1梅涅劳斯定理及应用
- 格式:doc
- 大小:196.82 KB
- 文档页数:4
一道初三课外练习的证明——梅涅劳斯定理和塞瓦定
理的应用
梅涅劳斯定理:梅涅劳斯定理是一个关于圆的定理,它告诉我们,如果一个圆的外接的正多边形的各个角度都是相等的,那么,这个正多边形的每条边都是等边的。
塞瓦定理:塞瓦定理是一个关于圆的定理,它告诉我们,如果一个圆的内接正多边形的每条边都是等边的,那么,这个正多边形的每个角度也是相等的。
证明:为了证明梅涅劳斯定理和塞瓦定理之间的关系,我们使用反证法。
假设正多边形的每个角度都是相等的,而它的每条边不是等边的。
根据梅涅劳斯定理,我们知道这个正多边形的每条边都是等边的,而这与我们的假设矛盾,因此该假设是错误的。
反之,假设正多边形的每条边都是等边的,而它的每个角度不是相等的。
根据塞瓦定理,我们知道这个正多边形的每个角度都是相等的,而这与我们的假设矛盾,因此该假设也是错误的。
由此可见,梅涅劳斯定理和塞瓦定理之间有着密切的联系。
即正多边形的每个角度都是相等的,那么它的每条边也都是等边的;反之,正多边形的每条边都是等边的,那么它的每个角度也都是相等的。
综上所述,梅涅劳斯定理和塞瓦定理之间是成立的。
梅涅劳斯定理(入门篇)雷雨田(广西师范大学附属外国语学校高50班 541004)梅涅劳斯定理证明2:面积法AF/FB = △ADF/△BDF ①BD/DC = △BDF/△CDF ②CE/EA = △CDF/△ADF ③式① * ② * ③可得:(AF/FB)*(BD/DC)*(CE/EA)= 1 得证。
证明3:相似法证明4:这个定理怎么记最好呢?个人感觉“顶到分、分到顶、顶到分、分到顶、顶到分、分到顶”这样记忆来得非常容易不过找了很多资料,感觉仅仅是把这个定理(或者后面附一个逆定理)陈述然后证明完了之后,就直接给例题(或者直接讲赛瓦定理),看上去不怎么舒服,所以我把其他的一些东西附在这里,以供参考。
第一角元形式的梅涅劳斯定理(就是把线段比改为正弦值比)其表达式为:1=∠∠•∠∠•∠∠BA'B sin 'CBB sin CB 'C sin 'ACC sin AC 'A sin 'BAA sin 证明如下:如图所示,由三角形面积公式(正弦定理)可得: AC 'A sin AC 'BAA sin AB AC 'A sin AC 'AA 'BAA sin 'AA AB S S C 'A 'BA C 'AA 'ABA ∠⋅∠⋅=∠⋅⋅∠⋅⋅==∆∆2121同理可得CB'C sin BC 'ACC sin AC B 'C 'AC ,BA 'B sin AB 'CBB sin BC A 'B 'CB ∠⋅∠⋅=∠⋅∠⋅= 把这三个式子相乘,运用梅氏定理,就可得到这个式子怎么记最好呢?个人感觉根据梅涅劳斯定理中线段所对应的角来记忆最好。
第二角元形式的梅涅劳斯定理设O 是不在三角形ABC 三边所在直线上的任意一点,其他条件不变,则表达式为:1=∠∠•∠∠•∠∠OA'B sin 'COB sin OB 'C sin 'AOC sin OC 'A sin 'BOA sin AB C A’ B’C’现证明如下: 如图,由C 'A 'BA S S OC 'A 'BOA =∆∆ 可得A'B 'BA OB OC OC 'A sin 'OA B sin ⋅=∠∠同理得到另外两个对称式,相乘,运用梅氏定理即得证这个式子就这样记吧:先记住原来的梅涅劳斯定理形式,然后在每条线段表达式中间插一个O ,然后再在前面加上∠sin (比如BA'就变成'B OA sin ∠)梅氏定理的用处这个定理是平面几何的一个重要定理(好像所有竞赛书都把他与赛瓦定理放在第一节,不知是惯性还是怎么地),它大概有如下用处:可以用来证明三点共线;可以用来导出线段比例式;可以用来寻求一条线段是另一条线段的几分之几或几倍(即线段倍分);怎么用梅氏定理知道了这个定理,还要会用才行。
梅涅劳斯定理及其应用
梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
证明定理
过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1。
定义理论:
使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。
梅涅劳斯定理的对偶定理是塞瓦定理。
它的逆定理也成立:若有三点F、D、E分别在三角形的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E 三点共线。
利用这个逆定理,可以判断三点共线。
第十讲:梅涅劳斯定理和塞瓦定理一、梅涅劳斯定理定理1若直线l不经过的顶点,并且与的三边或它们的延长线分别交于,则证明:设分别是A、B、C到直线l的垂线的长度,则:。
注:此定理常运用求证三角形相似的过程中的线段成比例的条件。
例1若直角中,CK是斜边上的高,CE是的平分线,E点在AK上,D是AC的中点,F是DE与CK的交点,证明:。
【解析】因为在中,作的平分线BH,则:,,即,所以为等腰三角形,作BC上的高EP,则:,对于和三点D、E、F根据梅涅劳斯定理有:,于是,即,根据分比定理有:,所以,所以。
例2从点K引四条直线,另两条直线分别交直线与A、B、C、D和,试证:。
【解析】若,结论显然成立;若AD与相交于点L,则把梅涅劳斯定理分别用于和可得:,,,,将上面四个式子相乘,可得:,即:定理2设P、Q、R分别是的三边BC、CA、AB上或它们延长线上的三点,并且P、Q、R 三点中,位于边上的点的个数为0或2,这时若,求证P、Q、R三点共线。
证明:设直线PQ与直线AB交于,于是由定理1得:,又因为,则,由于在同一直线上P、Q、R三点中,位于边上的点的个数也为0或2,因此R与或者同在AB线段上,或者同在AB的延长线上;若R 与同在AB线段上,则R 与必定重合,不然的话,设,这时,即,于是可得,这与矛盾,类似地可证得当R 与同在AB的延长线上时,R 与也重合,综上可得:P、Q、R三点共线。
注:此定理常用于证明三点共线的问题,且常需要多次使用再相乘;例3点P 位于的外接圆上;是从点P向BC、CA、AB 引的垂线的垂足,证明点共线。
【解析】易得:,,,将上面三个式子相乘,且因为,,,可得,根据梅涅劳斯定理可知三点共线。
例4设不等腰的内切圆在三边BC、CA、AB上的切点分别为D、E、F,则EF与BC,FD 与CA,DE与AB的交点X、Y、Z在同一条直线上。
【解析】被直线XFE所截,由定理1可得:,又因为,代入上式可得,同理可得,,将上面的式子相乘可得:,又因为X、Y、Z丢不在的边上,由定理2可得X、Y、Z三点共线。
平面几何定理及其证明一、梅涅劳斯定理1.梅涅劳斯定理及其证明G定理:一条直线与ABC的三边AB、BC、CA所在直线分别交于点D、E、F,且D、E、F均不是ABC的顶点,则有.证明:如图,过点C作AB的平行线,交EF于点G.因为CG // AB,所以————(1)因为CG // AB,所以————(2)由(1)÷(2)可得,即得.2.梅涅劳斯定理的逆定理及其证明定理:在ABC的边AB、BC上各有一点D、E,在边AC的延长线上有一点F,若,那么,D、E、F三点共线.证明:设直线EF交AB于点D/,则据梅涅劳斯定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.二、塞瓦定理3.塞瓦定理及其证明定理:在ABC内一点P,该点与ABC的三个顶点相连所在的三条直线分别交ABC三边AB、BC、CA于点D、E、F,且D、E、F三点均不是ABC的顶点,则有.证明:运用面积比可得.根据等比定理有,所以.同理可得,.三式相乘得.4.塞瓦定理的逆定理及其证明定理:在ABC三边AB、BC、CA上各有一点D、E、F,且D、E、F均不是ABC的顶点,若,那么直线CD、AE、BF三线共点.证明:设直线AE与直线BF交于点P,直线CP交AB于点D/,则据塞瓦定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.三、西姆松定理5.西姆松定理及其证明定理:从ABC外接圆上任意一点P向BC、CA、AB或其延长线引垂线,垂足分别为D、E、F,则D、E、F三点共线.证明:如图示,连接PC,连接 EF 交BC于点D/,连接PD/.因为PE AE,PF AF,所以A、F、P、E四点共圆,可得FAE =FEP.因为A、B、P、C四点共圆,所以BAC =BCP,即FAE =BCP.所以,FEP =BCP,即D/EP =D/CP,可得C、D/、P、E四点共圆.所以,CD/P +CEP = 1800。
梅涅劳斯定理在空间的推广及应用梅涅劳斯定理是一个表明圆弧是平行、线段是放大而长度保持不变的定理,它最早由古希腊几何学家梅涅劳斯提出。
它在空间几何学中有着重要的研究价值。
一、梅涅劳斯定理的推广
梅涅劳斯定理在古希腊几何学中最初是在二维几何中被提出的,它的定义是:任意给定的一条弧,它的延长线与球面上的对称中心之间的距离及其长度仍为相同。
现在,性质相同的定理也可以推广到三维几何中去:每一条射线,它的末梢和平面上对称中心之间的距离及其长度仍为相同。
二、梅涅劳斯定理的应用
1、梅涅劳斯定理可以用来研究球面的一阶微分几何,从而推导出著名的测地罗经线定理。
2、可以用梅涅劳斯定理来解决范德蒙投影问题。
3、梅涅劳斯定理也可以用来构造流形的不变的形状衡量参数,例如幂律分类参数。
总之,梅涅劳斯定理广泛地应用于数学几何学等多个领域中,尤其在计算几何中具有重要意义。
