西电电子管手册101D
- 格式:pdf
- 大小:131.36 KB
- 文档页数:6
电子管的基础知识电子管的基本参数:1.灯丝电压:V;2.灯丝电流:mA;3.阳极电压:V;4.阳极电流:mA;5.栅极电压:V;6.栅极电流:mA;7.阴极接入电阻:Ω;8.输出功率:W;9.跨导:mA/v;10.内阻: kΩ。
几个常用值的计算:放大因数μ=阳极电压Uak/栅极电压Ugk表示在维持阳极电流不变的情况下,阳极电压与栅极电压的比值。
跨导 S=阳极电流Ia/栅极电压Ugk表示在维持阳极电压不变的情况下,栅极电压若有一个单位(如mV)的电压变化时将引起阳极电流有多少个单位的变化。
内阻 Ri=栅极电压Uak/阳极电流Ia表示在维持栅极电压不变的情况下,阳极电流若有一个单位(如mA)的电压变化时将引起阳极电压有多少个单位的变化。
上面的几个值也可以表述为放大因数μ=跨导S乘以内阻Ri先说这些,各位要是觉得可以瞧下去,下回再说几种常见的管型和结构工作原理等等等等。
这回就先说电子管的构造和工作原理吧。
照顾一下咱的老习惯,以后所涉及的管型和单元电路均以国产管为例,在最后我会结合自己的使用体会简要说说部分常见的国产管和进口管的各自特点以及代换。
在讨论之前咱们先得把讨论的范围作一界定,即仅限于真空式电子管。
不管是二极,三极还是更多电极的真空式电子管,它们都具有一个共同结构就是由抽成几近真空的玻璃(或金属,陶瓷)外壳及封装在壳里的灯丝,阴极和阳极组成。
直热式电子管的灯丝就是阴极,三极以上的多极管还有各种栅极。
先说二极管:考虑一块被加热的金属板,当它的温度达到摄氏800度以上时,会形成电子的加速运动,以至能够摆脱金属板本身对它们的吸引而逃逸到金属表面以外的空间。
若在这一空间加上一个十几至几万伏的正向电压(踏雪留痕在上面说到的显象管,阳极上就加有7000--27000伏的高压),这些电子就会被吸引飞向正向电压极,流经电源而形成回路电流。
把金属板(阴极),加热源(灯丝),正向电压极板(阳极)封装在一个适当的壳里,即上面说的玻璃(或金属,陶瓷)封装壳,再抽成几近真空,就是电子二极管。
电子管数据手册资料名称:自命名国产电子管1A2型号:说明:类型:直热式阴极七极管主要用途:变频(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;第二四栅极电压(Ug2g4)=45V;第三栅极电压(Ug3)=0V;第一栅极电压(Ug1)=0V;阳极电流(Ia)=0.7±0.3mA;第二四栅极电流(Ig2g4)=1.1±0.5mA;第一栅极电流(Ig1)=130±35μA;变频跨导(Sc)≥0.17mA/V;振荡跨导≥0.65mA/V;第一栅极电阻(Rg1)=51kΩ.(极间电容)输入电容(Cin)=5.1pF;输出电容(Cout)=6.3pF;过渡电容(Cag)≤0.6pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二四栅极电压(Ug2maxp、Ug4max)=7.5V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=3mA;最大阴极电流峰值(Ikmax)=9mA;最大阳极耗散功率(Pamax)=0.3W.型号:说明:类型:直热式阴极二极-五极管主要用途:检波和低频电压放大(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=0.9±0.4mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.35mA;跨导(S)=0.2~0.55mA;内阻(Ri)=1MΩ.(极间电容)输入电容(Cin)=1.85pF;输出电容(Cout)=2.1pF;过渡电容(Cag)=0.27pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2max)=75V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=2mA;最大阳极耗散功率(Pamax)=0.15W.型号:说明:类型:直热式阴极遥截止五极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=1.35±0.5mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)=0.35+0.15mA;跨导(S)=0.25~0.7mA;内阻(Ri)=1.5MΩ.(极间电容)输入电容(Cin)=3pF;输出电容(Cout)=4.9pF;过渡电容(Cag)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=0.9V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2max)=75V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V;最大阴极电流(Ikmax)=3.5mA;最大阳极耗散功率(Pamax)=0.3W.型号:说明:类型:旁热式阴极二极管主要用途:用于110o电视机行扫描逆程脉冲电压的整流(基本数据)灯丝电压(Uf)=1.4V;灯丝电流(If)=0.5±0.055A;阳极电压(Ua)=100V;阳极电流(Ia)≥8mA.(极间电容)阳极与阴极间电容(Cak)=1.55pF.(极限运用数据)最大灯丝电压(Ufmax)=1.54V;最小灯丝电压(Ufmin)=1.26V;最大整流电流(Ikmax)=0.5mA;最大反向电压峰值①(Upmax)=22kV;最大滤波电容(Cmax)=2000pF.注:①最大占空比=22%,最大脉宽=18μs时.型号:说明:类型:直热式阴极高压整流二极管主要用途:在电视机接收中作行扫描逆程电压整流(基本数据)灯丝电压(Uf)=0.7V;灯丝电流(If)=0.2A;阳极交流电压(Ua~)=100V;阳极电流(Ia)≥2mA;行扫描频率(fH)≥16kHz.(极限运用数据)最大灯丝电压(Ufmax)=0.77V;最小灯丝电压(Ufmin)=0.63V;最大反向电压峰值(Upmax)=8kV;最大整流电流(Ikmax)=3mA;最大阳极耗散功率(Pamax)=0.6W.型号:说明:类型:直热式阴极高压脉冲整流二极管主要用途:在专用无线电设备中作高频脉冲整流用(基本数据)灯丝电压(Uf)=1.25V;灯丝电流(If)=0.2±0.04A;阳极反向电压峰值(Up)≥30kV;阴极放射电流①(Ia)≥4mA;注:①Ua=100V时.(极间电容)阳极与阴极间电容(Cak)=1.2±0.5pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V;最小灯丝电压(Ufmin)=1.1V;最大反向电压峰值(Upmax)=30kV;最大整流电流(Ikmax)=2mA;最大脉冲频率(fmax)=300kHz.型号:说明:类型:直热式阴极二极管主要用途:电视机接收中作行扫描逆程脉冲电压整流用(基本数据)灯丝电压(Uf)=1.2V;灯丝电流(If)=0.2A;阳极电压(Ua)=100V;阳极电流(Ia)≥4mA.(极间电容)阳极与阴极间电容(Cak)=1pF.(极限运用数据)最大灯丝电压(Ufmax)=1.32V;最小灯丝电压(Ufmin)=1.08V;最大整流电流(Ikmax)=300μA;最大反向电压峰值(Upmax)=20kV;最小行扫描频率(fmin)=12kHz.型号:说明:类型:旁热式阴极二极管主要用途:在分米波段作检波用(基本数据)灯丝电压(Uf)=2.3V;灯丝电流(If)=0.2±0.05A;阳极电压(Ua)=5V;阳极电流(Ia)≥1.6mA.