方向时,你的脚踝必须在你的膝盖之下。
经验积累发现,73°的座管角度和座垫的前后调整配合时,可将人安置于和曲柄搭配好的位置。
当然,设计师们可将座管角度后倾或前挺一些。
座管角度的影响座管角度也决定体重在两轮之间的分配,也就是重心。
骑士愈高,那么他坐上车子后,大部分的体重会落在前轮。
爬坡时,体重与重心反而向后移,如果后下叉没有稍微做长一些来补偿的话,在每一次踩踏时,容易出现「翘轮」的情形。
对小个子的骑士来说,状况就正好相反,把座垫调低,重心会往前跑,爬陡坡时,也会减少车轮的循迹、贴地性。
了维持上管长度不变,座管角加大后,上管前推,头管也前移,轮距也加长了;相反的,座管角度小一点,轮距就短了。
完美的轮距是一米。
藉着改变座管及头管角度,变化出不同的车架尺寸和上管长度。
选择座管角度来定位你的脚在曲柄上的位置是否适合,并确认后上叉(seatstay)的长度正确,让体重重心落于后轮。
上管长度上管长度提供手臂的伸展,头管角愈斜下陡坡操控愈容易上管长度的丈量是头管上缘水平切线延伸到和座管相交会的长度。
从实际角度来说,它就是自行车操控零件/上部零件(Cockpit)的距离。
因为大部分的登山车的车结构造,已跳脱传统钻石车架的形貌,有的上管下弯(sloping)或如specialized那种「两段式」上管,如果你去量实际的「管材长度」,那根本没有意义。
自行车车架几何设计要点自行车车架几何设计是影响骑行舒适性和稳定性的重要因素。
合理的车架几何设计可以提供稳定的骑行平衡,减轻骑行者的疲劳感,同时还能提高骑行速度和操控性。
本文将介绍自行车车架几何设计的几个关键要点。
1. 上管长度(Top tube length):上管长度是指从头管顶端到座管与上管交接处的水平距离。
合适的上管长度可以确保骑行者在骑行时保持舒适的坐姿,并且有足够的伸展空间。
过长或过短的上管长度都会影响骑行者的舒适性和操控性。
2. 座管角度(Seat tube angle):座管角度是指座管与地面之间的夹角。
合适的座管角度可以使骑行者在踩踏时保持合适的腿部伸展角度,提高骑行效率。
一般来说,较陡的座管角度适合于竞速骑行,而较平的座管角度适合于长途骑行。
3. 头管角度(Head tube angle):头管角度是指头管与地面之间的夹角。
合适的头管角度可以影响车辆的操控性和稳定性。
较陡的头管角度可以提高操控性,适合于山地自行车等需要灵活转弯的场景。
较平的头管角度可以提供更稳定的骑行平衡,适合于公路自行车等需要高速骑行的场景。
4. 前叉偏距(Fork offset):前叉偏距是指前叉管与车轮轴线之间的水平距离。
合适的前叉偏距可以影响自行车的转向性能和稳定性。
较大的前叉偏距可以提高自行车的稳定性,适合于高速骑行。
较小的前叉偏距可以提高自行车的敏捷性和转弯性能,适合于山地自行车等需要频繁转弯的场景。
5. 轮距(Wheelbase):轮距是指前轮中心与后轮中心之间的距离。
合适的轮距可以影响自行车的稳定性和操控性。
较长的轮距可以提供更稳定的骑行平衡,适合于高速骑行和长途骑行。
较短的轮距可以提高自行车的敏捷性和转弯性能,适合于山地自行车等需要频繁转弯的场景。
6. 后下叉长度(Chainstay length):后下叉长度是指后下叉与车轮轴线之间的距离。
合适的后下叉长度可以影响自行车的操控性和加速性能。
较短的后下叉长度可以提高自行车的敏捷性和加速性能,适合于竞速骑行。
在竞争激烈的市场化要求下,自行车的设计出现了以下两个特点:速度快、造型美观适用.在当代制造工艺已比较成熟的情况下,自行车的造型设计变得相当重要.知识工程(Knowledge Based Engineering,KBE)具有多种知识表示和推理决策的能力,将其运用于快速处理自行车车架的工艺结构设计、造型设计过程及决策过程,可有效处理复杂的工艺知识和各种图形知识,达到快速设计的目的.在竞争激烈的市场化要求下,自行车的设计出现了以下两个特点:速度快、造型美观适用。