梅涅劳斯定理及应用定理:设Z Y X ,,分别是ABC ∆的边AB CA BC ,,或其延长线的点,则Z Y X ,,三点共线的充要条件是:1=••ZB AZ YA CY XC BX例1:在OBC ∆中,A 为BC 的中点,D 为OB 上的点,且21=OD BD ,E CD OA 相交于点与,则OA OE _____=例2:如图,过ABC ∆的三个顶点C B A ,,作它的外接圆的切线,分别和BA CA BC ,,的延长线交于R Q P ,,;求证:R Q P ,,三点共线例3:(1985年第三届美国数学邀请赛)如图,G 是ABC ∆内一点,直线CG BG AG ,,将ABC ∆分为6个小三角形,已知BDG BFG AFG ∆∆∆,,的面积分别为40,30,35,求ABC ∆的面积例4: (1983年全国高中数学联赛)在四边形ABCD 中,ABC BCD ABD ∆∆∆,,的面积之比是1:4:3,点M,N 分别在AC,CD 上,满足AM:AC=CN:CD ,并且B,M,N 三点共线,求证M 与N 分别是AC 和CD 的中点练习:1(2009年中国科技大学)已知ABC ∆的面积为1,;F E D ,,分别在边AB CA BC ,,上,FB AF EA CE DC BD 2,2,2===;CF BE AD ,,两两交于R Q P ,,,求PQR ∆的面积2 四边形ABCD (不是正方形)的内切圆分别切DA CD BC AB ,,,于H G F E ,,,,求证:GF DB HE ,,三线共点3 (1982年第23届IMO 试题)已知CE AC ,是正六边形ABCDEF 的两条对角线,点N M ,分别在线段CE AC ,上,且使k CE CN AC AM ==,如果N M B ,,三点共线,试求k 的值4(2016年湖南省高中数学夏令营):ABC ∆的内切圆分别与BC 、CA 、 AB 相切于点D 、E 、F,直线AD 与EF 相交于点H ,若直线BC EF 与相交于点G ,求证:GEFG HE FH =。
梅涅劳斯定理及其应用(姓名)摘要:使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还是可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。
本文简单介绍了梅捏劳斯定理及其应用。
关键词:共线、共点、应用一、 梅涅劳斯定理1.定理 设,,X Y Z 分别是ABC ∆的,,BC CA AB 边或其延长线上的点,且有奇数个点在边的延长线上,则,,X Y Z 三点共线的充要条件是1BX CY AZXC YA ZB⋅⋅= 2.定理的证明证明1:不妨设,,X Y Z 中的一点Y 在边AC 的延长线上(如图所示)。
若,,X Y Z 三点共线,过C 引//CD YZ 交AB 于D ,则,BX BZXC ZD = ,CY DZYA ZA= 故 1BX CY AZ BZ DZ AZ XC YA ZB ZD ZA ZB⋅⋅=⋅⋅=.反之,若1BX CY AZXC YA ZB⋅⋅=成立,设直线ZX 与AC 的延长线交于'Y ,即X ,'Y ,Z 三点共线,则由上面的证明有''1BX CY AZ XC Y A ZB ⋅⋅=与1BX CY AZXC YA ZB ⋅⋅=比较, 可得''CY CYY A YA=,即Y 与'Y 重合,故,,X Y Z 三点共线。
若,,X Y Z 三点均在边的延长线上,上面的证明仍然适用。
注:“,,X Y Z 三点中有奇数个点在边的延长线上”这一条件十分必要,否则梅捏劳斯定理不成立证明2:(正弦定理)如图,令α=∠AEF ,β=∠AFE ,γ=∠BDE ,在AEF ∆中,由正弦定理知:βαsin sin AEAF =, 同理ββγsin )180sin(sin BD BD BF =-︒=,γαsin sin CECD = ∴βαsin sin =AE AF ,γβsin sin =BF BD ,αγsin sin =CD CE , ∴1=⋅⋅CD CE BF BD AE AF ,即1=⋅⋅EACEDC BD FB AF .3、梅涅劳斯定理的逆定理梅涅劳斯定理的逆定理也成立,即如果有三点F 、D 、E 分别在ABC ∆的三边AB 、BC 、CA 或其延长线上,且满足1=⋅⋅EACEDC BD FB AF ,那么F 、D 、E 三点共线。
第一章涅劳斯定理及应用【基础知识】梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若A ',B ',C '三点共线,则1BA CB AC A B B A C B'''⋅⋅='''.① C ′B′A'A′B′C ′ADC B DCB 图1-1A证明 如图11-,过A 作直线AD C A ''∥交BC 的延长线于D ,则 CB CA B A A D ''='',AC DA C B A B''='',故 1BA CB AC BA CA DA A C B A C B A C A D A B''''''⋅⋅=⋅⋅=''''''. 注 此定理的证明还有如下正弦定理证法及面积证法.正弦定理证法 设BC A α''=∠,CB A β''=∠,B A B γ''=∠,在BA C ''△中,有sin sin BA C B αγ'=',同理,sin sin CB CA γβ'=',sin sin AC AB βα'=',此三式相乘即证. 面积证法 由A C B A C C S BA A C S '''''='△△,CB C CA B CB C CA B C CA B AC A AB B AC A AB AC A S S S S S CB B A S S S S S ''''''''''''''''''''+===='+△△△△△△△△△△,AC A C BA S AC C B S '''''='△△,此三式相乘即证.梅涅劳斯定理的逆定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若 1BA CB AC A C B A C B'''⋅⋅=''',② 则A ',B ',C '三点共线.证明 设直线A B ''交AB 于1C ,则由梅涅劳斯定理,得到111AC BA CB A C B A C A''⋅⋅=''.由题设,有1BA CB AC A C B A C B'''⋅⋅=''',即有11AC AC C B C B '='. 又由合比定理,知1AC AC AB AB'=,故有1AC AC '=,从而1C 与C '重合,即A ',B ',C '三点共线. 有时,也把上述两个定理合写为:设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '三点共线的充要条件是 1BA CB AC A C B A C B'''⋅⋅='''. 上述①与②式是针对ABC △而言的,如图11-(整个图中有4个三角形),对于C BA ''△、B CA ''△、AC B ''△也有下述形式的充要条件:1C A BC A B AB CA B C '''⋅⋅=''';1B A CB A C AC BA C B '''⋅⋅=''';1AB C A B CBC A B CA'''⋅⋅='''.③ 第一角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '共线的充分必要条件是 sin sin sin 1sin sin sin BAA ACC CBB A AC C CB B BA'''⋅⋅='''∠∠∠∠∠∠.④ CA′B'C '图1-2A证明 如图12-,可得 1sin 21sin 2ABA AA CAB AA BAA S BA A C S AA AC A AC ''''⋅⋅'=='''⋅⋅△△∠∠ sin sin AB BAA AC A AC'⋅='⋅∠∠.同理,sin sin CB BC CBB B A AB B BA ''⋅=''⋅∠∠,sin sin AC AC ACC C B BC C CB ''⋅=''⋅∠∠. 以上三式相乘,运用梅涅劳斯定理及其逆定理,知结论成立.第二角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线上的点,点O 不在ABC △三边所在直线上,则A ',B ',C '三点共线的充要条件是 sin sin sin 1sin sin sin BOA COB AOC A OC B OA C OB'''⋅⋅='''∠∠∠∠∠∠.⑤ A′OCBB'C 'A 图1-3证明 如图13-,由BOA A OC S BA S A C'''='△△,有 sin sin BOA OC BA A OC OB A C''=⋅''∠∠. 同理,sin sin COB OA CB B OA OC B A ''=⋅''∠∠,sin sin AOC OB AC C OB OA C B''=⋅''∠∠.于是sin sin sin sin sin sin BOA COB AOC BA CB AC A OC B OA C OB A C B A C B''''''⋅⋅=⋅⋅''''''∠∠∠∠∠∠. 故由梅涅劳斯定理知A ',B ',C '共线1BA CB AC A C B A C B'''⇔⋅⋅='''.从而定理获证.注 (1)对于④、⑤式也有类似③式(整个图中有4个三角形)的结论.(2)于在上述各定理中,若采用有向线段或有向角,则①、②、③、④、⑤式中的右端均为1-,③、④、⑤式中的角也可以按①或②式中的对应线段记忆.特别要注意的是三边所在直线上的点为一点或者三点在边的延长线上. 【典型例题与基本方法】1.