(极间电容)阳极与阴极间电容(Cak)=0.1~0.4pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.2V;最大整流电流(Ikmax)=0.1mA;最大反向电压峰值(Upmax)=100V;最大阳极耗散功率(Pamax)=0.01W;最大阴极和灯丝间电压(Ufkmax)=±25V; 最高工作频率(fmax)=3GHz.型号:说明:类型:直热式阴极锐截止五极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.06A;阳极电压(Ua)=90V;阳极电流(Ia)=1.9±0.6mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.8mA;第三栅极电压(Ug3)=0V;跨导(S)=1.25±0.25mA/V.(极间电容)输入电容(Cin)≤4.5pF;输出电容(Cout)≤6.0pF;过渡电容(Cag)≤0.015pF;阳极与阴极间电容(Cak)≤0.03pF.(极限运用数据)最大灯丝电压(Ufmax)=2.5V;最小灯丝电压(Ufmin)=1.8V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2maxp)=90V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=0.5W.最大第二栅极耗散功率(Pg2max)=0.13W.型号:说明:类型:直热式阴极锐截止五极管主要用途:小功率放大及高频振荡(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.057A;阳极电压(Ua)=120V;阳极电流(Ia)=1.9±0.6mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤0.5mA;第三栅极电压(Ug3)=0V;跨导(S)=1.25±0.25mA/V;内阻(Ri)≥0.7MΩ.(极间电容)输入电容(Cin)≤5.3pF;输出电容(Cout)≤4.9pF;阳极与阴极间电容(Cak)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2max)=120V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=1.0W;最大第二栅极耗散功率(Pg2max)=0.3W.???型号:说明:类型:直热式阴极五极管主要用途:低频功率放大(基本数据)灯丝电压(Uf)=1.2/2.4V;灯丝电流(If)=0.06/0.03A;阳极电压(Ua)=60V;阳极电流(Ia)=3.5±1.2mA;第一栅极电压(Ug1)=﹣3.5V;第二栅极电压(Ug2)=60V;第二栅极电流(Ig2)≤1.2mA;跨导(S)≥0.9mA/V;输出功率(PO)=50mW;非线性失真度系数(THD)≤10%.(极间电容)输入电容(Cin)=3.7pF;输出电容(Cout)=3.8pF;过渡电容(Cag)=0.4pF.(极限运用数据)最大灯丝电压(Ufmax)=1.4V/2.8V;最小灯丝电压(Ufmin)=0.9/1.8V;最大阳极电压(Uamax)=90V;最大第二栅极电压(Ug2maxp)=90V;最大阳极电源电压(Eamax)=250V;最大第二栅极电源电压(Ea2max)=250V; 最大阴极电流(Ikmax)=7mA;最大阴极电流峰值(Ikmax)=10mA;最大阳极耗散功率(Pamax)=0.4W.型号:说明:类型:直热式阴极束射四极管主要用途:功率输出(基本数据)灯丝电压(Uf)=1.4/2.8V;灯丝电流(If)=0.2/0.1A;阳极电压(Ua)=135V;阳极电流(Ia)=16±4mA;第一栅极电压(Ug1)=﹣7.5V;第二栅极电压(Ug2)=90V;第二栅极电流(Ig2)≤3.1mA;输出功率(PO)≥0.15W;非线性失真度系数(THD)≤10%.(极间电容)输入电容(Cin)=4.8pF;输出电容(Cout)=4.2pF;过渡电容(Cag)≤0.34pF.(极限运用数据)最大灯丝电压(Ufmax)=1.54/3.08V;最小灯丝电压(Ufmin)=1.26/2.52V;最大阳极电压(Uamax)=150V;最大第二栅极电压(Ug2maxp)=135V;最大阴极电流(Ikmax)=23mA;最大阳极耗散功率(Pamax)=2.0W;最大第二栅极耗散功率(Pg2max)=0.5W.?????型号:说明:类型:直热式阴极五极管主要用途:功率放大(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.1A;阳极电压(Ua)=120V;阳极电流(Ia)=7.6±2.2mA;第一栅极电压(Ug1)=﹣5V;第二栅极电压(Ug2)=90V;第二栅极电流(Ig2)≤3.5mA;第三栅极电压(Ug3)=0V;跨导(S)≥1.7mA/V.(极间电容)输入电容(Cin)≤4.5pF;输出电容(Cout)≤7pF;过渡电容(Cag)≤0.03pF;阳极与阴极间电容(Cak)≤0.05pF.(极限运用数据)最大灯丝电压(Ufmax)=2.5V;最小灯丝电压(Ufmin)=1.8V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=130V;最大阴极电流(Ikmax)=15mA;最大阳极耗散功率(Pamax)=1W;最大第二栅极耗散功率(Pg2max)=0.35W.型号:说明:类型:直热式阴极五极管主要用途:小功率发射(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.11A;阳极电压(Ua)=120V;阳极电流(Ia)≥2.7mA;第一栅极电压(Ug1)=0V;第二栅极电压(Ug2)=45V;第二栅极电流(Ig2)≤1.2mA;第三栅极电压(Ug3)=0V;跨导(S)≥1.5mA/V.(极间电容)输入电容(Cin)=4.85pF;输出电容(Cout)=2pF;阳极与阴极间电容(Cak)≤0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=120V;最大阴极电流(Ikmax)=5mA;最大阳极耗散功率(Pamax)=1W;最大第二栅极耗散功率(Pg2max)=0.3W.型号:说明:类型:直热式阴极五极管主要用途:功率放大及高频振荡(基本数据)灯丝电压(Uf)=2.2V;灯丝电流(If)=0.12A;阳极电压(Ua)=160V;阳极电流(Ia)=10mA;第一栅极电压(Ug1)=﹣5.5±1.7V;第二栅极电压(Ug2)=120V;第二栅极电流(Ig2)≤2.0mA;第三栅极电压(Ug3)=0V;跨导(S)=2.05±0.25mA/V;输出功率(PO)=1.2W.(极间电容)输入电容(Cin)=4.3pF;输出电容(Cout)=5.6pF;过渡电容(Cag)=0.055pF;阳极与阴极间电容(Cak)=0.03pF.(极限运用数据)最大灯丝电压(Ufmax)=2.4V;最小灯丝电压(Ufmin)=2.0V;最大阳极电压(Uamax)=200V;最大第二栅极电压(Ug2maxp)=150V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.0W;最大第二栅极耗散功率(Pg2max)=0.7W; 最高工作频率(fmax)=120MHz.型号:说明:类型:旁热式阴极高压整流二极管主要用途:高压整流(基本数据)灯丝电压(Uf)=2.5V;灯丝电流(If)=1.75±0.2A;平均整流电流(Icp)≥6.8mA;变压器次级线圈交流电压有效值(Urms)=4500V;滤波电容①(C)=0.06μF.