在当代制造工艺已比较成熟的情况下,自行车的造型设计变得相当重要。
知识工程(Knowledge Based Engineering,KBE)具有多种知识表示和推理决策的能力,将其运用于快速处理自行车车架的工艺结构设计、造型设计过程及决策过程,可有效处理复杂的工艺知识和各种图形知识,达到快速设计的目的。
一、KBE技术的内涵和关键技术KBE的基本思想是在工程设计中重复利用已有的知识和经验。
这些知识和经验以各种形式存在,如设计手册、工程公式、经验数据表格和专家设计经验等。
KBE系统是一个知识处理系统,知识表示、知识利用和知识获取是KBE系统的三个关键技术。
知识表示即怎样系统地陈述问题并使它们易于求解;知识利用中最主要的是搜索技术,怎样聪明地控制解的查找,使其不至于使用太多的时间和花费过多的计算机存储空间;知识的获取和编码则是KBE系统最重要的方面之一。
二、自行车设计概况1.国内外自行车设计概况有前人用AutoCAD二次开发技术在自行车车架设计上做过研究,但是成果并不明显。
其中一种实现方式是:用AutoCAD内部嵌入的一种程序设计语言AutoLisp来完成常用的科学计算和数据分析,同时又能调用几乎全部的绘图命令。
使用该程序能自动完成车架简图的绘制,然后自动提取关键参数进行分析判别并反馈出最后结果,以实现优化设计的目的。
还有人在自行车CAD技术上做过参数化设计方面的研究。
基于用户Fitting的自行车车架结构参数化设计作者:王男来源:《设计》2017年第15期摘要:基于用户Fitting的车架参数化系统设计,对车架结构进行分析,得出车架结构设计的参数及其约束,建立车架参数化模型;再结合人机工程学,得出与车架相关的人体关键尺寸参数和人与车架之间的人机约束关系,建立用户Fitting的参数化系统,整个系统是可视的,并且具有可控性,用户输入参数,系统就会自动驱动程序,生成符合其身体尺寸的车架模型及车架尺寸,为用户选择车架或装车Fitting时提供数据参考。
关键词:用户Fitting 车架结构约束参数化设计前言用户Fitting是用户根据其人体特征选择和装配符合自身尺寸的自行车。
自行车的尺寸结构业界已经有成熟的数据库,一般通过有限的系列化以适应骑行者身体及自行车生产制造的需求,但用户Fitting能使自行车与人体更加匹配,骑行保持更好的状态,并减少因为单车尺寸不合适引起的身体不舒服和疼痛。
一、用户Fitting分析针对自行车硬体与人体之间关系的研究很久以前已经出现,但是直到20世纪70年代,对这种课题的研究才定义为Fitting。
在此之前,自行车的造型和自行车各部件的尺寸数据,是凭着设计师的经验,通过利用普通工具测量用户身体的部分数据,再根据经验最终决定自行车各部件的尺寸。
20世纪80年代早期,座垫高度尺寸开始套用计算公式,法国设计师克劳德通过研究赛车手腿长和座垫的关系,座垫的高度=跨下长xO.885,但公式没有涉及身体比例的差异。
近年来,出现了相对精确的自行车静态Fitting工具,使用专业测量工具,在固定姿态下完成测量,相对精确。
21世纪以来,出现了动态Fitting工具,美国RETUL将人体在骑行中重要的8个点作为采集目标,使用红外线以及3D摄像机技术来实现动态采集骑行者数据,不但提高了数据的准确度,而且丰富了测量内容,所有的数据都可作为自行车Fitting时参考依据。
campace5000+车架几何摘要:1.车架几何简介2.车架几何的重要性3.车架几何与骑行性能的关系4.车架几何对舒适性的影响5.常见车架几何类型及特点6.选择适合自己的车架几何的方法7.总结正文:自行车车架几何一直以来都是骑行爱好者和专业人士关注的重点。
车架几何不仅影响着骑行性能,还对舒适性和骑行效率产生重要影响。
在本文中,我们将详细介绍车架几何的相关知识,帮助大家更好地了解和选择适合自己的自行车。
车架几何是指车架各个部件之间的角度和尺寸关系,如头管角度、车把位置、轴距等。
这些参数共同决定了自行车的骑行性能和舒适性。