恰当地选择三角形及其截线(或作出截线),是应用梅涅劳斯定理的关键例1 如图14-,在四边形ABCD 中,ABD △,BCD △,△ABC 的面积比是3∶4∶1,点M ,N 分别在AC ,CD 上,满足AM ∶AC CN =∶CD ,并且B ,M ,N 共线.求证:M 与N 分别是AC 和CD 的中点. (1983年全国高中联赛题) EDCBM NA图1-4证明 设AM CNr AC CD==(01r <<),AC 交BD 于E . Q 341ABD BCD ABC S S S =△△△∶∶∶∶, ∴17BE BD =,37AE AC =. 37371771AM AE r EM AM AE r AC AC AM MC AC AM r r AC----====----. 又因B ,M ,N 三点共线,可视BMN 为△CDE 的截线,故由梅涅劳斯定理,得1CN DB EM ND BE MC ⋅⋅=,即77311177r r r r-⋅⋅=--. 化简整理,得 2610r r --=,解得12r =,13r =-(舍去).故M 与N 分别是AC 和CD 的中点. 例2 如图1-5,在四边形ABCD 中,对角线AC 平分BAD ∠,在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:GAC EAC =∠∠.(1999年全国高中联赛题)G 'B'GFEDCBA图1-5证明 记BAC CAD θ==∠∠,GAC α=∠,EAC β=∠,直线GFD 与△BCE 相截,由梅涅劳斯定理,有 1ABG AEFAED ABFS S BG CD EF GC DE FB S S =⋅⋅=⋅△△△△ sin()sin sin sin sin()sin AB AC AE AC AE AB θαθβαθβθ⋅-⋅⋅=⋅⋅⋅⋅-⋅ sin()sin sin sin()θαβαθβ-⋅=⋅-.故 sin()sin sin()sin θαβθβα-⋅=-⋅.即 sin cos sin cos sin sin sin cos sin cos sin sin θαβθαβθβαθβα⋅⋅-⋅⋅=⋅⋅-⋅⋅, 亦即 sin cos sin sin sin cos sin()0πk θαβθαβαβαβ⋅⋅=⋅⋅⇔-=⇔-=,且k 只可能为0,故GAC ∠EAC =∠.例3 设E 、F 分别为四边形ABCD 的边BC 、CD 上的点,BF 与DE 交于点P .若BAE FAD =∠∠,则BAP CAD =∠∠.证明 如图1-6,只需证得当AF 关于BAD ∠的等角线交BE 于P 时,B 、P 、F 共线即可.FED CBAP图1-6事实上,B 、P 、F 分别为△CDE 三边所在直线上的三点,且A 不在其三边所在直线上. 又FAD EAB =∠∠,DAP BAC =∠∠,PAE CAF =∠∠, 由第二角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin EAB CAF DAPBAC FAD PAE⋅⋅=∠∠∠∠∠∠.故B 、P 、F 三点共线.注 当AC 平分BAD ∠时,即为1999年全国高中联赛题.2.梅涅劳斯定理的逆用(逆定理的应用)与迭用,是灵活应用梅氏定理的一种方法例2另证 如图1-5,设B ,G 关于AC 的对称点分别为B ',G ',易知A ,D ,B '三点共线,连FB ',FG ',只须证明A ,E ,G '三点共线.设EFB α'=∠,DFE BFG B FG β''===∠∠∠,AFD GFC G FC γ'===∠∠∠,则*sin sin sin()1sin()sin sin FDA FG B FEC FB A FG C FED S S S DA B G CE FD FB FC AB G C ED S S S FB FC FD γββγαβγαγβ'''''''⋅⋅⋅+-⋅⋅=⋅⋅=⋅⋅='''⋅+-⋅⋅△△△△△△. 对△CB D ',应用梅涅劳斯定理的逆定理,知A ,E ,G '三点共线.故GAC EAC =∠∠. 注 在图1-5中,*式也可为sin(180)βγ︒--,若B '在AD 的延长上,则*式为sin()βγα++. 例4 如图1-7,1O e 与2O e 和△ABC 的三边所在的3条直线都相切,E ,F ,G ,H 为切点,直线EG 与FH 交于点P .求证:PA BC ⊥.(1996年全国高中联赛题)P (P')图1-7证法1 过A 作AD BC ⊥于D ,延长DA 交直线HF 于点P '.对△ABD 及截线FHP '应用梅涅劳斯定理,有1AH BF DP HB FD P A'⋅⋅='.由BF BH =,有1AH DP FD P A '⋅='.显然1O ,A ,2O 三点共线,连1O E ,1O G ,2O F ,2O H ,则由12O E AD O F ∥∥,有△1AGO ∽△2AHO ,从而12AO DE AG DF AO AH ==,即AH AGFD ED=. 又CE CG =,则1AH DP DP AG DP AG CEFD P A P A ED P A GC ED'''=⋅=⋅=⋅⋅'''. 对△ADC ,应用梅涅劳斯定理的逆定理,知P ',G ,E 三点共线,即P '为直线EG 与FH 的交点.故点P '与点P 重合,从而PA BC ⊥.证法2 延长PA 交BC 于D ,直线PHF 与△ABD 的三边延长线都相交,直线PGE 与△ADC 的三边延长线都相交,分别应用(迭用)梅涅劳斯定理,有 1AH BF DP HB FD PA ⋅⋅=,1DP AG CEPA GC ED ⋅⋅=. 上述两式相除,则有AH BF AG CEHB FD GC ED⋅=⋅. 而HB BF =,CE GC =,于是AH AG FD ED =,即AG DEAH DF=. 连1O G ,OE ,1O A ,2O A ,2O H ,2O F ,而1O ,A ,2O 共线,则OG GC ⊥,2O H BH ⊥,且△1O AG ∽△2O AH ,从而12O A AG DEO A AH DF==,于是1AD O E ∥.故AD EF ⊥,即PA BC ⊥.【解题思维策略分析】梅涅劳斯定理是三角形几何学中的一颗明珠,它蕴含着深刻的数学美,因而它在求解某些平面几何问题,特别是某些平面几何竞赛题中有着重要的应用. 1.寻求线段倍分的一座桥梁例5 已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线交AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P .证明:△MPQ ∽△ABC .(1991年第3届亚太地区竞赛题)证明 如图1-8,延长BG 交AC 于N ,则N 为AC 的中点.由XY BC ∥,知2AX AG XB GM ==,而12NC CA =.YXGMN PQCB A图1-8对△ABN 及截线XQC ,应用梅涅劳斯定理,有1212AX BQ NC BQ XB QN CA QN ⋅⋅=⋅⋅=,故BQ QN =. 从而MQ AC ∥,且1124MQ CN AC ==.同理,MP AB ∥,且14MP AB =. 由此可知,PMQ ∠与BAC ∠的两边分别平行且方向相反,从而PMQ BAC =∠∠,且MP MQAB AC=,故MPQ ABC △∽△.例 6 △ABC 是一个等腰三角形,AB AC =,M 是BC 的中点;O 是AM 的延长线上的一点,使得OB AB ⊥;Q 是线段BC 上不同于B 和C 的任意一点,E 在直线AB 上,F 在直线AC 上,使得E ,Q ,F 是不同的和共线的,求证:(Ⅰ)若OQ EF ⊥,则QE QF =; (Ⅱ)若QE QF =,则OQ EF ⊥. (1994年第35届IMO 试题)证明 (1)如图1-9,连OE ,OF ,DC .由OQ EF ⊥,易证O ,E ,B ,Q 四点共圆,O ,C ,F ,Q 四点共圆.则 OEQ OBQ OCQ OFQ ===∠∠∠∠,因此OE OF =.故QE QF =.QCBAEFOM 图1-9(Ⅱ)由AB AC =,EQ QF =,对△AEF 及截线BQC 运用梅涅劳斯定理,有1AB EQ EC FCBE QF CA BE=⋅⋅=,即BE CF =.于是可证Rt Rt OBE OCF △≌△,得OE OF =,故OQ EF ⊥.例7 在凸四边形ABCD 的边AB 和BC 上取点E 和F ,使线段DE 和DF 把对角线AC 三等分,已知14ADE CDF ABCD S S S ==△△,求证:ABCD 是平行四边形.(1990年第16届全俄竞赛题) 证明 如图1-10,设DE ,DF 分别交AC 于P ,Q ,两对角线交于M .要证ABCD 是平行四边形,若证得AM MC =(或PM MQ =),且BM MD =即可.QFE DCB AP M 图1-10由ADE CDF S S =△△,ADP CDQ S S =△△(等底等高),知AEP CFQ S S =△△,而APCQ ,故有EF AC ∥,从而有BE BFEA FC=. 对△BAM 及截线EPD ,△BCM 及截线FQD ,分别应用梅涅劳斯定理,有 1BE AP MDEA PM DB ⋅⋅=, ① 1BF CQ MDFC QM DB ⋅⋅=.②由①,②两式相除得AP CQPM QM=. 而AP CQ =,故PM MQ =,即有AM MC =.此时,又有12ABD CBD ABCD S S S ==△△.又由14ADE ABCD S S =△,知BE EA =,于是①式可写为12111BE AP MD MDEA PM DB DB⋅⋅=⋅⋅=,即有2DB MD =,亦即BM MD =. 