注:①当选用大于此值的滤波电容时必须加入充电限流电阻,以免滤波电容充电峰值电流超出上述规定.(极限运用数据)最大灯丝电压(Ufmax)=2.75V;最小灯丝电压(Ufmin)=2.25V;最大阳极交流电压有效值(Urms)=4500V;最大反向电压峰值(Upmax)=12.5kV;最大整流电流(Ikmax)=7.5mA.型号:说明:类型:旁热式阴极锐截止五极管主要用途:小功率放大及高频振荡(基本数据)灯丝电压(Uf)=4.2V;灯丝电流(If)=0.225A;阳极电压(Ua)=150V;阳极电流(Ia)=1.4~3.1mA;第一栅极电压(Ug1)=﹣2.3V;第二栅极电压(Ug2)=75V;第二栅极电流(Ig2)=0.2~0.9mA;第三栅极电压(Ug3)=0V;跨导(S)=1.2~2.1mA/V;内阻(Ri)≥1MΩ;输出功率(PO)≥0.5W.(极间电容)输入电容(Cin)=4.0pF;输出电容(Cout)=4.2pF;过渡电容(Cag)≤0.007pF.(极限运用数据)最大灯丝电压(Ufmax)=4.8V;最小灯丝电压(Ufmin)=3.6V;最大阳极电压(Uamax)=250V;最大第二栅极电压(Ug2maxp)=225V;最大灯丝与阴极间电压(Ufkmax)=100V;最大阴极电流(Ikmax)=11mA;最大阳极耗散功率(Pamax)=2W;最大第二栅极耗散功率(Pg2max)=0.7W.型号:说明:类型:直热式阴极五极管主要用途:振荡及功率放大(基本数据)灯丝电压(Uf)=4.2V;灯丝电流(If)=0.325A;阳极电压(Ua)=150V;阳极电流(Ia)=60±20mA;第一栅极电压(Ug1)=﹣3.5V;第二栅极电压(Ug2)=150V;第二栅极电流(Ig2)≤6.5mA;第三栅极电压(Ug3)=0V;跨导(S)=6±1.5mA/V;输出功率(PO)≥4.2W.(极间电容)输入电容(Cin)=8.5pF;输出电容(Cout)=9.4pF;过渡电容(Cag)≤0.1pF.(极限运用数据)最大灯丝电压(Ufmax)=4.7V;最小灯丝电压(Ufmin)=3.9V;最大阳极电压(Uamax)=250V;最大第二栅极电压(Ug2maxp)=250V; 最大阴极电流(Ikmax)=50mA;最大阳极耗散功率(Pamax)=7.5W;最大第二栅极耗散功率(Pg2max)=1.5W.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=2±0.4A;平均整流电流(Icp)=125mA;变压器次级线圈交流电压有效值①(Urms)=2x500V; 变压器次级线圈交流电压有效值②(Urms)=2x350V; 滤波电容(C)=4μF;滤波电感(L)=10H.注:①滤波电路为电感输入时;②滤波电路为电容输入时.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1.4kV.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=2±0.2A;平均整流电流(Icp)=125mA;变压器次级线圈交流电压有效值(Urms)=2x400V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1.4kV.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=3±0.3A;平均整流电流(Icp)≥230mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=250mA;最大反向电压峰值(Upmax)=1550V.型号:说明:类型:直热式阴极双阳极整流二极管主要用途:小功率全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=1.8~2.2A;平均整流电流(Icp)≥122mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=125mA;最大反向电压峰值(Upmax)=1350V.型号:说明:类型:旁热式阴极双阳极整流二极管主要用途:全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=5±0.75A;平均整流电流(Icp)≥400mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=420mA;最大反向电压峰值(Upmax)=1700V;最大阳极耗散功率(Pamax)=30W.型号:说明:类型:旁热式阴极双阳极整流二极管主要用途:全波整流(基本数据)灯丝电压(Uf)=5V;灯丝电流(If)=3±0.3A;平均整流电流(Icp)≥190mA;变压器次级线圈交流电压有效值(Urms)=2x500V; 滤波电容(C)=4μF.(极限运用数据)最大灯丝电压(Ufmax)=5.5V;最小灯丝电压(Ufmin)=4.5V;最大整流电流(Ikmax)=205mA;最大反向电压峰值(Upmax)=1700V;最大阳极耗散功率(Pamax)=12W.型号:说明:类型:旁热式阴极七极管主要用途:变频(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=250V;阳极电流(Ia)=3±1mA;第二四栅极电压(Ug2g4)=100V;第三栅极电压(Ug3)=﹣1.5V;第二四栅极电流(Ig2g4)=7.0±2.1mA;第一栅极电阻(Rg1)=20kΩ;变频跨导(Sc)≥0.3mA/V;振荡跨导≥4.5mA/V.(极间电容)输入电容(Cin)≤8.8pF;输出电容(Cout)≤10.1pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=330V;最大第二四栅极电压(Ug2g4max)=110V;最大第三栅极电压(Ug3max)=﹣50V;最大第一栅极电流(Ig1max)=0.5mA;最大阴极电流(Ikmax)=14mA;最大灯丝与阴极间电压(Ufkmax)=100V;最大阳极耗散功率(Pamax)=1.1W;最大第二四栅极耗散功率(Pg2g4max)=1.1W.型号:说明:类型:旁热式阴极七极变频管主要用途:变频(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=250V;阳极电流(Ia)=3.5±1mA;第二四栅极电压(Ug2g4)=100V;第三栅极电压(Ug3)=0V;第一栅极电流(Ig1)=0.51±0.13mA;第二四栅极电流(Ig2g4)=9±2.5mA;变频跨导(Sc)=0.45±0.15mA/V;振荡跨导=4.7±1.2mA/V.(极间电容)输入电容(Cin)=11±3pF;输出电容(Cout)=11±3pF;过渡电容(Cag)=0.7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=330V;最大第二四栅极电压(Ug2g4max)=110V;最大第一栅极电流(Ig1max)=0.5mA;最大阴极电流(Ikmax)=15.5mA;最大灯丝与阴极间电压(Ufkmax)=100V;最大阳极耗散功率(Pamax)=1.1W;最大第二四栅极耗散功率(Pg2g4max)=1.1W.型号:说明:类型:旁热式阴极双二极-五极管主要用途:作高频和低频电压放大、检波和自动音量控制(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;(双二极管部分)平均整流电流(Icp)≥220μA;(五极管部分)阳极电压(Ua)=250V;阳极电流(Ia)=7.3~13mA;第一栅极电压(Ug1)=﹣3V;第二栅极电压(Ug2)=125V;第二栅极电流(Ig2)=2.45+1.05mA;跨导(S)=1.32~1.6mA/V.