七年级数学一元一次方程应用题(行程问题)(人教版)(专题)(含答案)
- 格式:doc
- 大小:461.74 KB
- 文档页数:6
行程问题(讲义)➢ 课前预习1. 小学我们已经学过行程问题,那么行程问题中的基本关系是_________=________×________.2. 已知小明家离学校2千米,一天小明在下午5:00放学之后开始步行回家,同时爸爸骑自行车从家出发去接小明,已知小明步行的速度是60米/分钟,爸爸骑自行车的速度是140米/分钟,请问小明爸爸从家出发几分钟后接到小明?设小明爸爸从家出发x 分钟后接到小明,分别用含x 的代数式表达小明和爸爸所走的路程.3. 上题中的等量关系是:_______________+_____________=从家到学校的距离. 可列方程为:_________________________.学校家爸爸➢知识点睛行程问题:①理解题意,找关键词,即________、________、________;②分析运动过程,通常采用____________或____________的方法来进行;③梳理信息,列表,提取数据,列表时要按照运动状态或者运动过程进行分类;④根据等量关系列方程.➢精讲精练1.一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?启明中学举行了一次路程为60千米的远足活动,八年级学生步行,七年级学生乘一辆汽车,两个年级的学生同地出发,这辆汽车开到目的地后,再回头接八年级的学生.若八年级学生的速度为5千米/时,比汽车提前一小时出发,汽车的速度为60千米/时,问八年级学生出发后经过多长时间与回头接他们的汽车相遇?2.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km,到中午12时,两人又相距36 km.求A,B两地间的路程.3.汽车上坡时每小时走28千米,下坡时每小时走35千米,去时下坡路程比上坡路程的2倍少14千米,原路返回比去时多用12分钟,则去时上、下坡路程各多少千米?4.某人在上午8时从甲地出发到乙地,按计划在中午12时到达.在上午10时汽车发生故障而停车修理15分钟,修好后司机为了能及时赶到,把每小时的车速又提高了8千米前进,结果在11时55分提前到达乙地,求汽车原来的速度.5.一列火车匀速行驶,经过一条长300 m的隧道需要20 s的时间;隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10 s.根据以上数据,你能否求出火车的长度?6.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,火车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒.已知两人的步行速度都是3.6千米/时,请计算这列火车的长度.7.铁路旁的一条平行小路上有一行人和一骑车人同时向东行进,行人速度为3.6 km/h,骑车人速度为10.8 km/h,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒,问这列火车的车长和火车的速度.【参考答案】➢课前预习1.路程速度时间2.140x60x3.爸爸所走路程小明所走路程➢知识点睛①路程速度时间140602000 x x+=② 示意图 线段图➢ 精讲精练1.解:设经过了t 小时,根据题意得 45t +35t =10×2解得答:1号队员从离队开始到与队员重新会合,经过了小时. 2.根据题意得 5x +60(x -1)=2×60解得答:八年级学生出发后经过小时与回头接他们的汽车 相遇. 3.= 解得答:A ,B 两地间的路程为108 km .4. 上坡42千米,下坡70千米5. 40 km/h6. 火车长为300米.7. 火车长为255米.14t =143613x =361336108x --36128x +-108x =8.火车长为286米,车速为14 m/s.行程问题(随堂测试)1.暑假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发直奔目的地,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米/时,小李车速为15千米/时,经过多少小时小张能够追上小李?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?【参考答案】1.(1)经过2小时小张能够追上小李;(2)小张的车速应为18千米/时.行程问题(习题)➢巩固练习1.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.请问小明家距学校有多远的距离?2.一个邮递员骑自行车要在规定时间内把特快专递送到某单位.他如果每小时行15千米,可以早到10分钟;如果每小时行12千米,就会迟到10分钟,则规定的时间是多少小时?他行驶的路程是多少千米?3.家住郑州的李明和家住开封的好友张华分别沿郑开大道匀速赶往对方家中.已知两人在上午8:00时同时出发,到上午8:40时,两人还相距12 km,到上午9:00时,两人正好相遇.求两家之间的距离.4.小明和小刚从两地同时相向而行,两地相距2 km,小明每小时走7 km,小刚每小时走6 km,如果小明带一只狗和他同时出发,狗以每小时10 km的速度向小刚方向跑去,遇到小刚后又立即回头跑向小明,遇到小明后又立即回头跑向小刚,这样往返直到二人相遇.(1)两个人经过多少小时相遇?(2)这只狗共跑了多少千米?5.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,则通讯员追上学生队伍时行进了多少千米?通讯员用了多长时间?(用两种不同的方法)6.