故ABCD 为平行四边形.2.导出线段比例式的重要途径例8 在△ABC 中,1AA 为BC 边上的中线,2AA 为BAC ∠的平分线,且交BC 于2A ,K 为1AA 上的点,使2KA AC ∥.证明2AA KC ⊥.(1997年第58届莫斯科竞赛题)证明 如图1-11,延长CK 交AB 于D ,只须证AD AC =.KA 2A 1DCBA图1-11由2AA 平分BAC ∠,有22BA AB AC A C=. ①由2KA AC ∥,有1122A K A A KA A C=. 注意到12BC AC =,对△1ABA 及截线DKC 运用梅涅劳斯定理,得 1121212A K A A AD BC AD DB CA KA DB A C =⋅⋅=⋅⋅.故1222=A A BD DA A C,由合比定理,有 1221211212222A A A C A A AC A A BA BD DA DA A C A C A C ++++===,即为 22BA AB AD A C=. ②由①,②式有AB ABAC AD=,故AC AD =. 例9 给定锐角△ABC ,在BC 边上取点1A ,2A (2A 位于1A 与C 之间),在CA 边上取点1B ,2B (2B 位于1B 与A 之间),在AB 边上取点1C ,2C (2C 位于1C 与B 之间),使得122112AA A AA A BB B ===∠∠∠ 211221BB B CC C CC C ==∠∠∠,直线1AA ,1BB 与1CC 可构成一个三角形,直线2AA ,2BB 与2CC 可构成另一个三角形.证明:这两个三角形的六个顶点共圆. (1995年第36届1MO 预选题) 证明 如图1-12,设题中所述两个三角形分别为△UVW 与△XYZ .C 1C 2B 2B 12A 1UWVXYZ A图1-12由已知条件,有△1AC C ∽△2AB B ,△2BA A ∽△1BC C ,21CB B CA A △∽△,得 12AC ACAB AB=, 21BA AB BC BC =,21CB BCCA AC=,此三式相乘得1222111AC BA CB AB BC CA ⋅⋅=. ①对△1AA B 及截线1CUC ,△2AA C 及截线2BXB ,分别应用梅涅劳斯定理,得 11111AC BC AU UA CB C A ⋅⋅=, ② 22221A X AB CB XA B C BA ⋅⋅=, ③ ①,②,③三式相乘化简,得12AU AXUA XA =.故UX BC ∥. 同理,WX CA ∥.故1212AUX AA A BB B BWX ===∠∠∠∠.从而点X 在△UVW 的外接圆上.同理,可证得Y ,Z 也在△UVW 的外接圆上.证毕.例10 如图1-13,以△ABC 的底边BC 为直径作半圆,分别与边AB ,AC 交于点D 和E ,分别过点D ,E 作BC 的垂线,垂足依次为F ,G ,线段DG 和EF 交于点M .求证:AM BC ⊥.(IMO -37中国国家队选拔赛题)H MG FEDCA图1-13证法1 设直线AM 与BC 交于H ,连BE ,CD ,则知90BEC BDC ==︒∠∠,直线FME 与△AHC 相截,直线GMD 与△ABH 相截,迭用梅涅劳斯定理,有1AM HF CE MH FC EA ⋅⋅=,1AM HG BDMH GB DA⋅⋅=. 两式相除,得 FH CF AE BDHG CE BG AD⋅⋅=⋅⋅.在Rt △DBC 与Rt △EBC 中,有2CD BC FC =⋅,2BE BC BG =⋅,即22CF CD BG BE =.将其代入①式,得 22FH CD AE BDHG BE CE AD⋅⋅=⋅⋅. 又由△ABE ∽△ACD ,有CD ADBE AE=. 将其代入②式,得 DBC EBC S FH CD BD DF DMHG BE CE S EG MG ⋅====⋅△△,从而,MH DF ∥. 而DF BE ⊥,则MH BC ⊥,故AM BC ⊥.证法 2 作高AH ,连BE ,CD ,则90BDC BEC =⋅=∠∠,于是,sin DF BD B =⋅=∠ cos sin BC B B ⋅⋅∠∠,cos sin EG BC C C =⋅⋅∠∠. ∴ cos sin cos cos sin cos GM EG C C AB CMD FD B B AC B ⋅===⋅⋅∠∠∠∠∠∠. 又cos BH AB B =⋅∠,cos HG AE C =⋅∠, ∴cos cos cos cos BH AB B AC B HG AE C AD C ⋅⋅==⋅⋅∠∠∠∠,即BH GM AB HG MD AD ⋅=,故1BH GM DAHG MD AB⋅==.对△BGD 应用梅涅劳斯定理的逆定理,知H ,M ,A 三点共线.由AH BC ⊥,知 AM BC ⊥.例11 如图1-14,设点I ,H 分别为锐角△ABC 的内心和垂心,点1B ,1C 分别为边AC ,AB 的中点.已知射线1B I 交边AB 于点2B (2B B ≠),射线1C I 交AC 的延长线于点2C ,22B C 与BC 相交于K ,1A 为△BHC 的外心.试证:A ,I ,1A 三点共线的充分必要条件是△2BKB 和△2CKC 的面积相等.(CMO -2003试题)EB 2A 1B 1C 1C 2KFHOI DCBA图1-14分析 首先证A ,I ,1A 三点共线60BAC ⇔=︒∠.设O 为△ABC 的外心,连BO ,CO ,则2BOC BAC =∠∠.又180BHC BAC =︒-∠∠,因此,60BAC =︒∠ B ⇔,H ,O ,C 四点共圆 1A ⇔在△ABC 的外接圆O e 上AI ⇔与1AA 重合A ⇔,I ,1A 三点共线.其次,再证2260BKB CKC S S BAC =⇔=︒△△∠.并在三角函数式中,用A 、B 、C 分别表示三内角. 证法 1 设△ABC 的外接圆半径为R ,CI 的延长线交AB 于D ,对△ACD 及截线12C IC ,应用梅涅劳斯定理,有12121AC CC DI C D IC C A⋅⋅=. ①注意到 112AC AB ABC D AD AC AC BC ⋅=-=-+ 22sin sin ()sin (sin sin )222()sin sin cos2C B AR AB AC BC C B A RA B AC BC B A-⋅⋅--⋅===-++,则 11sinsin22cos cos 22C B AC D C A BAC -⋅=-⋅. 而sin cos sin 22sin sin sin 22C A B B IC AC ADC C C DI AD ACD ⎛⎫-+ ⎪⎝⎭====∠∠,由①式,有2121sin2cos2B A CC CD IC C C A DI AC -=⋅=.从而 22222sincos 22cos2A BAC CC AC C AC C A⋅-==. ②又对△ACD 及截线12B IB ,应用梅涅劳斯定理,有21211AB CB DI B D IC B A⋅⋅=. 注意到11CB B A =,有22sin2cos 2C B D DI A B AB IC ==-,2222cos sin 2sin sin2222cos cos22A B C A BAB B D AD A B A B AB AB --⋅-===--,即2coscos cossin 222sin sin 2sin sin 2sin sin 2sin sin 222222A B A B A BAC B AB AD AB AB A B A B A B AC BC B A ---=⋅=⋅⋅=⋅⋅=++⋅⋅⋅cos22cos sin22B ABC A⋅⋅.从而22sincos 22cos2A C ABB AB ⋅=. ③由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意②,③24sin 12A⇔=,且A 为锐角60BAC ⇔=︒∠.证法2 如图1-14,设直线AI 交BC 于F ,直线12B B 交CB 的延长线于E .对ACF △及截线1B IE ,应用梅涅劳斯定理,有111AB CF FIB C EF IA⋅⋅=. ④又由11AB B C =及角平分线性质,即有FI CF BF BCIA CA BA AB AC===+. 令BC a =,AC b =,AB c =,则FI aIA b c=+. 由④式,有CE b c EF a +=,即EF EF aCF CE EF b c a==-+-. 而abCF b c =+,则2()()a b EF b c a b c =+-+.又ac BF b c =+,()a a c BE EF BFbc a -=-=+-(由题设知a c >). 从而 ()()EF abBE b c a c =+-. 对ABF △及截线2IB E ,应用梅涅劳斯定理,有221BB AI FE IF EB B A⋅⋅=. 将⑤式代入上式,得22BB IF BE a c B A AI EF b -=⋅=,∴ 2222AB B B AB a b cAB AB b++-==. ⑥同理2AC a c b AC c+-=. 由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意⑥,⑦1a b c a c bb c+-+-⇔⋅=⇔22260a b c bc BAC =+-⇔=︒∠.注 例11还有其他证法,可参见笔者另文《关于2003年中国数学奥林匹克第一题》(《中等数学》2003年第6期).例12 如图1-15,凸四边形ABCD 的一组对边BA 与CD 的延长线交于M ,且AD BC ∥,过M 作截线交另一组对边所在直线于H ,L ,交对角线所在直线于H ',L '.