(极间电容)输入电容(Cin)=3.9~4.15pF;输出电容(Cout)=11±2pF;过渡电容(Cag)≤0.008pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=27.5V;最大第二栅极电压(Ug2maxp)=140V;最大每只二极管整流电流(Ikmax)=1mA;最大阳极耗散功率(Pamax)=4W;最大第二栅极耗散功率(Pg2max)=0.3W;最大灯丝与阴极间电压(Ufkmax)=100V.型号:说明:类型:旁热式阴极三极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.15A;阳极电压(Ua)=250V;阳极电流(Ia)=6.1±2.5mA;栅极电压(Ug)=﹣7V;跨导(S)=2.65±0.65mA/V;内阻(Ri)=8.4~14.8kΩ.(极间电容)输入电容(Cin)=0.95~1.8pF;输出电容(Cout)=0.75~1.45pF;过渡电容(Cag)=1.0~1.8pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=275V;最大灯丝与阴极间电压(Ufkmax)=﹣90V; 最大阳极耗散功率(Pamax)=1.8W.型号:说明:类型:旁热式阴极三极管主要用途:高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=16±4mA;阴极电阻(Rk)=100Ω;跨导(S)=19.5±4.5mA/V;放大系数(μ)=50±15.(极间电容)输入电容(Cin)=5.5pF;输出电容(Cout)=0.85pF;过渡电容(Cag)≤2.4pF;灯丝与阴极间电容(Cfk)=7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=160V;最大灯丝与阴极间电压(Ufkmax)=+100V(-160V); 最大阳极耗散功率(Pamax)=3W;最大阴极电流(Ikmax)=35mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:宽频带高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=16±4mA;阴极电阻(Rk)=100Ω;跨导(S)=19.5±4.5mA/V;放大系数(μ)=50±15.(极间电容)输入电容(Cin)≤13.3pF;输出电容(Cout)≤0.17pF;过渡电容(Cag)≤3.75pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=160V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3W;最大阴极电流(Ikmax)=35mA;最大栅极电阻(Rgmax)=1MΩ.?????�型号:说明:类型:旁热式阴极三极管主要用途:作分米和厘米波段的小功率振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.7±0.07A;阳极电压(Ua)=250V;阳极电流(Ia)=8~23A;跨导(S)=5±1.5mA/V;放大系数(μ)=40±10.(极间电容)输入电容(Cin)=1.9~2.8pF;输出电容(Cout)≤0.05pF;过渡电容(Cag)=1.15~1.5pF.(极限运用数据)最大灯丝电压(Ufmax)=6.6V;最小灯丝电压(Ufmin)=6.0V;最大阳极电压(Uamax)=300V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=6.5W;最高振荡频率(fmax)=3370MHz.型号:说明:类型:旁热式阴极三极管主要用途:检波和低频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=﹣8V;阳极电流(Ia)=8±3mA;跨导(S)=2.2±0.5mA/V;内阻(Ri)=9kΩ;放大系数(μ)=20±2.(极间电容)输入电容(Cin)=3.8±0.9pF;输出电容(Cout)=7.4~13.4pF;过渡电容(Cag)=2±0.6pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=350V;最大灯丝与阴极间电压(Ufkmax)=100V; 最大阳极耗散功率(Pamax)=2.75W.型号:说明:类型:旁热式阴极三极管主要用途:低频电压放大及高频振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.2A;阳极电压(Ua)=120V;阳极电流(Ia)=9.0±2.7mA;阴极电阻(Rk)=220Ω;跨导(S)=4~6.3mA/V;放大系数(μ)=25.(极间电容)输入电容(Cin)=2.5pF;输出电容(Cout)=2.5pF;过渡电容(Cag)≤1.58pF;灯丝与阴极间电容(Cfk)≤7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大灯丝与阴极间电压(Ufkmax)=150V; 最大阳极耗散功率(Pamax)=1.4W;最大栅极电阻(Rgmax)=1MΩ;最高频率(fmax)=500MHz.??型号:说明:类型:旁热式阴极三极管主要用途:低频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.2A;阳极电压(Ua)=250V;阳极电流(Ia)=4.5±0.9mA;阴极电阻(Rk)=400Ω;跨导(S)=4±0.9mA/V;放大系数(μ)=65.(极间电容)输入电容(Cin)=2.5pF;输出电容(Cout)=2.65pF;过渡电容(Cag)≤1.0pF;灯丝与阴极间电容(Cfk)≤7pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=300V;最大灯丝与阴极间电压(Ufkmax)=±150V; 最大阳极耗散功率(Pamax)=1.45W;最大阴极电流(Ikmax)=7mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:高频脉冲振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=300V;阳极电流(Ia)=8~14.5mA;跨导(S)=3±0.6mA/V;放大系数(μ)=20±2.(极间电容)输入电容(Cin)=2.2±0.4pF;输出电容(Cout)=0.65±0.15pF;过渡电容(Cag)=3.6±0.72pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=500V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3.6W.�?型号:说明:类型:旁热式阴极三极管主要用途:超高频振荡(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.17A;阳极电压(Ua)=120V;阳极电流(Ia)=20mA;跨导(S)=4.5mA/V;放大系数(μ)=16.