4应力的种类有哪些
- 格式:doc
- 大小:9.50 KB
- 文档页数:1
第4章 土中应力4.1 概 述土中应力按其起因分为:自重应力和附加应力。
自重应力——由土体本身有效重量产生的应力称为自重应力。
两种情况:(1)在自重作用下已经完成压缩固结,自重应力不再引起土体或地基的变形;(2)土体在自重作用下尚未完成固结,它将引起土体或地基的变形。
自重压力——土中竖向自重应力 附加压力——土中竖向附加应力某点总应力=土中某点的自重应力+附加应力4.2 土中自重应力自重应力:由土体本身有效重量产生的应力称为自重应力。
一般而言,土体在自重作用下,在漫长的地质历史上已压缩稳定,不再引起土的变形(新沉积土或近期人工充填土除外)。
一、竖直向自重应力自重应力——土体初始应力,指由土体自身的有效重力产生的应力。
假定⎩⎨⎧平面均不存在剪应力土体中所有竖直面和水无限弹性体土体具有水平表面的半1、竖直自重应力cz σ(称为自重应力,用c σ表示)设地基中某单元体离地面的距离z ,土的容重为γ,则单元体上竖直向自重应力等于单位面积上的土柱有效重量,即z cz ⋅=γσ可见,土的竖向自重应力随着深度直线增大,呈三角形分布。
注:(1)计算点在地下水为以下,由于水对土体有浮力作用,则水下部分土柱的有效重量应采用土的浮容重'γ或饱和容重sat γ计算;① 当位于地下水位以下的土为砂土时,土中水为自由水,计算时用'γ。
② 当位于地下水位以下的土为坚硬粘土时0<L I ,在饱和坚硬粘土中只含有结合水,计算自重应力时应采用饱和容重。
③ 水下粘土,当L I ≥1时,用'γ。
④ 如果是介乎砂土和坚硬粘土之间的土,则要按具体情况分析选用适当的容重。
(2)自重应力是由多层土组成,注意分层计算【思考】为何要如此假设? 对于天然重度为γ 的均质土:z cz γσ=对于成层土,并存在地下水:ini i n n cz h h h h ∑==+⋅⋅⋅++=12211γγγγσ式中 :i γ――第i 层土的重度,kN/m 3,地下水位以上的土层一般采用天然重度,地下水位以下的土层采用浮重度,毛细饱和带的土层采用饱和重度.注意:① 在地下水位以下,若埋藏有不透水层(如基岩层、连续分布的硬粘性土层),不透水层中不存在水的浮力,层面及层面以下的自重应力按上覆土层的水土总重计算;② 新近沉积的土层或新近堆填的土层,在自重应力作用下的变形尚未完成,还应考虑它们在自重应力作用下的变形。
有色金属压力加工原理绪论1、★★★金属压力加工与切削加工、铸造等方法相比,具有哪些主要优点?答:1、可改善金属的组织和性能2、因无(少)废屑,可节约大量的金属3、上产率高4、产品规格多2、金属压力加工方法主要有哪些?答:1、锻造分自由锻和模锻2、轧制分纵扎、横轧和斜扎3、挤压分正挤压和反挤压4、拉伸★★★★名词解释:锻造:利用外力,通过工具或模具使金属变形的加工方法。
轧制:坯料通过两个旋转轧辊间的特定空间(平的或成型的),以获得一定截面形状的产品的加工方法。
挤压:对挤压筒内的锭坯一端施加压力,使其通过模空以实现塑性变形的方法。
拉伸:对金属坯料一端施加压力,使其模孔产生塑性变形的加工方法。
3、塑性成形方法轧制(纵扎)、拉拔、正挤压、反挤压和镦粗?P3 图第一章金属压力加工的力学和热力学条件1-1 力和应力4、★★什么叫做外力?以及外力分类?答:在压力加工过程中,作用在金属表面上的力,叫做外力。
外力分为作用力和约束反力作用力:它是使金属产生塑性变形的力,也称为主动力。
约束反力:工件在主动力作用下,其运动受到工具阻碍而产生的力,成为约束反力。
5、★★什么叫做内力?什么是第一种内力和第二种内力?答:由外力而引起金属内各质点间产生相互作用的力,成为内力。
第一种内力:为平衡外力的机械作用将产生内力,这是第一种内力。
第二种内力:在某些条件下,由于金属工件各部分变形的大小不同,在金属内部产生的自相平衡的内力,称为第二种内力。
6、★什么叫做应力?分类和单位?答:在外力作用下,金属内部产生了内力,单位面积上的内力称为应力。
分为正应力(垂直分量)和切向应力(切向分量)。
帕Pa和兆帕MPa 1MPa=10^6Pa=0.1kg/mm^2=1N/mm^21-2 应力状态和变形状态7、★什么是金属处于应力状态?答:所谓金属处于应力状态就是金属内的原子被迫偏离其平衡位置的状态。
8、★★★绘制应力状态图P079、★什么是主应力状态、主应力、主平面、主切平面、主切应力?答:金属在实际变形过程中,存在着这样的应力状态,即在变形区某点的单元六面体上只作用着正应力,没有切应力,我们把这样的应力状态称之为主应力状态。
应力-应变曲线MA 02139,剑桥麻省理工学院材料科学与工程系David Roylance2001年8月23日引言应力-应变曲线是描述材料力学性能的极其重要的图形。
所有学习材料力学的学生将经常接触这些曲线。
这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑性材料。
在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力学性能的某些方面有初步的总体了解。
本模块中不准备纵述“现代工程材料的应力-应变曲线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。
这里提到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。
“工程”应力-应变曲线在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1了。