一列火车匀速行驶经过一条隧道、从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,且火车的长度为180 m,求隧道的长度和火车的速度7.甲、乙两人在与铁路平行的马路上背向而行,甲骑车每小时行驶36千米,乙步行每小时走3.6千米,一列火车匀速向甲驶来,列车在甲旁开过用了10秒钟,而在乙旁开过用了21秒钟,则这列火车的长是多少米?8.只活到父亲寿数的一半,就匆匆离去.这对他是一个沉重的打击,后来4年,丢番图因为失去爱子而伤悲,终于告别数学,离开了人世.请你根据以上文字记载,算一算丢番图的寿命.【参考答案】➢ 巩固练习 1. 1 260米 2. 规定时间是小时,行驶的路程为20千米 3. 36 km4. (1)213小时 (2)2013千米5. 通讯员追上学生队伍时行进了千米,通讯员用了小时6. 隧道的长度为1170米,火车的速度是30m/s.7. 这列火车的长是210米.8. 丢番图的寿命是84岁327316。
一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。
人教版七年级上册数学第三章一元一次方程应用题--行程问题1.A、B两地相距840千米,小明从A地出发去往B地,小红从B地去往A地,经过4小时,二人相遇.已知小明比小红每小时多行50千米.求小明每小时行多少千米?2.列一元次方程解应用题:一列动车匀速行驶,完全通过一条长600米的隧道需要25秒的时间,隧道顶上有一盏灯,垂直向下发光,灯光照在动车上的时间是10秒,求这列动车的长度?3.小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地.两人的行进速度分别是多少?4.A,B两地相距150千米,甲车从A地匀速行驶前往B地,每小时行驶40千米;乙车从B地匀速行驶前往A地,每小时行驶60千米.(1)甲、乙两车同时出发,_______小时相遇.(2)甲、乙两车同时出发,_______小时两车相距10千米.(3)若乙车先行驶半小时,甲车再出发,求甲车出发几小时两车相遇?5.一学生队伍以4千米/时的速度从学校出发步行前往某地参加劳动.出发半小时后,学校有紧急通知要传给队长,立即派了一名通讯员骑自行车以14千米/时的速度原路去追,该通讯员要用多少时间才能追上学生队伍?6.一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离.(列方程解决)7.小张和小李骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必经过小李家.(1)若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过多少小时能相遇?(2)若小李的车速为10千米/小时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?8.一艘船从甲码头到乙码头顺流航行,用了3.2h,从乙码头返回甲码头逆流航行,用了4.8h,已知水流的速度为3km/h,求这艘船在静水中的速度.9.在一条河中有甲、乙两船,现同时从A顺流而下,乙船到B地时接到通知要立即返回到C地执行任务,甲船继续顺流而行,已知甲、乙两船在静水中的速度都是7.5千米/小时,水流速度是2.5千米/小时,A、C两地间的距离为10千米,如果乙船由A经B再到C共用4小时,问乙船从B到C时,甲船驶离B 地多远?10.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求飞机在无风时的速度.11.某班学生列队从学校到一个农场去参加劳动,以每小时4千米的速度行进.走完1小时,一个学生奉命回学校取一件东西,他以每小时5千米的速度跑回学校,取了东西后又立即以同样的速度跑步追赶队伍,结果在距农场2千米的地方追上队伍,求学校到农场的距离.12.A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?13.甲、乙两人同时从A地到B地,甲骑摩托车,乙骑自行车.甲、乙时速之比为6:1,甲先到达B地以后停留45分钟,然后从B地返回A地.在返回途中遇见乙,此时,距他们出发时间为3小时.若A 地、B地相距82.5千米,求甲、乙两人的速度各是多少.14.小明骑自行车的速度是15千米/小时,一天,小明从家出发骑自行车去学校,恰好准时达到,如果他全程乘坐速度为40千米/小时的公共汽车,则会提前15分钟达到学校.(1)小明家离学校有多少千米;(2)小明乘坐公共汽车上学需要多长时间.15.某校组织学生研学,全程30千米,开始一段路步行,步行速度为3千米/小时,余下路程乘客车,客车速度为39千米/小时,全程共用1小时,求步行和客车各用了多少时间?16.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了2.5h.已知水流的速度是3km/h,求船在静水中的平均速度.(要求列方程解答)17.列方程解应用题:小强参加了一次市组织的业余组半程马拉松赛,路程约为21公里,比赛开始后,小强按原计划的速度比赛,但1小时后,由于脚的旧伤复发,他跑步的速度变慢,每小时完成的路程都是前一小时的一半,小强顽强拼搏,坚持完成比赛,最后以3小时的时间冲过半程马拉松赛的终点,那么小强原计划的速度是多少?18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.已知A,B两地相距200千米,甲车的速度为每小时70千米,乙车的速度为每小时50千米.(1)若两车分别从A,B两地同时同向而行(甲车在乙车后面),问经过多长时间甲车追上乙车?(2)若两车同时从A,B两地相向而行,问经过多长时间两车相距20千米?。
(完整版)一元一次方程应用题专题训练行程问题一元一次方程应用题专题讲解【解题思路】1、审——读懂题意,找出等量关系.2、设-—巧设未知数.3、列——根据等量关系列方程。
4、解——解方程,求未知数地值。