车架几何的设计需要兼顾稳定性、操控性、舒适性和骑行效率等多方面因素。
车架几何的重要性在于,它直接影响到骑行的稳定性和操控性能。
一个合适的车架几何可以使骑行更加顺畅,降低骑手在长途骑行过程中的疲劳程度。
相反,不合适的车架几何可能导致骑行姿势不正确,进而引发身体不适和运动损伤。
车架几何与骑行性能的关系密切。
头管角度和车把位置会影响到自行车的转向性能和稳定性。
一般来说,头管角度越小,自行车的操控性能越好,但稳定性相对较差。
而头管角度越大,稳定性越好,但操控性能有所降低。
轴距长短则关系到自行车的加速性能和爬坡能力。
轴距越长,自行车的加速性能越好,但爬坡能力相对较差。
此外,车架几何还对舒适性有重要影响。
合适的车架几何可以降低骑手在骑行过程中的疲劳程度,提高骑行舒适度。
而不合适的车架几何可能导致骑手姿势不正确,从而引起身体不适。
市面上常见的车架几何类型有公路车、山地车、折叠车等。
公路车的车架几何偏小,有利于操控性能和速度;山地车的车架几何较大,注重稳定性和舒适性;折叠车的车架几何则更加灵活,适应性强。
要选择适合自己的车架几何,首先要了解自己的骑行需求和身体条件。
对于初学者来说,可以选择较为保守的车架几何,以确保骑行稳定性和舒适性。
对于专业人士和骑行爱好者,可以根据自己的骑行目标和身体状况,选择更适合自己的车架几何。
GIANT捷安特自行车捷安特山地车XTC C1 山地车品牌:捷安特Giant型号:XTC C1材质:铝合金车用途:山地车尺寸规格:26 英寸车架结构:整体车是否折叠:否详细说明:FRAME/车架尺寸颜色车架前叉后避震器26*14M/15.5M/17M/19M亮黑/亮红、亮黑/捷安特蓝全新设计2011款GIANT碳纤山地车架ROCKSHOX TORA SL Q带线控锁死气压避震前叉,T100MM N/ACOMPONENTS/组件车把车首竖杆座垫杆座垫GIANT TWINS SL铝合金横把,31.8GIANT TWINS SL竖杆,31.8GIANT TWINS SL喷砂亮黑坐垫杆,30.9FIZIK GOBI XM OEM坐垫DRIVETRAIN/传动系统变速把手前变速器后变速器刹车刹车把手飞轮链条大齿盘主轴SHIMANO SL-M660SHIMANO FD-M661SHIMANO RD-M663A VID ELIX5油压碟刹A VID ELIX5刹把SHIMANO CS-HG81-10S 11-34TSHIMANO CN-HG74SHIMANO FC-M660 42*32*24T一体式WHEELS/轮组花鼓轮胎MA VIC CROSSRIDE 碟刹轮组MAXXIS 26*2.0 TPI120折叠轮胎FRAME DESIGN/车架设计蕴藏TCR ADVANCED SL与TCR ADVANCED 竞赛灵魂与性能,全新TCR COMPOSITE让碳纤公路车不再遥不可及!运用创新改良的GIANT COMPOSITE 一体式碳纤结构制程,全新TCR COMPOSITE车系承袭了GIANT顶级公路设计主张轻量化、性能导向、POWERCORE及OVERDRIVE等先进技术,让速度的渴望不需再妥协。
FEATURES /特点新设计的ADVANCED车架使用进口高强度航太级碳纤维一体成型设计,有着均衡的纵向舒适性与侧向刚性,提供良好力量传导,同时在长时间骑乘下也不会牺牲车架的舒适度;采用加大车首管强化设计,提供最佳的操控性与转向精准度;整合式五通下叉动力传导设计,更有效地提升兼容性与踩踏效率。
在竞争激烈的市场化要求下,自行车的设计出现了以下两个特点:速度快、造型美观适用.在当代制造工艺已
比较成熟的情况下,自行车的造型设计变得相当重要.知识工程(Knowledge Based Engineering,KBE)具有多种知识表示和推理决策的能力,将其运用于快速处理自行车车架的工艺结构设计、造型设计过程及决策过程,可有效处理复杂的工艺知识和各种图形知识,达到快速设计的目的.