进行拉伸试验时,杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。
传感器与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。
若采用现代的伺服控制试验机,则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。
图1 拉伸试验在本模块中,应力和应变的工程测量值分别记作e σ和e ε,它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定0A 0L1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会(ASTM)作详尽的规定。
金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定;复合材料的拉伸试验由ASTM D3039规定。
当以应变e ε为自变量、应力e σ为函数绘制图形时,就得到如图2所示的工程应力-应变曲线。
图2 退火的多晶体铜在小应变区的工程应力-应变曲线(在许多塑性金属中,这一曲线具有典型性)在应力-应变曲线的初始部分(小应变阶段),作为合理的近似,许多材料都服从胡克定律。
于是应力与应变成正比,比例常数即弹性模量或杨氏模量,记作E :随着应变的增大,许多材料的应力与应变最终都偏离了线性的比例关系,该偏离点称为比例极限。
应力是指物体内部受到的力的作用,它可以通过单位面积上的力来描述。
在工程力学中,应力是非常重要的物理量,它与物体的形状、材料特性和外部力的作用密切相关。
本文将围绕应力的概念展开讨论,针对其在材料力学中的应用进行深入分析。
一、应力的定义和分类1.1 应力的概念应力是单位面积上的力,常用符号表示为σ,其计算公式为力F除以面积A,即σ=F/A。
在物体内部,由于外部力的作用,各处都会受到应力的作用,这种应力称为内应力。
而外部施加在物体表面上的力也会导致应力的产生,这种应力称为外部应力。
1.2 应力的分类根据应力的作用方向和大小,可以将应力分为正应力、剪切应力和法向应力三种类型。
正应力是垂直于物体截面的应力,常用符号表示为σn。
而沿着截面方向的应力称为剪切应力,常用符号表示为τ。
另外,法向应力是指作用在物体某一点上的应力。
二、应力状态的描述2.1 应力张量在三维空间中,一个点的应力状态可以由一个3x3的对称矩阵来描述,这个对称矩阵称为应力张量。
应力张量的分量代表了在不同方向上的应力情况,可以通过数学方法进行求解和分析。
2.2 应力状态的表示一个点处的应力状态可以通过应力张量的特征值和特征向量来表示。
特征值代表了应力状态的大小,特征向量则代表了应力作用的方向。
通过对特征值和特征向量的分析,可以判断物体处于何种应力状态,从而进行相应的力学分析和设计。
三、应力的应用3.1 工程材料的性能应力是描述物体受力情况的重要参数,它直接影响着材料的强度、刚度和韧性等性能。
在工程中,通过对材料的应力状态进行分析,可以评估材料的可靠性和安全性,为工程设计提供参考依据。
3.2 结构的稳定性对结构件的受力状态进行分析,可以判断结构在外部载荷作用下的稳定性。
通过对结构的应力分布和应力集中区域的分析,可以预测结构是否会发生破坏或失稳现象,为结构设计和改进提供重要参考。
3.3 力学设计在工程实践中,需要根据实际的力学要求来设计各种零部件和结构件。
第三张(1)静应力:静应力:人小和方向不随转移而产生变化或变化较缓慢的应力,其作用下零件可能产生静断裂或过大的塑性变形,即应按静强度进行计算。
⑵变应力:犬小和方向均可能随时间转移产生变化者,它可以是由变载荷引起的,也可能因静载荷产生(如电动机重量给梁带来的弯曲应力)变应力作用的零件主要发生疲劳失效。
(3)工作应力:用计算载荷按材料力学基本公式求得作用在零件剖面上的内力Qp, CT c, O-,r, G等。
F(4)计算应力:根据零件危险断面的复杂应力状态,按适当的强度理论确定的,有相当破坏作用的应力。
(5)极限应力:根据材料性质及应力种类用试件试验得到的机械性能失效时应力极限值,常分为用光滑试件进行试验得到的材料极限应力及用零件试验得到的零件的极限应力。
(6)许用应力:设计零件时,按相应强度准则、计算应力允许达到的最大值[6 = % /[S] >刁.“。
(7)计算安全系数:零件(材料)的极限应力与计算应力的比值S ca=(y^l(y ca,以衡量安全程度。
(8)安全系数许用值:根据零件重要程度及计算方法精确度给岀设计零件安全程度的许用范围[S],力求S“>[S]。
第五章(1)图5-12所示为一个托架的边板用6个饺制孔用螺栓与相邻机架联接。
托架受一大小为60WN的载荷乍用,该载荷与边板螺栓组的对称轴线)少相平行,距离为250mm. 试确定螺栓组中受力最人的螺栓。
解:如答图2所示,将载荷向螺栓组形心O简化,得横向力F. = 60kN答图2图5-12扭矩 T = 6X 104 X 250 = 15X 106 N ・mm=125/cos 30c = 144.3imiGin = 125tan30° =0・兀云故尸心=T /max /[3^ax + 3 x (O.5r max )2 卜 T/(3r_ + 3 z_/4)= 47/(15心 J= 4xl5x 10 6/(15 x 144.3)= 27720 N F 与合成:F ; = F max srn30c = F max /2=13860 NF ; =^00530° =24006^故螺栓3受力最大为F 3max = JC+(Ff=J13860,+(24006 +10000 )' = 36772 N(2)图5-13所示为一个托架的边板用6个较制孔用螺栓与相邻机架联接。