5、答——检验,写答案(注意写清单位和答话).6、练——勤加练习,熟能生巧。
触类旁通,举一反三.第一讲 行程问题【基本关系式】(1) 行程问题中地三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(2) 基本类型① 相遇问题:快行距+慢行距=原距② 追及问题:快行距-慢行距=原距③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水地路程 = 逆水地路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变地特点考虑相等关系.常见地还有:相背而行;环形跑道问题.【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车地后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等地含义,弄清行驶过程。
故可结合图形分析. (1)分析:相遇问题,画图表示为: 等量关系是:慢车走地路程+快车走地路程=480公里。
(2)分析:相背而行,画图表示为: 等量关系是:两车所走地路程和+480公里=600公里。
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里.甲 乙600甲 乙(完整版)一元一次方程应用题专题训练行程问题(4)分析:追及问题,画图表示为:等量关系为:快车地路程=慢车走地路程+480公里.甲乙(5)分析:追及问题,等量关系为:快车地路程=慢车走地路程+480公里。
初一数学一元一次方程应用专题训练1(行程问题附答案)1.一艘船从甲码头到乙码头顺流而行,用了2小时;从乙码头返回甲码头逆流而行,用了2.5小时.已知水流的速度是3km/h,船在静水中的速度是()A.30 B.27 C.3 D.242.A、B两人分别从甲乙两地同时相向而行,A的速度是每小时80千米,B的速度是甲的34,经过52时两人相距10千米,甲乙两地相距______千米.3.两村相距35千米,甲、乙两人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行驶了____小时.4.已知A港在B港上游,小船于凌晨3:00从A港出发开往B港,到达后立即返回,来回穿梭于A、B港之间,若小船在静水中的速度为16千米/小时,水流的速度为4千米/小时,在当晚23:00时,有人看见小船在距离A港80千米处行驶,则A、B两港之间的距离为_______km.5.有一快递小哥骑电动车需要在规定的时间把快递送到某地,若他以30 km/h的速度行驶就会提前2分钟到达,如果他以20 km/h的速度行驶就要迟到6分钟.(1)快递小哥行驶的路程是多少千米;(2)规定的时间是多少分钟?(3)当快递小哥以30 km/h的速度行驶10分钟后,因某段路拥堵耽误了3分钟,为了刚好在规定时间到达,快递小哥应以怎样的速度行驶?6.甲,乙两车先后从两地相对开出,甲车每小时行驶60千米,是乙车速度的1.2倍,甲车出发6小时与乙车在中点相遇,求乙车比甲车早出发几小时?7.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.8.甲、乙两人相距40km,甲先出发1.5小时后,乙再出发,甲的速度为8/km h,乙的速度为6/km h.(1)甲在后,乙在前,两人同向而行,甲出发几小时后追上乙?(2)两人相向而行,乙用了几小时与甲相遇?9.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)两车同时开出,相向而行多少小时后两车相遇?(2)两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?10.甲、乙两车分别从相距270km 的A 、B 两地出发,沿足够长的公路行驶,甲车速度为75/km h ,乙车速度为60/km h .(l )两车同时出发,相向而行,多长时间后两车相遇?(2)两车同时出发,同向而行(乙车在前甲车在后),多长时间后两车相遇?(3)两车同时出发,同向而行(乙车在前甲车在后),多长时间后两车相距120km ? 11.某人计划骑车以每小时12千米的速度由A 地到B 地,这样便可以在规定的时间到达B 地,但他因有事将原计划出发的时间推迟了20分钟,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B 地,求A 、B 两地间的距离.(列方程解) 12.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?13.常州地铁已开通近一年.小明骑自行车从家中前往地铁一号线的B 站,与此同时,一列地铁从A 站开往B 站.3分钟后,地铁到达B 站,小明离B 站还有1800米.已知A 、B 两站间距离和小明家到B 站的距离恰好相等,这列地铁的平均速度是小明的4倍. (1)求小明骑车的平均速度;(2)如果此时另有一列地铁需8分钟到达B 站,且小明骑车到达B 站后还需2分钟才能走到地铁站合候车,他要想乘上这趟地铁,骑车的平均速度至少应提高多少?14.一辆轿车和一辆客车分别从A ,B 两地出发,沿同一条公路相向匀速而行.出发后2小时两车相遇. 相遇时轿车比客车多行驶40km ,相遇后1.5h 轿车到达B 地. 求A ,B 两地之间的距离.15.小王从家里骑摩托车到火车站接朋友,如果每小时行30千米,那么比火车到站时间早到15分钟;如果每小时行18千米,则他比火车到站时间迟到15分钟。