在竞争激烈的市场化要求下,自行车的设计出现了以下两个特点:速度快、造型美观适用。
在当代制造工艺已比较成熟的情况下,自行车的造型设计变得相当重要。
知识工程(Knowledge Based Engineering,KBE)具有多种知识表示和推理决策的能力,将其运用于快速处理自行车车架的工艺结构设计、造型设计过程及决策过程,可有效处理复杂的工艺知识和各种图形知识,达到快速设计的目的。
一、KBE技术的内涵和关键技术
KBE的基本思想是在工程设计中重复利用已有的知识和经验。
这些知识和经验以各种形式存在,如设计手册、工程公式、经验数据表格和专家设计经验等。
KBE系统是一个知识处理系统,知识表示、知识利用和知识获取是KBE系统的三个关键技术。
知识表示即怎样系统地陈述问题并使它们易于求解;知识利用中最主要的是搜索技术,怎样聪明地控制解的查找,使其不至于使用太多的时间和花费过多的计算机存储空间;知识的获取和编码则是KBE系统最重要的方面之一。
二、自行车设计概况
1.国内外自行车设计概况
有前人用AutoCAD二次开发技术在自行车车架设计上做过研究,但是成果并不明显。
其中一种实现方式是:用AutoCAD内部嵌入的一种程序设计语言AutoLisp来完成常用的科学计算和数据分析,同时又能调用几乎全部的绘图命令。
使用该程序能自动完成车架简图的绘制,然后自动提取关键参数进行分析判别并反馈出最后结果,以实现优化设计的目的。
还有人在自行车CAD技术上做过参数化设计方面的研究。
建立参数化设计系统的关键是建立一套描述参数和尺寸之间关系的约束方程,然后根据一组尺寸参数求解出新的设计参数。
采用这种方法进行设计,仅需输入必要的参数,计算机就可自动生产出所需部件的图样。
这种方案只适用于结构变化不大或按一定规律变化部件的设计与绘图。
结合自行车设计的特点,这种方法有一定的可取之处。
但对于造型设计复杂、变化多样的情况,则是不能满足实际设计要求的。
采用三维软件进行设计可达到缩短产品开发周期,降低设计成本的效果,还能使二维平面设计软件不容易表达的曲线和曲面在三维设计上变得容易实现,且效果直观,有利于设计人员和客户之间的直接沟通。
2 .自行车基本结构及工厂设计流程
自行车由九大部分组成,如图1所示。
其中最主要的部分是车体。
车体由车架、前叉、车头组件、中轴组件、鞍管组件和贴花等组成。
图1 自行车组件图
车架设计是自行车设计中最关键和核心的部分,其设计主要分为前三角的设计、后叉片的设计和后三角的设计。
前三角的设计包括五通、立管、头管、上管和下管的设计。
后三角的设计包括平叉和立叉的设计。
后叉片主要用来连接后轴、平叉和立叉。
后叉片的设计应在前三角完成以后,后三角设计之前完成。
车架结构如图2所示。
图2 车架结构示意图
充分了解工厂工作流程将有助于在设计系统时充分考虑各部门间的配合、设计人员操作习惯和经验的积累,并有利于达到知识工程重复利用已有知识和经验的目的,图3所示为某自行车公司的工作流程。
图3 工作流程图
三、知识工程在车架设计时的应用
车架CAD设计共分为选择查询、结构优化设计和快速建模造型设计三部分。
整体思路是先将车架各管的中心线画出,制作成各式模版,然后进行结构调整并对设计参数进行优化修改,最后再进行管件造型设计。
三部分分别采用了不同的KBE技术,取得了良好的应用效果,下面将进一步介绍各部分采用的不同KBE技术,并分析其使用原因。
1.选择查询
选择查询采用了基于实例的知识表示,在工程设计领域,它有着广泛的应用。
实例蕴涵着丰富的专家知识,可以为当前的设计提供有价值的参考。
自行车车架的设计相对自由,样式多种多样,共分为11种款式。
各款式中部分管件的搭接形式又不相同,因此衍生出各式不同的车架外形。
从车架设计条件描述中抽取出共同的特征及特殊特征并建立筛选条件,根据这些条件能从实例库中搜索并选择出与设计要求最接近的实例,进行改进设计。
实例包括骨架实例(既中心线模版)和成品实例两部分,可根据不同的用户需求选用不同的实例。
2.结构优化设计
结构优化设计包括参数化驱动、参数的程序优化求解和结构优化三部分。
(1)参数化驱动。
近似实例调出后,接下来将进行参数优化修改。
对结构相似的实例,只需修改其参数具体数值。
参数分为关键结构参数和普通结构参数,关键结构参数用统一规划的表达式记录并保存于数据库中,普通参数则采用自动分配的表达式。
