例2 (2020届皖南八校第一次联考,15)在长方体ABCD-A1B1C1D1中,BC=CC1=1,
∠AD1B=
π 3
,则直线AB1与BC1所成角的余弦值为
.
解析 如图,∵ABCD-A1B1C1D1为长方体,
∴BC1∥AD1,∴∠D1AB1(或其补角)为异面直线AB1与BC1所成的角.
∵AB⊥平面ADD1A1,AD1⊂平面ADD1A1,∴AB⊥AD1,
例1 已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD= P,A1C1∩EF=Q. 求证:(1)D,B,F,E四点共面; (2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
证明 如图.
(1)连接B1D1, 由已知得EF是△D1B1C1的中位线, ∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD. ∴EF,BD确定一个平面,即D,B,F,E四点共面. (2)正方体AC1中,设平面A1ACC1确定的平面为α,平面BDEF确定的平面为β.
方法技巧
方法1 证明点共线、线共点及点线共面的方法
1.证明点线共面问题的两种方法:(1)归一法:首先由所给条件中的部分线 (或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)重合法:将 所有条件分为两部分,然后分别确定平面,再证两平面重合. 2.证明点共线问题的两种方法:(1)先由两点确定一条直线,再证其他各点都 在这条直线上;(2)直接证明这些点都在同一条特定直线上. 3.证明线共点问题的常用方法:先证其中两条直线交于一点,再证其他直线 经过该点.
是棱BD的中点,则异面直线AB与CM所成角的余弦值为
.
解析 取AD的中点N,连接MN,CN,又因为M是BD的中点,所以MN∥AB,故