(极间电容)输入电容(Cin)=1.8±0.4pF;输出电容(Cout)=0.7±0.3pF;过渡电容(Cag)=1.6±0.3pF;灯丝与阴极间电容(Cfk)=2.5pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=275V;最大灯丝与阴极间电压(Ufkmax)=±100V; 最大阳极耗散功率(Pamax)=3.5W;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极管主要用途:在栅地电路中作低噪超高频放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.17mA;阳极电压(Ua)=160V;阳极电流(Ia)=12±3mA;跨导(S)=13±3mA/V;放大系数(μ)=65.(极间电容)输入电容(Cin)=3.7±0.5pF;输出电容(Cout)=1.5±0.5pF;过渡电容(Cag)=0.08±0.02pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=175V;最大灯丝与阴极间电压(Ufkmax)=100V; 最大阳极耗散功率(Pamax)=2W;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极高跨导、低噪声三极管主要用途:宽频带电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;阳极电压(Ua)=150V;阳极电流(Ia)=24mA;阴极电阻(Rk)=60Ω;跨导(S)=24mA/V.(极间电容)输入电容(Cin)=10pF;输出电容(Cout)=1pF;过渡电容(Cag)=3pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电流(Iamax)=30mA;最大灯丝与阴极间电压(Ufkmax)=150V;最大阳极耗散功率(Pamax)=4W.?????型号:说明:类型:旁热式阴极大功率三极管主要用途:稳压器调整管、OTL功放(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=1±0.07A;阳极电压(Ua)=110V;栅极电压(Ug)=﹣7V;阳极电流(Ia)=105±25mA;阴极电阻(Rk)=130Ω;跨导(S)=7.5±1.5mA/V;内阻(Ri)=300Ω.(极间电容)输入电容(Cin)=6.5pF;输出电容(Cout)=2.5pF;过渡电容(Cag)=8.0pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极耗散功率(Pamax)=11W;最大栅极电阻(Rgmax)=0.5MΩ;最大阳极电压①(Uamax)Pa≤7W时350V,Pa≤11W时200V;最大灯丝与阴极间电压(Ufkmax)=±250V;最大栅极电压(Ugmax)=﹣1.5V.注:①指管子在冷态时插入500V.(推荐甲类功放参数)阳极电压(Ua)=190V; 栅极电压(Ug)=﹣67V;阳极电流(Ia)=45mA;阴极自给偏压电阻(Rk)=1.5kΩ;最大阳极耗散功率(Pamax)=8.5W;负载阻抗(ZL)=1.25kΩ;输出功率(PO)=7W;非线性失真度(THD)=0.75%(1W),7%(7W).型号:说明:类型:旁热式阴极三极管主要用途:电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.22A;阳极电压(Ua)=50V;阳极电流(Ia)=40±10mA;跨导(S)=20±6mA/V;放大系数(μ)>13.(极间电容)输入电容(Cin)=4.1±1.0pF;输出电容(Cout)≤1.5pF;过渡电容(Cag)=3.8±1.0pF;灯丝与阴极间电容(Cfk)≤5.5pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=100V;最大灯丝与阴极间电压(Ufkmax)=±200V; 最大阳极耗散功率(Pamax)=2.5W;最大阴极电流(Ikmax)=50mA;最大栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极遥截止三极管主要用途:电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.165A;阳极电压(Ua)=200V;阳极电流(Ia)=3.0±1.3mA;阴极电阻(Rk)=280Ω;跨导(S)=3.5±1.3mA/V;放大系数(μ)=70~140.(极间电容)输入电容(Cin)=3.0±0.7pF;输出电容(Cout)=0.65±0.35pF;过渡电容(Cag)≤1.2pF;灯丝与阴极间电容(Cfk)≤6.0pF.(极限运用数据)最大灯丝电压(Ufmax)=7.0V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大灯丝与阴极间电压(Ufkmax)=150V;最大阳极耗散功率(Pamax)=4.5W;最大阴极电流(Ikmax)=10mA;最大栅极电阻(Rgmax)=2MΩ.型号:说明:类型:旁热式阴极三极管主要用途:作分米波振荡(基本数据)灯丝电压(Uf)=12.6V;灯丝电流(If)=0.09A;阳极电压(Ua)=100V;阳极电流(Ia)=30.2±12.5mA;跨导(S)=2.2~4.2mA/V;放大系数(μ)=8~17;输出功率①(PO)≥275mA.注:①Ua=130V;f≥7.5x108Hz时.(极间电容)输入电容(Cin)=1.55±0.55pF;输出电容(Cout)=0.65±0.15pF;过渡电容(Cag)=1.15±0.25pF.(极限运用数据)最大灯丝电压(Ufmax)=14.5V;最小灯丝电压(Ufmin)=10.8V;最大阳极电压(Uamax)=300V;最大栅极电压(Ugmax)=50V;最小栅极电压(Ugmin)=﹣250V;最大阳极耗散功率(Pamax)=5W;最大栅极耗散功率(Pgmax)=0.25W;最小输出功率(POmin)=275mW;最大阴极电流峰值(Ikmax)=200mA;最大灯丝与阴极间电压(Ufkmax)=100V.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3A;荧光屏电压(UL)=250V;阳极电压(Ua)=100V;栅极电压(Ug)=0~﹣15V;阳极电阻(Ra)=0.5MΩ;栅极电阻(Rg)=0.1MΩ;荧光屏扇形指示角(θL)=5o~55o.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大荧光屏电压(ULmax)=250V;最大阳极电压(Uamax)=250V;最大阳极耗散功率(Pamax)=0.2W;最大栅极电阻(Rgmax)=3MΩ.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.03A;阳极电流①(Ia)=2±0.5mA;栅极截止电压②(Ugj)=﹣10±5V;阳极电源电压(Ea)=250V;荧光屏电压(UL)=250V;荧光屏电流①(IL)=1mA;跨导(S)≥0.5mA/V;阳极内阻(Ri)=100kΩ;栅极电阻(Rg)=3MΩ;放大系数(μ)≥20.注:①Ug=0V时;②荧光屏光带闭合时.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大荧光屏电压(ULmax)=250V;最小荧光屏电压(ULmin)=200V;最大阳极电源电压(Eamax)=250V;最大阳极耗散功率(Pamax)=0.5W;最大栅极电阻(Rgmax)=3MΩ;最大灯丝与阴极间电压(Ufmax)=±100V.