参数修改通过修改表达式的值来实现参数化驱动。
系统设计则能够读出实例中的关键结构参数并提供了修改工具。
常用的关键结构参数主要来源于自行车行业设计标准、专家设计知识经验和生产经验,并用数据库进行管理。
数据库中主要记录了部分车架关键结构参数的经验数据及实例数据。
普通结构参数的修改则提供了专用的修改拾取工具,能够拾取实体对象并读取相应的表达式,关键结构参数的修改亦可用其实现。
普通结构参数通常根据客户的实际订单需要来确定。
(2)参数的程序优化求解。
优化计算时,由于未知参数很多,部分设计参数采用逆运算的方法,即将未知量按设计经验假定为已知量,然后以微量增量的方式进行迭代试算,直至算出符合要求的参数为止。
例如,在计算五通下垂量及已知毛坯圆管直径计算变截面管的相关参数时就采用了这种方法。
以变形后截面是水滴型为例,如图4所示,在假设变形后截面周长和原截面周长保持不变的条件下,其求解方程如下所示:
图4 圆形管变形为水滴管
其中,D为毛坯管直径,R1为水滴管大半圆半径,R2为水滴管小半圆半径,β为大半圆半径与竖直中心线交角。
将此方程的解看作是正切曲线和一条直线的交点,循环给出β的一个初值,直至使等式两边满足一定的条件为止。
代入公式:
即可求得水滴管的轴向高度B。
此方法并未直接以水滴管的轴向高度B为未知参数求解,而采用了过渡未知参数β进行方程求解。
第二种方法是采用试算法,即一些参数必须给出,但是又不能确定,用另外一些已知的参数试算出这些参数,但这个参数以后可能还是会修改的,并且要能和其相关的对象实现关联设计。
(3)结构优化。
车架设计中,后叉片是一个关键部件,如图5所示。
图5 后叉片及平、立叉装配图
由于本身设计较为复杂,为了使后叉片的设计不影响后面工序的设计,将后叉片的造型设计与选用和定位设计分开进行,举例采用了自顶向下设计、自动装配和关联设计相结合的方法。
首先将设计好的后叉片放入指定目录下,并采用数据库进行分类数据管理。
然后将后叉片与主模版的对应装配关系抽取为一个矢量平面和两个矢量轴,这样在进行车架设计时只需按要求选用适合的后叉片即可装配到位,而位置的调整也可通过界面调整参数达到设计要求。
最后的关联设计主要采用了Smart point(智能点)和UDO(用户自定义)两项技术实现。
智能点用来连接后叉片和平、立叉的关键接触点,能够在后叉片位置改变或所选用后叉片改变时,实现关联对象的自动变化,并能够在一些参数不满足基本要求时自动给出提示。
3.快速建模造型设计
造型设计主要指管件的造型设计。
其具体实现方式如下。
(1)在管件导引线(中心线)的不同位置按要求给出截面的轮廓形状(截面形状导引线)。
车架截面形状有圆形、椭圆形、水滴型(又分正水滴、反水滴)、方形、菱形和8字形等,可以先基于KF规则创建几
何建模特征和知识表达式的特性,然后采用UDF(User Defined Feature)用户定义特征建立装配件,即将截面形状画好作为一个装配件,做截面时只需将相应的截面调出即可,截面的形状参数则通过读取相应的知识表达式达到快速修改的目的。
(2)通过扫描将管件外形做出。
扫描中心法矢的运动轨迹是管截面形状引导线,此引导线不做成整个的封闭曲线,而是将各位置上的引导线分割为同段数的曲线且使对应曲线的切线方向一致,否则扫描出的管件容易扭曲。
此时做出的是一薄壁管。
(3)加厚形成管件的厚度。
(4)连接管件间相交部分的剪切。
当用户拖动管件导引线时,管件能够关联变化。
采用此实现方法充分体现了对知识和规则的重用性。
对象间的关联设计用UDO的方法,将管件的一些列数据记录到UDO中,实现完成了管件的自动剪切、自动标注、尺寸检查、BOM表的自动生成和模具查询等关联设计。
图6所示是用开发的车架CAD模块设计出的减震自行车车架图。
图6 减震自行车车架图
四、结束语
运用知识工程,使自行车车架设计工作从原来需两天时间,缩短到目前的两个小时,大大缩短了车架设计的开发时间,方便了设计方案的交互设计、修改和验证,更有利于二次利用时缩短设计再修改的时间,使企业在激烈的市场竞争中赢得主动。
本例的成功同时也表明了知识工程在中小型企业内应用已成为可能,知识工程将使企业具有更大的竞争力。
此外,知识工程还允许用户保存那些在实际应用中有用的工程知识,当需要时能很快找出并重复利用。