求工业化:1111MH ML MH ML +=+''. H 'L'LDCAMOH图1-15证法1 如图1-15,对ML D '△及直线BLC 由梅涅劳斯定理得 1ML L B DCLL BD CM'⋅⋅='. 对DL H '△及直线BAM 由梅涅劳斯定理得 1L M HA DBMH AD BL '⋅⋅='. 对MHD △及直线CH A '由梅涅劳斯定理得1HH MC DAH M CD AH'⋅⋅='. 由①⨯②⨯③得1ML L M HH LL MH H M''⋅⋅='', 所以HH LL MH H M ML L M ''=''⋅⋅, 所以H M MH ML ML MH H M ML L M ''--=''⋅⋅, 故1111MH ML MH HL+=+''. 证法2 设AD 与BC 的延长线相交于O .△BML 和△CML 均被直线AO 所截,迭用梅涅劳斯定理,有 BA HL OBAM MH LO=⋅,① CD HL OCDM MH LO=⋅,② 由①LC ⋅+②BL ⋅,得 BA CD HL OB LC OC BLLC BL AM DM MH LO⋅+⋅⋅+⋅=⋅.③ 注意到 OB LC OC BL BC LO ⋅+⋅=⋅(直线上的托勒密定理),则③式变为BA CDLC BL AM DM⋅+⋅= HLDC MH⋅.④ 又由BD 截△LCM 和AC 截△LBM ,迭用梅涅劳斯定理,有LL DCBC BL L M MD'⋅=⋅',LH ABBC LC H M AM'⋅=⋅'. 将此结果代入④式整理,即得欲证结论.注 当AD BC ∥,④式显然成立,故仍有结论成立.此题是二次曲线蝴蝶定理的推论. 3.论证点共直线的重要方法例13 如图1-16,△ABC 的内切圆分别切三边BC ,CA ,AB 于点D ,E ,F ,点X 是△ABC 的一个内点,△XBC 的内切圆也在点D 处与BC 边相切,并与CX ,XB 分别相切于点Y ,Z .证明:EFZY 是圆内接四边形. (1995年第36届IMO 预选题) PXYZ FE D CB A图1-16证明 由切线长定理,知CE CD CY ==,Z BF BD B ==,AF AE =,XZ XY =.设BC 的延长线与FE 的延长线交于P ,对△ABC 及截线FEP ,应用梅涅劳斯定理,有1AF BP CE AF BP CEFB PC EA EA PC FB=⋅⋅=⋅⋅XZ BP CY XZ BP CYYX PC ZB ZB PC YX=⋅⋅=⋅⋅. 对△XBC 应用梅涅劳斯定理的逆定理,知Z ,Y ,P 三点共线,故由切割线定理有2PE PF PD ⋅=,2PY PZ PD ⋅=.以而PE PF PY PZ ⋅=⋅,即EFZY 是圆内接四边形.例14 如图1-17,△ABC 中,A ∠内的旁切圆切A ∠的两边于1A 和2A ,直线12A A 与BC 交于3A ;类似地定义1B ,2B ,3B 和1C ,2C ,3C .求证:3A ,3B ,3C 三点共线.A 3图1-17证明 由切线长定理,知12AA AA =,12BB BB =,12CC CC =.对△ABC 与直线123C C C ,123A A A ,123B B B 分别应用梅涅劳斯定理,有332123213111AC AC BC CC BC C B C C C A C B C A =⋅⋅=⋅⋅,233213213111BA BA CA AA CA A C A A A B A C A B=⋅⋅=⋅⋅,332123213111CB CB AB BB AB B A B B B C B A B C=⋅⋅=⋅=. 上述三式相乘,有333111111333222222AC BA CB AC A B B C AC A B B CC B A C B A BC CA AB CA AB BC ⋅⋅=⋅⋅=⋅⋅. 设3O e 切AB 于K ,2O e 切AC 于L ,则由12BB BB =,可得21221()2BC BK B C KB ==-.同理11211()2B C CL B C LC ==-.又由两内公切线长相等,即21KB LC =,故21BC B C =.同理,21CA AC =,21AB A B =.从而3333331AC BA CB C B A C B A⋅⋅=,故对△ABC 用梅涅劳斯的逆定理,知3A ,3B ,3C 三点共直线. 例15 如图1-18,设△ABC 的三边BC ,CA ,AB 所在的直线上的点D ,E ,F 共线,并且直线AD ,BE ,CF 关于A ∠,B ∠,C ∠平分线的对称直线AD ',BE ',CF '分别与BC ,CA ,AB 所在直线交于D ',E ',F ',则D ',E ',F '也共线.D 'F'E'F EDC BA图1-18证明 对ABC ∠及截线FED 应用第一角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin BAD CBE ACFDAC EBA FCB ⋅⋅=∠∠∠∠∠∠.由题设知,CAD BAD '=∠∠,D AB DAC '=∠∠,BCF ACF '=∠∠,F CA FCB '=∠∠,ABE CBE '=∠∠,E BC EBA '=∠∠,从而有sin sin sin 1sin sin sin CAD ABE BCF D AB E BC F CA '''⋅⋅='''∠∠∠∠∠∠,即sin sin sin 1sin sin sin BAD CBE ACF D AC E BA F CB'''⋅⋅='''∠∠∠∠∠∠. 故由第一角元形式的梅涅劳斯定理,知D ',E ',F '共线.例16 在筝形ABCD 中,AB AD =,BC CD =.过BD 上的一点P 作一条直线分别交AD 、BC 于E 、F ,再过点P 作一条直线分别交AB 、CD 于G 、H .设GF 与EH 分别与BD 交于I 、J ,求证:PI PJPB PD=. 证明 如图1-19,过B 作AD 的平行线交直线EF 于E ',再过B 作CD 的平行线交直线GH 于H ',则E BP EDP PBG '==∠∠∠,HBPHDP PBF '==∠∠∠. H 'E'PDCBAHF EG 图1-19进而H BG H BP GBP PBF PBE E BF ''''=-=-=∠∠∠∠∠∠.所以 sin sin sin sin sin sin 1sin sin sin sin sin sin PBH GBI FBE FBP GBP FBE H BG IBF E BP E BF PBF PBG'''⋅⋅=⋅⋅='''∠∠∠∠∠∠∠∠∠∠∠∠.又H '、I 、E '分别为△PGF 三边所在直线上的点,且点B 不在△PGF 三边所在的直线上.由第二角元形式的梅涅劳斯定理的逆定理知H '、I 、E '共线.于是,由PBE PDE '△∽△,PH B PHD '△∽△.有E H EH ''∥.因此,PI PE PB PJ PE PD '==.故PI PJPB PD=. 注 当PB PD =,P 为BD 中点时,即为1989年12月冬令营选拔赛试题.例17 如图1-20,四边形ABCD 内接于圆,其边AB ,DC 的延长线交于点P ,AD 和BC 的延长线交于点Q ,过Q 作该圆的两条切线,切点分别为E ,F .求证:P ,E ,F 三点共线.(1997年CMO 试题)Q图1-20证明 设圆心为O ,连QO 交EF 于L ,连LD ,LA ,OD ,OA ,则由切割线定理和射影定理,有 2QD QA QE QL QO ⋅==⋅,从而D ,L ,O ,A 四点共圆,即有QLD DAO ODA OLA ===∠∠∠∠,亦即OL 为△LAD 的内角ALD ∠的外角平分线. 又EF OQ ⊥,则EL 平分ALD ∠. 设EF 分别交AD ,BC 于M ,N ,于是DM DL DQMA AL AQ==. 同理,CN CQBN BQ=. 于是,DM AM AM DM AD DQ AQ AQ DQ DQ AQ +===++,CN BN BCCQ BQ BQ CQ==+, 所以,211MQ DQ DQ DA AQ DM DM AD AD +=+=+=,2QN BQCN BC=. 直线PBA 与△QCD 的三边延长线相交,由梅涅劳斯定理,有1CP DA QB CP DM QNPD AQ BC PD MQ CN=⋅⋅=⋅⋅. 对△QCD 应用梅涅劳斯定理的逆定理,知P ,M ,N 三点共线.所以P ,E ,F 三点共线.注 此例的其他证法,可参见第二章例9,第九章例15等.例18 已知△ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,线段BE 、CF 分别与该内切圆交于点P 、Q ,若直线FE 与BC 交于圆外一点R .证明P 、Q 、R 三点共线.(2011年香港奥林匹克题)证明 如图1-21,由切线长定理有AE AF =.对△ABC 及截线EFR 应用梅涅劳斯定理,有1AF BR CEFB RC EA⋅⋅=,RFEDCBAPQ S 图1-21即有BR EA FB FBRC CE AF CE=⋅=. 设BE 与CF 交于点S ,由△EFC ∽△QEC ,△FEB PFB ∽△,△SEQ ∽△SFP ,有CQ CEEQ EF=,FP FE PB FB=,SP FP SQ EQ =. 又对△SBC 及所在边上的点R 、P 、Q ,有SP BR CQ SP CQ BR FP CQ FB FP CQ FBPB RC QS SQ PB RC EQ PB CE PB QE CE⋅⋅=⋅⋅=⋅⋅=⋅⋅1FE CE FBFB EF CE=⋅⋅=. 