《一元一次方程》应用题分类练习(一)一.行程问题:1.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.2.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.3.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?4.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?5.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?二.配套问题:6.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?7.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?三.数字问题:8.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.9.小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.四.数轴问题:10.如图,A,B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP+OQ=5时的运动时间t的值.11.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.五.积分问题:12.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A20 0 100B19 1 94C18 2 88D14 6 64E10 10 40(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?13.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进14 10 4 24光明14 9 5 23远大14 m n22卫星14 4 10 a钢铁14 0 14 14 请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.六.方案问题:14.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用20天,在粉刷的过程中,该开发商要付甲工程队每天费用1600元,付乙工程队每天费用2600元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(2)问方式完成:请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.15.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案1.解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).2.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.3.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.4.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.5.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.6.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.7.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.8.解:设这个两位数的个位数字为x,则十位数字为2x,原两位数为(10×2x+x),十位数字与个位数字对调后的数为(10x+2x),依题意,得:(10×2x+x)﹣(10x+2x)=27,解得:x=3,∴2x=6,∴10×2x+x=63.答:这个两位数为63.9.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:小明的考场号是2315.10.解:(1)A、B两点之间的距离是:4﹣(﹣12)=16.故答案为16;(2)分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP+OQ=5,∴12﹣5t+4﹣2t=5,解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP+OQ=5,∴5t﹣12+3(t﹣2)=5,∴t=,综上所述,当OP+OQ=5时的运动时间t的值为或.11.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.12.解:(1)由参赛选手A可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛选手B的得分列得:19×5﹣x=94,解得:x=1,则答对一道题得5分,答错一道题扣1分;(2)设参赛选手F答对y道题,根据题意得:5y﹣1×(20﹣y)=76,解得:y=16,则参赛选手F答对16道题.13.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.14.解:(1)设乙工程队要刷x天,由题意得:240x=160(x+20),解得:x=40,240×40=9600(间),答:这个小区共有9600间房间;(2)设甲工程队的工作时间为y天,则乙工程队的工作时间(2y+4)天,由题意得:160y+240y+240(1+25%)×(2y+4﹣y)=9600,解得:y=12,2y+4=2×12+4=28(天),答:乙工程队共粉刷28天;(3)方案一:由甲工程队单独完成,时间:40+20=60(天),60×1600=96000(元);方案二:由乙工程队单独完成需要40天,费用:40×2600=104000(元);方案三:按(2)问方式完成,时间:28天,费用:12×(1600+2600)+(28﹣12)×2600=92000(元),∵28<40<60,且92000<96000<104000,∴方案三最合适,答:选择方案三既省时又省钱的粉刷方案.15.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)。