型号:说明:类型:旁热式阴极调谐指示管主要用途:调谐指示(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.3±0.025A;阳极电压(Ua)=250V;荧光屏电压(UL)=250V;栅极电压(Ug)=﹣4V;阳极电流(Ia)=5.3±1.9mA;荧光屏电流(IL)≤5mA;跨导(S)=1.2±0.4mA/V;放大系数(μ)=24±2;荧光屏扇形阴影闭合时栅极电压(UgL)=﹣7.5±2V. (极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大阳极电压(Uamax)=250V;最大荧光屏电压(ULmax)=250V;最大灯丝与阴极间电压(Ufmax)=100V.型号:说明:类型:旁热式阴极三极-五极管主要用途:变频或高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.417A;(三极管部分)阳极电压(Ua)=100V;阳极电流(Ia)=13±5mA;栅极电压(Ug)=﹣2V;跨导(S)=5±1.5mA/V;放大系数(μ)=20;(五极管部分)阳极电压(Ua)=170V;阳极电流(Ia)=6~15mA;第二栅极电压(Ug2)=170V;第二栅极电流(Ig2)≤4.5mA;跨导(S)=6.2±2.2mA/V;内阻(Ri)=0.4MΩ.(极间电容)(三极管部分)输入电容(Cin)=2.5pF;输出电容(Cout)=0.3pF;过渡电容(Cag)=1.45pF;(五极管部分)输入电容(Cin)=5.5pF;输出电容(Cout)=3.4pF;过渡电容(Cag)≤0.025pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大灯丝与阴极间电压(Ufkmax)=100V; (三极管部分)最大阳极电压(Uamax)=250V; 最大阴极电流(Ikmax)=14mA;最大阳极耗散功率(Pamax)=1.5W;最大栅极电阻(Rgmax)=0.5MΩ;(五极管部分)最大阳极电压(Uamax)=250V; 最大第二栅极电压(Ug2maxp)=175V;最大阴极电流(Ikmax)=14mA;最大阳极耗散功率(Pamax)=2.5W;最大第二栅极耗散功率(Pg2max)=0.7W;最大第一栅极电阻(Rgmax)=1MΩ.型号:说明:类型:旁热式阴极三极-五极管主要用途:振荡、混频及高频电压放大(基本数据)灯丝电压(Uf)=6.3V;灯丝电流(If)=0.45±0.05A;(三极管部分)阳极电压(Ua)=150V;阳极电流(Ia)=13±5mA;阴极电阻(Rk)=56Ω;跨导(S)=8.5mA/V;内阻(Ri)=5kΩ;放大系数(μ)=40;(五极管部分)阳极电压(Ua)=250V;阳极电流(Ia)=10±3mA;第二栅极电压(Ug2)=110V;第二栅极电流(Ig2)≤5.5mA;阴极电阻(Rk)=68Ω;跨导(S)=5.2mA/V;内阻(Ri)=400kΩ.(极间电容)(三极管部分)输入电容(Cin)=2.5pF;输出电容(Cout)=0.4pF;过渡电容(Cag)=1.8pF;(五极管部分)输入电容(Cin)=5pF;输出电容(Cout)=2.6pF;过渡电容(Cag)=0.01pF.(极限运用数据)最大灯丝电压(Ufmax)=6.9V;最小灯丝电压(Ufmin)=5.7V;最大灯丝与阴极间电压(Ufkmax)=±90V; (三极管部分)最大阳极电压(Uamax)=300V; 最大栅极电压(Ugmax)=0V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.7W;最大栅极电阻(Rgmax)=1MΩ;(五极管部分)最大阳极电压(Uamax)=300V; 最大第一栅极偏压(Ug1max)=0V;最大第二栅极电压(Ug2maxp)=300V;最大阴极电流(Ikmax)=20mA;最大阳极耗散功率(Pamax)=2.8W;最大第二栅极耗散功率(Pg2max)=0.5W.。
MicroNOTE #101by:Kent Walters&Mel ClarkA Primer On Transient Voltages And Their Effects On MicrochipsOrigin of Transient VoltagesLighting, inductive load switching, and electrostatic discharge (ESD) are the most common sources of electrical overstress which produce transient voltages. Transients are narrow spikes of voltage ranging from less than 100 nanoseconds in duration for ESD, to greater than a thousand microseconds for lighting and load switching transients. Transient voltage magnitudes range from tens of volts up to more than 10kV .Direct lighting hits have typical peak currents of 25kA but can exceed 200kA. Most damage results from the lesser amounts of transient voltage and current that bypasses any existing up-front suppression. The manhy parallel circuits in mostdistribution systems help in sharing the transient current, thus minimizing its effects at any one point. Other lighting related threats include ground potential rise and electromagnetic coupling. Lighting is predictably unpredictable, so you don’t know where the next strike will hit.When an inductive load is switched off, the stored energy in the inductor is dumped into the energizing line creating a voltage spike according to Faraday’s law of induction: V = -L(di/dt). These loads can be a transformer, motor or perhaps the solenoid in a copy machine. Poor electrical wiringpractices aggravate load switching transients. Inductive load switching produces the broadest range of transient conditions:50ns duration for electrical fast transients (EFT, essentially high voltage noise), up to 100 plus milliseconds for a generator load dump, when a fully loaded heavy vehiclegenerator has its load abruptly disconnected. Static