于是,由梅涅劳斯定理的逆定理,知P 、Q 、R 三点共线. 4.注意与其他著名定理配合运用例19 在Rt △ABC 中,已知90A =︒∠,B C >∠∠,D 是△ABC 处接圆的圆心,直线A l 、B l 分别切O e 于点A 、B ,BC 与直线A l 、AC 与直线B l 分别交于点S 、D ,AB 与DS 交于点E ,CE 与直线Al 交于点T ,又设P 是直线A l 上的点,且使得A EP l ⊥,Q (不同于点C )是CP 与O e 的交点,R 是QT 与O e 的交点,令BR 与直线A l 交于点U . 证明:22SU SP SA TU TP TA ⋅=⋅.(2005年韩国奥林匹克题)证明 如图1-22,设BA 的延长线与O e (过C 点)的切线交于点E '.由帕斯卡定理知S 、D 、E '三点共线,从而点E '与E 重合.图1-22由切割线窄弹知 2TA TR TQ =⋅,2SA SB SC =⋅.所以,22SA SB SCTA TR TQ⋅=⋅. ①设TQ 与CB 交于点X ,对△XTS 及截线RBU ,截线QCP 分别应用梅涅劳斯定理,有1XP TU SBRT US BX⋅⋅=,=1XQ TP SC QT PS CX ⋅⋅. ② 注意相交弦定理,有XP XQ XB XC ⋅=⋅.③由①、②、③,得 22SU SP XP SB XQ SC SB SC SA TU TP RT BX QT CX TR TQ TA ⋅=⋅⋅⋅=⋅=. 例20 在梯形ABCD 中,已知BC 、AD 分别为上、下底,F 为腰CD 上一点,AF 与BD 交于点E ,G 为边AB 上一点,满足EG AD ∥,CG 与BD 交于点H ,FH 与AB 交于点I .证明:CI 、FG 、AD 三线共点. (2011年乌克兰奥林匹克题) 证明 如图1-23,设直线AB 与DC 、AF 与DG 分别交于点S 、T .SD图1-23先证S 、H 、T 三点共线.由EG AD BC ∥∥,知△ATP ETG ∽△,△GHE CHB ∽△,△ASD ∽△BSC .有,,AT AD EH GE BC BSTE EG HB CB AD AS ===. 上述三式相乘,有 1AT EH BS AD GE CBTE HB SA EG CB AD⋅⋅=⋅⋅=. 对△AES 应用梅涅劳斯定理的逆定理,知T 、H 、S 三点共线.考虑△AFI 和△DGC ,注意到直线IF 与CG ,FA 与GD 、AI 与DC 分别交于点H 、T 、S ,于是由戴沙格定理,知CI 、FG 、AD 三线共点.【模拟实战】习题A1.在△ABC 中,点D 在BC 上,13BD DC =,E ,G 分别在AB ,AD 上,23AE EB =,12AG GD =,EG 交AC 于点F ,求AFFC. 2.在ABCD Y中,E ,F 分别是AB ,BC 的中点,AF 与CE 相交于G ,AF 与DE 相交于H ,求AH ∶HG ∶GF .3.P 是△ABC 内一点,引线段APD ,BPE 和CPF ,使D 在BC 上,E 在AC 上,F 在AB 上.已知6AP =,9BP =,6PD =,3PE =,20CF =,求△ABC 的面积.(第7届AIME 题) 4.设凸四边形ABCD 的对角线AC 和交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点,求证:OPF OEP =∠∠.(1996年全国初中联赛题)5.已知D ,F 分别是△ABC 的边AB ,AC 上的点,且23AD DB CF FA ==∶∶∶,连DF 交BC 边的延长线于点E ,求EF FD ∶.6.设D 为等腰Rt △ABC (90C =︒∠)的直角边BC 的中点,E 在AB 上,且21AE EB =∶∶,求证:CE AD ⊥.7.在△ABC 中,点M 和N 顺次三等分AC ,点X 和Y 顺次三等分BC ,AY 与BM ,BN 分别交于点S ,R ,求四边形SRNM 与△ABC 的面积之比.8.E ,F ,G ,H 分别为四边形ABCD 的四条边AB ,BC ,CD ,DA 上的点,若EH ,BD ,FG 三直线共点,则EF ,AC ,HG 三直线共点或平行.9.设X ,Y ,Z 分别是△ABC 的边CB ,CA 和BA 延长线上的点,又XA ,YB 和ZC 分别是△ABC 外接圆的切线.证明:X ,Y ,Z 三点共线. (1989年新加坡竞赛题) 10.求证:三角形两角的平分线与第三角的外角平分线各与对边所在直线的交点共线.11.已知直径为AB 的圆和圆上一点X ,设A t ,B t 和X t 分别是这个圆在A ,B ,X 处的切线.设Z 是直线AX 与B t 的交点,Y 是直线BX 与A t 的交点,证明:YZ ,X t ,AB 三直线共点.(第6届加拿大竞赛题)12.P 是ABCD Y中任一点,过P 作AD 的平行线分别交AB ,CD 于E ,F ,又过P 作AB 的平行线,分别交AD ,BC 于G ,H .求证:AH ,CE ,DP 三线共点.13.在△ABC 中,1AA 为中线,2AA 为角平分线,K 为1AA 上的点,使2KA AC ∥.证明:2AA KC ⊥. (第58届莫斯科奥林匹克题) 14.直线l 交直线OX ,OY 分别于A ,B ,点C 与D 是线段AB 两侧的直线l 上两点,且CA DB =.过C 的直线CKL 交OX 于K ,交OY 于L ;过D 的直线交OX 于M ,交OY 于N .连结ML 和KN ,交直线l 分别于E ,F .求证:AE BF =.15.设四边形ABCD 外切于一圆,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的切点,若直线HE 与DB 相交于点M ,则M ,F ,G 三点共线.16.设P 为△ABC 的内点,过点P 的直线l ,m ,n 分别垂直于AP ,BP ,CP ,若l 交BC 于Q ,m 交AC 于R ,n 交AB 于S ,证明:Q ,R ,S 共线. (IMO -28预选题) 17.已知△ABC 的BC 与它的内切圆相切于点F .证明:该圆的圆心O 在BC 与AF 的两个中点M ,N 的连线上.18.已知凸四边形ABCD 内接于O e ,对角线AC ,BD 相交于点Q ,过Q 分别作直线AB ,BC ,CD ,DA 的垂线,垂足分别是E ,F ,G ,H .求证:EH ,BD ,FG 三直线共点或互相平行.19.设ABCD 为圆外切四边形,又AB ,BC ,CD ,DA 与该圆的切点为E ,F ,G ,H .求证:AC ,BD ,EG ,FH 共点.习题B1.P 是ABCD Y内一点,MN ,EF 分别过P ,MN AD ∥且分别与AB ,CD 交于点M ,N ,EF AB ∥且分别与DA ,BC 交于点E ,F .求证:ME ,FN ,BD 三线共点. 2.在△OAB 中,AOB ∠为锐角,从AB 上任一点M 作MP OA ⊥于P ,MQ OB ⊥于Q ,点H 是△OPQ 的垂心,求当点M 在线段AB 上移动时,点H 的轨迹. (IMO -7试题) 3.在正△ABC 的边BC ,CA ,AB 上有内分点D ,E ,F 将边分成3∶(3)(6)n n ->,线段AD ,BE ,CF 相交所成的△PQR (BE 交AD 于P ,交FC 于Q )是△ABC 的面积的449时,求n 的值. (1992年日本奥林匹克预选题)4.在△ABC 中,90A =︒∠,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F .若BE ∶2ED AC =∶DC ,则ADB FDC =∠∠.5.已知点E ,1D ,2D 在△ABC (AB AC >)的边BC 上,12BAD CAD =∠∠,11EF AD ∥交AB 于1F ,又与CA 的延长线交于1C ,22EF AD ∥交AB 于2F ,又与CA 的延长线交于2G .求证:212212BF BF BE CE CG CG ⋅=⋅.(《数学通报》问题1353题)6.圆外切四边形ABCD 中,AB ,BC ,CD ,DA 边上的切点分别为P ,Q ,R ,S .AD 与BC 的延长线交于点E ,AB 与DC 延长线相交于点F .求证:(Ⅰ)AC ,BD ,PR ,QS 四线共点;(Ⅱ)AC ,EF ,PQ ,RS 四线共点;(Ⅲ)BD ,EF ,PS ,QR 四线共点(假定BD EF ≠). 7.若凸四边形的对角线AC 与BD 互相垂直,且相交于E ,过E 点分别作边AB ,BC ,CD ,DA 的垂线,垂足依次为P ,Q ,R ,S ,并分别交CD ,DA ,AB ,BC 边于P ',Q ',R ',S ',再顺次连接P Q '',Q R ''.R S '',S P '',则R S P Q AC ''''∥∥;R Q P S BD ''''∥∥.(IMO -22试题的推广)8.面积为1的△ABC 的边AB ,AC 上分别有点D ,E ,线段BE ,CD 相交于点P .点D ,E 分别在AB ,AC 上移动,但满足四边形BCED 的面枳是△PBC 面积的两倍这一条件,求△PDE 面积的最大值. (1992年日本奥林匹克题) 9.ABCD 是边长为2的正方形,E 为AB 的中点,F 是BC 的中点,AF 和DE 相交于I ,BD 和AF 相交于H .求四边形BEIH 的面积.10.P 是凸四边形ABCD 所在平面上一点,APB ∠,BPC ∠,CPD ∠,DPA ∠的平分线分别交AB ,BC ,CD ,DA 于点K ,L ,M ,N .(Ⅰ)寻找一点P ,使KLMN 是平行四边形;(Ⅱ)求所有这样的P 点的轨迹. (1995年世界城市际联赛题) 11.△ABC 中,AB AC >,AD 为内角平分线,点E 在△ABC 的内部,且EC AD ⊥,ED AC ∥,求证:射线AE 平分BC 边. (《数学教学》问题536题) 12.设△123A A A 为非等腰三角形,内心为I ,i C (1i =,2,3)为过I 与1i i A A +和2i i A A +相切的小圆(增加的下标作模3同余),i B (1i =,2,3)为圆1i C +和2i C +的另一交点,证明:△11A B I ,△22A B I ,△33A B I 的外心共线.(IMO -38预选题)。