一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。
人教版七年级上册数学一元一次方程应用题—行程问题练习1.甲、乙两地相距40千米,摩托车的速度为45千米/小时,运货车的速度为35千米/小时,(两车从两地同时出发相向而行,两车何时相遇或两车同时出发同向而行,摩托车比运货车早几小时到达),请你将这道题补充完整,并列方程解答.2.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?3.甲、乙两地的路程为180千米,一列快车从乙站开出,每小时行72千米;一列慢车从甲站开出.已知快车速度是慢车速度的1.5倍.(1)若两列火车同时开出,相向而行,经过多少小时两车相遇?(2)两人同时相向而行,经过多少小时两人相距60千米?4.某人从家里骑自行车到学校,若骑自行车的速度15km/h,可比预定的时间早到15min,若其速度为9km/h则比预定的时间晚到15min,求从家里到学校的路程.5.龙永高速公路全长约90千米,甲、乙两车同时从龙山、永顺两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.6.一队学生去校外进行训练,他们以6千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以15千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?7.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?8.我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?9.甲、乙两人在300米环形跑道上练习长跑,甲的速度是6米/秒,乙的速度是7米/秒.(1)如果甲、乙两人同地背向跑,乙先跑2秒,再经过多少秒两人相遇?(2)如果甲、乙两人同地同向跑,乙跑几圈后能首次追上甲?10.A、B两地相距64 km,甲从A地出发,每小时行14 km,乙从B地出发,每小时行18 km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16 km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10 km?11.一天,著名数学家笛卡儿点了两只蜡烛读书,两只蜡烛的长度相同,但粗细不同.已知粗蜡烛可点5小时,细蜡烛可点4小时,临睡时,将蜡烛吹灭,这时所剩粗蜡烛的长度是细蜡烛的4倍,那么这两支蜡烛已经点了几小时?12.某轮船顺水航行5小时,逆水航行2.5小时,已知轮船在静水中的速度是a千米/时,水流的速度是2千米/时.(1)轮船一共航行多少千米?(用含a的式子表示)(2)如果轮船一共航行305千米,求轮船在静水中的速度.13.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?14.某船在A、B两地之间航行,顺水航行需要4小时,逆水行需要5小时,水流速度为2千米/时.(1)求船在静水中的速度.(2)若船从A地顺水航行到B地,然后逆流返回,到达距离A地26千米的C地,一共航行了多少小时?15.甲地与丙地由公路连接,乙地在甲、丙两地之间,一辆汽车在下午1点钟从离甲地10千米的M地出发向乙地匀速前进,15分钟后离甲地20千米,当汽车行驶到离甲地150千米的乙地时,接到通知要在下午5点前赶到离乙地30千米的丙地.汽车若按原速能否按时到达?若能,是在几点几时到达;若不能,车速应提高到多少才能按时到达?16.甲骑自行车从A地出发,以每小时15km的速度驶向B地,经半小时后乙骑自行车从B地出发,以每小时20km的速度驶向A地,两人相遇时,乙已超过AB两地的中点5km,求A、B两地的距离.17.小李和小张从学校到王村,小李的速度为4km/h,小张的速度为5km/h,小李先出发5min,结果小李比小张晚到10min.求学校到王村距离.18.乐乐家距离学校2800米,一天早晨,他以80米/分的速度上学,5分钟后乐乐的妈妈发现他忘了带数学书,妈妈立即以180米/分的速度去追乐乐,并且在途中追上了他.(1)妈妈追上乐乐用了多长时间?(2)放学后乐乐仍以80米/分的速度回家,出发10分钟时,同学英树以280米/分的速度从学校出发骑自行车回家,乐乐家和英树家是邻居(两家距离忽略不计,两人路上互不等待,两人到家后不再外出),请问英树出发多长时间,两人相距300米?19.已知:A、B两地相距500km,甲、乙两车分别从A、B两地同时出发,甲速每小时60千米,乙速每小时40千米,请按下列要求列方程解题:()1若同时出发,相向而行,多少小时相遇?()2若同时出发,相向而行,多长时间后两车相距100km?()3若同时出发,同向而行,多长时间后两车相距100km?20.某市出租车收费标准是:起步价10元,可乘3千米,3千米到5千米,每千米1.3元,超过5千米,每千米2.4元x x>千米的路程,则小李所支付的费用是多少(用代数式表示)?(1)若小李乘坐了()5(2)若小马乘坐的路程为15千米,则小马应付的费用是多少?(3)若小张租一次车付了24.6元,求小张租车所走的路程.。
一元一次方程应用题(行程问题)(人教版)(专
题)
一、单选题(共8道,每道12分)
1.汽车上坡时每小时走28千米,下坡时每小时走35千米,已知下坡路程比上坡路程的2倍少14千米.设上坡路程为x千米,则汽车下坡共用了( )小时.