electricity is produced when two dissimilar materials are rubbed together.Your shoe soles and the floor, or just normal body movements while sitting in a chair are typical examples. On dry days,static charges increase because dry materials become good insulators. Seven to twelve kV are typical values of voltage buildup. When the humidity is high, moist skin becomes conductive, continually draining off charges and minimizing ESD effects.Transient EntryTransients gain entry to wiring and circuit traces byconduction or radiation. Examples of conduction include a direct hit by lightning or a resulting side-flash, inductive load switching across a power source, and contact by an ESD spark. Radiated energy, transferred by electromagneticcoupling and magnetic induction is picked up by conductive material in close proximity to a discharge channel of lightning or ESD, or from nearby wiring carrying a hefty transient of any origin.Power lines are prime targets for direct lightning hits.Although surge suppression is provided by the power company to protect transformers, up to 10kV can still get through to the service entry of a building. Any other load in close proximity to an inductive load being switched feels the sting of the transients produced. The energy of an inductive source transient is often consumed by other parallel loads.The greater the number of parallel loads, the lesser the effects of the transient. Conducted ESD normally enters a system through the touch of a fingertip or hand held metal tool.Systems which are interconnected with long wires such as telephones, oil field and automated factory instrumentation and distributed computer systems are efficient collectors of radiated lightning energy. Close proximity strikes can induce voltages of 300V or more on signal lines. Power linesadjacent to computer data lines have been reported to induce both destructive and upsetting transient voltages. Linesswitching high current inductive loads are the most disruptive.The exceedingly fast rise time of ESD, in the nanosecond range, produces efficient coupling into nearby wiring. A 7kV spark to a nearby metal desk was observed to upset a PC from a distance of four feet.Effects on MicrochipsFailure of silicon based electronic equipment is manifested in severalmodes, but can be can be generally classified in one of the three following categories: 1) hard failure , 2) upset , and 3)latent .Hard failures are those sustaining permanent damage and must be replaced to restore normal circuit operation. If somecomponents are shorted, they may be vaporized when they become part of the driving current path. Failures resulting from latch-up often char the component and a small part of the underlying circuit board. At the other extreme are ESD related component failures which produce exceedingly small failure sites, down into the micron range. These can be very difficult to diagnose without sophisticated equipment.Upset is a temporary malfunction which may automatically reset or require manual reset to restore the system to normal. If a microprocessor overwrites a memory, serious problems may occur, depending on the computer use. Upsets are caused by many factors including conducted and radiated ESD, radiated EFT, and low level conducted and radiated lightning. Latent failures are parts that have been zapped