第十讲:梅涅劳斯定理和塞瓦定理一、梅涅劳斯定理定理1若直线l不经过?ABC的顶点,并且与?ABC的三边BC、CA、AB或它们的延长线分别交于P 、Q、R,则BPPC ?CQQA?ARRB=1证明:设ℎA、ℎB、ℎC分别是A、B、C到直线l的垂线的长度,则:BPPC ?CQQA?ARRB=ℎBℎC?ℎCℎA?ℎAℎB=1。
注:此定理常运用求证三角形相似的过程中的线段成比例的条件。
例1若直角?ABC中,CK是斜边上的高,CE是∠ACK的平分线,E点在AK上,D是AC的中点,F是DE与CK的交点,证明:BF∥CE。
【解析】因为在?EBC中,作∠B的平分线BH,则:∠EBC=∠ACK,∠HBC=∠ACE,∠HBC+∠HCB=∠ACK+∠HCB=90°,即BH⊥CE,所以?EBC为等腰三角形,作BC上的高EP,则:CK=EP,对于?ACK和三点D、E、F根据梅涅劳斯定理有:CDDA ?AEEK?KFFC=1,于是KFFC=EKAE=CK AC =EPAC=BPBC=BKBE,即KFFC=BKBE,根据分比定理有:KFKC=BKKE,所以?FKB??CKE,所以BF∥CE。
例2从点K引四条直线,另两条直线分别交直线与A、B、C、D和A1,B1,C1,D1,试证:AC BC :ADBD=A1C1B1C1:A1D1B1D1。
【解析】若AD∥A1D1,结论显然成立;若AD与A1D1相交于点L,则把梅涅劳斯定理分别用于?A1AL和?B1BL可得:ADLD ?LD1A1D1?A1KAK=1,LCAC?AKA1K?A1C1LC1=1,BCLC?LC1B1C1?B1KBK=1,LD BD ?BKB1K?B1D1LD1=1,将上面四个式子相乘,可得:ADAC?BCBD?A1C1A1D1?B1D1B1C1=1,即:ACBC:ADBD=A1C1 B1C1:B1D1 B1C1定理2设P、Q、R 分别是?ABC的三边BC、CA、AB上或它们延长线上的三点,并且P、Q、R三点中,位于?ABC边上的点的个数为0或2,这时若BPPC ?CQQA?ARRB=1,求证P、Q、R三点共线。
数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F三点共线,则FBAFEA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FBAFEA CE DC BD ••=1,则D 、E 、F 三点共线.【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABCj MQGAC BXY P【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDCD塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=••PACPNCBN MB AM塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PACP NCBN MB AM ,则AN 、BP 、CM 相交于一点.【例1】B E 是△ABC 的中线,G 在BE 上,分别延长AG ,CG 交BC ,AB 于点D ,F , 过D 作DN ∥CG 交BG 于N ,△DGL 及△FGM 是正三角形.求证:△LMN 为正三角形.GCLMEDFN【例2】在△ABC 中,D 是BC 上的点DC BD =31,E 是AC 中点.AD 与BE 交于O ,CO 交AB 于F 求四边形BDOF 的面积与△ABC 的面积的比【练习1】设P 为△ABC 内一点,使∠BPA=∠CPA ,G 是线段AP 上的一点,直线BG ,CG 分别交边AC ,AB 于E ,F.求证:∠BPF=∠CPE【练习2】 在△ABC 中,∠ABC 和∠ACB 均为锐角.D 是BC 边BC 上的内点,且AD 平分∠BAC ,过点D 作垂线DP ⊥AB 于P ,DQ ⊥AC 于Q ,CP 于BQ 相交于K. 求证:AK ⊥BCCCC托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD【例1】 已知在△ABC 中,AB >AC ,∠A 的一个外角的平分线交△ABC 的外接圆于点E ,过E 作EF ⊥AB ,垂足为F.求证:2AF=AB -AC【例2】经过∠XOY 的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q.求证:OP 1+OQ1为定值HABCEFAXYPOQ【例3】 解方程42-x+12-x=x 7【练习1】 设AF 为⊙O1与⊙O2的公共弦,点B ,C 分别在⊙O1,⊙O2上,且AB=AC ,∠BAF ,∠CAF 的平分线交⊙O1,⊙O2于点D ,E. 求证:DE ⊥AF【练习2】⊙O 为正△ABC 的外接圆,AD 是⊙O 的直径,在弧BC 上任取一点P (与B ,C不重合).设E ,F 分别为△PAB ,△PAC 的内心.证明:PD=∣PE-PF ∣西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线.【例1】过正△ABC 外接圆的弧AC 上点P 作P D ⊥直线AB 于D,作PE ⊥AC 于E,作PF ⊥BC 于F.求证:PF 1+PD 1=PE1【练习1】设P 为△ABC 外接圆周上任一点,P 点关于边BC ,AC 所在的直线的对称点分别为P 1,P 2.求证:直线P 1P 2经过△ABC 的垂心.CABPEFD HABP1P2CP三角形的五心内心【例1】设点M 是△ABC 的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 与AH 的交点.求证:AE 等于内切圆半径r【例2】在△ABC 中,AB=4,AC=6,BC=5,∠A 的平分线AD 交△ABC的外接圆于K.O ,I 分别为△ABC 的外心,内心.求证:OI ⊥AK【练习】 在△ABC 中,∠BAC=300,∠ABC=700,M 为形内一点,∠MAB=∠MCA=200求∠MBA 的度数.B外心【例1】锐角△ABC的外心为O,线段OA,BC的中点为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN【例2】在等腰△ABC中,AB=BC,CD是它的角平分线,O是它的外心,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,证明:BE=FD.【练习】1、⊙O 1与⊙O 2相交于P ,Q ,⊙O 1的弦PA 与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切.设△PAB 的外心为O ,求证:OQ ⊥PQ重心【例1】在△ABC 中,G 为重心,P 是形内一点,直线PG 交直线BC ,CA ,AB 于F ,E ,D.求证:FG FP +EG EP +DGDP=3【例2】已知△ABC 的重心G 和内心I 的连线GI ∥BC ,求证:AB+AC=2BCC【练习】1、设M 为△ABC 的重心,且AM=3,BM=4,CM=5,求△ABC 的面积.2、设O 是△ABC 的外心,AB=AC ,D 是AB 的中点,G 是△ACD 的重心,求证:OG ⊥CD垂心三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍.BCB【例1】△ABC 的外接圆为⊙O ,∠C=600,M 是弧AB 的中点,H 是△ABC 的垂心.求证:OM ⊥OH【例2】已知AD ,BE ,CF 是锐角△ABC 的三条高,过D 作EF 的平行线RQ ,RQ 分别交AB 和AC 于R ,Q ,P 为EF 与CB 的延长线的交点.证明:△PQR 的外接圆通过BC 的中点M.旁心【例1】在锐角∠XAY 内部取一点,使得∠ABC=∠XBD ,∠ACB=∠YCD.证明:△ABC 的外心在线段AD 上.CD【例2】AD是直角△ABC斜边BC上的高(AB<AC),I1,I2分别是△ABD,△ACD的内心,△A I1 I2的外接圆⊙O分别交AB,AC于E,F,直线FE与CB的延长线交于点M.证明:I1,I2分别是△ODM的内心与旁心.相交两圆的性质与应用【例1】证明:若凸五边形ABCDE中,∠ABC=∠ADE,∠AEC=∠ADB. 证明:∠BAC=∠DAEE【例2】已知⊙O1与⊙O2相交于A,B,直线MN垂直于AB且分别与⊙O1与⊙O2交于M,N,P 是线段MN的中点,Q1,Q2分别是⊙O1与⊙O2上的点,∠AO1Q1=∠AO2Q2求证:PQ1=PQ2【练习】梯形ABCD中,AB∥CD,AB>CD,K,M分别是腰AD,CB上的点,∠DAM=∠CBK,求证:∠DMA=∠CKBA其他的一些数学竞赛定理1、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和.推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+2、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有ACABDC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACABDC BD =3、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P4、 正弦定理、在△ABC 中有R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理: a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA;b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;5、欧拉定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr.6、巴斯加线定理:圆内接六边形ABCDEF (不论其六顶点排列次序如何),其三组对边AB 与DE 、BC 与EF 、CD 与FA 的交点P 、Q 、R 共线.。