A. B.
C. D.
答案:D
解题思路:
由题意,列表如下:
由s=vt可知,汽车下坡共用了小时.
故选D.
试题难度:三颗星知识点:一元一次方程的应用—行程问题
2.京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是20分钟,若设小王用自驾车方式上班的速度为x千米/时,则小王家到上班地点的距离是( )千米.
A. B.
C. D.
答案:C
解题思路:
由题意,列表如下:
由s=vt可知,小王家到上班地点的距离是千米.
故选C.
试题难度:三颗星知识点:一元一次方程的应用—行程问题
3.一客车以60千米/时的速度从甲地出发驶向乙地,经过45分钟后,一辆小汽车以每小时比客车快10千米的速度从乙地出发驶向甲地,两车刚好在甲、乙两地的中点相遇.若设甲、乙两地的距离为x千米,则小汽车从出发到两车相遇行驶了( )小时.
A. B.
C. D.
答案:B
解题思路:
由题意,列表如下:
由s=vt可知,小汽车从出发到相遇用时为小时;
再由题意,客车比小汽车早出发45分钟,
则小汽车从出发到相遇用时还可以表示为小时,
所以,小汽车从出发到相遇用时为或小时.
故选B.
试题难度:三颗星知识点:一元一次方程的应用—行程问题
4.第七届中国郑开国际马拉松赛在郑开大道举行,为参加此次比赛,家住郑州的小李和家住开封的好友小王分别沿郑开大道匀速赶往对方家中.已知两人在上午9时同时出发,到上午9时40分,两人还相距xkm,到中午10时的时候,两人再次相距xkm,则两家之间的距离为( )km.
A. B.
C. D.
答案:C
解题思路:
根据题意画线段图:
由题意,列表如下:
根据题意,只要能求出第一次相距xkm时,
两人已走的路程,再加上xkm就是两家之间的距离.
第一次相距xkm时,两人均已走了40分钟,所以求出两人速度和即可.
由表中信息知,两人的速度之和为km/h,
所以两家之间的距离为km.
故选C.
试题难度:三颗星知识点:一元一次方程的应用—行程问题
5.小明每天要在8:00前赶到学校上学.一天,小明以70米/分的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.设小明从家到学校用了x分钟,则小明家到学校的距离可表示为( )米.
①180x;②70(x-11);③180(x-11);④(180-70)x;⑤70x.
A.③④
B.④⑤
C.③⑤
D.①②
答案:C
解题思路:
由题意,列表如下:
由s=vt可知,
利用小明走过的速度和时间可以表达从家到学校的距离为70x;
利用爸爸走过的速度和时间可以表达从家到学校的距离为180(x-11);
所以小明家到学校的距离是180(x-11)或70x米.
故选C.
试题难度:三颗星知识点:一元一次方程的应用—行程问题
6.某人跑步的速度为每分钟150米,一辆货车从后面开来,越过他用了3秒钟.设货车的长为x米,则下列说法错误的是( )
A.
B.
C.
D.
答案:B
解题思路:
由题意,列表如下:
由题意知,货车走的路程=货车的长度+人跑步走的路程.
由s=vt可知,人跑步走的路程为米,
所以货车走的路程为米,所以货车的速度为米/秒.
故选B.
试题难度:三颗星知识点:一元一次方程的应用—行程问题
7.A,B两站间的距离为670km,一列慢车从A站开往B站,每小时行驶55km,慢车行驶1小时后,另一列快车从B站开往A站,每小时行驶85km,设快车行驶了x小时后与慢车相遇,则依题意可列方程为( )
A. B.
C. D.
答案:D
解题思路:
由题意,列表如下:
由题意知,两站之间的距离=慢车走的路程+快车走的路程,所以
.
故选D.
试题难度:三颗星知识点:一元一次方程的应用—行程问题
8.某人从甲地到乙地,水路比公路近40千米,但乘船比乘车要多用3小时,已知轮船速度为24千米/时,汽车速度为40千米/时,设水路长为x千米,则依题意可列方程为( )
A. B.
C. D.
答案:C
解题思路:
由题意,列表如下:
由s=vt可知,乘船所用时间为小时,乘车所用时间为小时,
根据题意,乘船比乘车要多用3小时,所以.
故选C.
试题难度:三颗星知识点:一元一次方程的应用—行程问题。