梅涅劳斯定理梅涅劳斯定理是元心®≠O,且三角形ABC的三个顶点都在圆周上的情况下,与元心®相互对称的三条直线(AB的对称轴、BC的对称轴和AC的对称轴)的交点M、N、P,连成一个新的三角形。
则这个三角形的垂心H,外心O和重心G一定共线,并且一个在中点上,一个在重心的两倍上。
梅涅劳斯定理由法国数学家梅涅劳斯(Menelaus)在19世纪初推导得出。
他在研究三角形性质和钻石形排列、多面体面积等问题时,发现了三角形内外接圆之间存在某种规律。
他将这种规律总结为“梅涅劳斯定理”,这让人们对三角形的研究产生了新的启示,也极大地推动了数学发展。
1.直线对称:如果直线l把一个图形分成两部分,其中一部分在直线l同侧,另一部分在直线l异侧,那么我们就称这条直线为这个图形的对称轴。
2.三角形的三条对称轴:在一个三角形中,过三个顶点分别做与对边垂直的直线,交于另一三点,这三条线分别称为这个三角形的三条对称轴。
3.外心O:一个三角形的三边的垂直平分线所交的点O就是这个三角形的外心。
梅涅劳斯定理可以用“线段长度乘积相等”来概括,即:BM/MA*CN/NP*AP/PB=1其中BM、CN、AP与MA、NP、PB分别为MN、NP、MP与BC、AC、AB的交点,再根据Euler线的性质,外心、重心、垂心三点共线,并有以下定理:1.如果三角形ABC的外接圆半径R为:R=abc/4K,其中a、b、c为三角形的三边长,K 为三角形的面积,那么重心到外心的距离等于R的三分之二。
2.如果三角形ABC的外接圆半径为R,那么垂心到外心的距离等于R。
梅涅劳斯定理是用于计算三角形各顶点到对边距离的常用方法之一。
例如,如果三角形ABC的三个顶点分别是A(-2,1),B(0,-2),C(3,1),垂心的坐标为H(x,y),那么我们可以用以下步骤来计算垂心的坐标:1.计算AB、BC、AC三边的长度。
AB=sqrt[(0-(-2))^2+(-2-1)^2]=sqrt[17]2.根据梅涅劳斯定理求出MN、NP、MP三个交点。
梅涅劳斯定理在中学数学中的应用
梅涅劳斯定理是极限概念的重要定理,它可用于证明两个实数序列的相等性。
这一定理可以用于中学数学中的多个教学环节,例如:
(1) 求展开式中各项系数的确定:梅涅劳斯定理可用于证明一个多项式的展开式中各项系数的确定,可以直接用作解题的参考依据。
(2) 讨论极限的存在性和值:梅涅劳斯定理可以用于证明某一实数序列是否存在极限,以及极限的值。
(3) 求解微分和积分:梅涅劳斯定理可以作为求解某一积分或微分问题的重要参考依据。
(4) 用来证明几何形状的不变性:梅涅劳斯定理可以用来证明几何形状如圆、椭圆等的不变性,也可以证明某一变化的有限性。
(5) 在证明多项式的不变性中得以应用:梅涅劳斯定理可以用来证明多项式的不变性,并可以用来推导多项式的一般式。
梅涅劳斯定理是证明的有力工具
【原创实用版】
目录
1.梅涅劳斯定理的概述
2.梅涅劳斯定理在证明中的应用
3.梅涅劳斯定理的优势和局限性
正文
梅涅劳斯定理是一种在数学中常用的定理,它的主要应用是用来证明其他更为复杂的数学命题。
梅涅劳斯定理的概述如下:在平面上,如果三点共线,那么这三个点的坐标和满足一定的关系。
这个关系就是梅涅劳斯定理。
梅涅劳斯定理在证明中的应用非常广泛。
它常常被用来证明一些复杂的几何问题,例如,证明一个四边形是平行四边形,证明一个三角形是等腰三角形等等。
梅涅劳斯定理的优势在于,它可以通过简单的坐标运算,快速地证明一些复杂的几何问题。
然而,梅涅劳斯定理也有其局限性。
它只适用于平面上的几何问题,对于空间几何问题,梅涅劳斯定理就无法适用了。
此外,梅涅劳斯定理只能解决一些基本的几何问题,对于一些复杂的数学问题,梅涅劳斯定理也无法提供帮助。
总的来说,梅涅劳斯定理是一种有力的工具,它可以帮助我们快速地证明一些复杂的几何问题。
第1页共1页。
角元梅涅劳斯定理
角元梅涅劳斯定理指出,任何三维立体图形的三个相对角度的总和为180度。
这一定理是1832年由德国数学家安德烈·角元·梅涅劳斯发现的,也称为梅涅劳斯定理。
角元梅涅劳斯定理有时也被简称为角度总和定理。
角元梅涅劳斯定理是几何学的基本定理之一,它证明了任何三维立体图形的三个相对角度都必须和180度一样。
因此,任何三维立体图形都不会有角度大于180度或小于180度的情况发生。
它还可以帮助人们确定任何三角形的总角度。
梅涅劳斯定理可以应用于各种三维图形,如多边形、圆柱等。
它的定义可以扩展到任何面数的多边形上,不论有多少个面,总是有一个角度总和等于360度。
这也被称为完全多边形的定义。
角元梅涅劳斯定理有许多实用应用,如在建筑工程中用于测量建筑物的外观。
它还可以用于估算任何三角形的内角,这对几何学家来说十分重要。
它也是日常生活中更复杂图形的平面分解,如三角形,正方形等的实用方法之一。
因此,角元梅涅劳斯定理对于理解三维图形以及量化其总的角度非常重要,它的定义也可以扩展到多边形的面数中,这是几何学最著名的定理之一。
角元梅涅劳斯定理
角元梅涅劳斯定理是由18世纪法国数学家安东尼·德·角元梅涅
发现的一个重要定理。
该定理表明,几何学中曲线轨迹的变化和表面
积的变化之间有一个强烈的关联,这个定理被称为角元梅涅劳斯定理。
在几何学中,角元梅涅定理的基本思想是,任何形状的点的曲线
轨迹的变化,都可以用外接圆的面积的变化来表达。
它表明,如果曲
线上的某一点的位置发生了变化,那么该曲线的表面积将会发生相应
的变化。
由于角元梅涅定理在几何学中有极大的意义,它也被用于其他领域,例如物理学和工程学中。
它是流体动力学和汽轮机性能计算中非
常重要的定理,因为它利用了流体在动力学中对表面积的变化和流体
操作过程中所受的摩擦力的变化之间的关系。
即使在现代气动学中,
角元梅涅定理也受到了广泛的应用,它可以用来估算飞机机翼的表面积,这将会影响飞机的性能。
角元梅涅定理的另一个重要应用是电力系统工程中的潮流分析。
在电力系统运行中,利用角元梅涅定理可以根据电网中电流的变化来
计算电能的变化,从而可以估算电网的损耗。
因此,可以看出,角元梅涅定理确实是一个重要的原理,它在几
何学、物理学和工程学方面都具有广泛的应用。
梅涅劳斯定理及应用
定理:设Z Y X ,,分别是ABC ∆的边AB CA BC ,,或其延长线的点,则Z Y X ,,三点共线的充要条件是:
1=∙∙ZB
AZ YA CY XC BX
例1:在O B C ∆中,A 为BC 的中点,D 为OB 上的点,且21=OD BD ,E CD OA 相交于点与,则OA OE _____=
例2:如图,过ABC ∆的三个顶点C B A ,,作它的外接圆的切线,分别和BA CA BC ,,的延长线交于R Q P ,,;求证:R Q P ,,三点共线
例3:(1985年第三届美国数学邀请赛)如图,G 是ABC ∆内一点,直线CG BG AG ,,将ABC ∆分为6个小三角形,已知BDG BFG AFG ∆∆∆,,的面积分别为40,30,35,求A B C ∆的
面积
例4: (1983年全国高中数学联赛)在四边形ABCD 中,ABC BCD ABD ∆∆∆,,的面积之比是1:4:3,点M,N 分别在AC,CD 上,满足AM:AC=CN:CD ,并且B,M,N 三点共线,求证M 与N 分别是AC 和CD 的中点
练习:1(2009年中国科技大学)已知ABC ∆的面积为1,;F E D ,,分别在边AB CA BC ,,上,FB AF EA CE DC BD 2,2,2===;CF BE AD ,,两两交于R Q P ,,,求PQR ∆的面积
2 四边形ABCD (不是正方形)的内切圆分别切DA CD BC AB ,,,于H G F E ,,,,求证:GF DB HE ,,三线共点
3 (1982年第23届IMO 试题)已知CE AC ,是正六边形ABCDEF 的两条对角线,点N M ,分别在线段CE AC ,上,且使
k CE
CN AC AM ==,如果N M B ,,三点共线,试求k 的值
4(2016年湖南省高中数学夏令营):ABC ∆的内切圆分别与BC 、CA 、 AB 相切于点D 、E 、F,直线AD 与EF 相交于点H ,若直线BC EF 与相交于点G ,求证:GE
FG HE FH =。