only once but did not fail nor significantly degrade. These become the “walking wounded” and without further transient stress fail at a later, unpredictable date. Some fail within hours, while others may perform for several years. These long term latent failures may be too often blamed on poor quality while the real culprit is latent failure syndrome.Failure LevelsThe small geometries of individual components on integrated circuits (ICs) make them susceptible to transients although there is some level of on-chip protection for most devicesin the form of a thyristor or diode resistor network. Nevertheless, ICs which interface with the outside world, such as line drivers and line receivers, still fail at 40V to 50V for8/20us simulated lightning pulses. Although many of these components have been hardened to 10kV of ESD, most microchips fail below 2kV.Failure threshold levels vary among vendors depending on the amount of built-in protection. Also, survival of a single event does not ensure against a latent failure at some later date. Adequate protection at signal line entry points can ward off commonly encountered threats.SummaryLightning, load switching and ESD are sources of transient voltages which can gain entry into sensitive electronic equipment by conduction or radiation. The very small geometries of components on ICs makes them vulnerable to low energy levels of voltage spikes.。
3B SCIENTIFIC® PHYSICSIstruzioni per l’uso05/16 ALF1 Tubo a fascio filiforme2 Zoccolo di collegamento3 Jack di raccordo per anodo4 Jack di raccordo per catodo5 Jack di raccordo per cilindro di Wehnelt6 Jack di raccordo per spirale riscaldanteI tubi catodici incandescenti sono bulbi in vetro a pareti sottili, sotto vuoto. Maneggiare con cura: ri-schio di implosione!∙Non esporre i tubi a sollecitazioni meccaniche. Tensioni e correnti eccessive e temperature cato-diche non idonee possono distruggere i tubi.∙Rispettare i parametri di funzionamento indi-cati.Durante il funzionamento dei tubi, possono essere presenti tensioni e alte tensioni che rendono peri-coloso il contatto.∙Per i collegamenti utilizzare esclusivamente cavi di sperimentazione di sicurezza. ∙Eseguire i collegamenti soltanto con gli appa-recchi di alimentazione disinseriti.∙Montare e smontare il tubo soltanto con l'ali-mentatore disinserito.Durante il funzionamento il collo del tubo si ri-scalda.∙Lasciare raffreddare il tubo prima di rimuo-verlo.Il rispetto della Direttiva CE per la compatibilità elettromagnetica è garantito solo con gli alimenta-tori consigliati.Il tubo a fascio filiforme serve per l’analisi della de-flessione dei fasci di elettroni nel campo magnetico omogeneo mediante l’utilizzo della coppia di bobine di Helmholtz (1000906), così come per la determi-nazione quantitativa della carica specifica dell’elet-trone e/m.In un’ampolla è presente un cannone elettronico, composto da un catodo di ossido riscaldato indiret-tamente, un cilindro di Wehnelt e un anodo vuoto in un’atmosfera co n gas residuo al neon con pressione del gas regolata in modo preciso. Gli atomi di gas vengono ionizzati lungo la traiettoria di volo degli elettroni e si forma un fascio visibile, luminoso e delimitato in modo nitido. Le tacche di misurazione incorporate consentono la determinazione priva si parallasse del diametro della guida circolare del rag-gio deviato nel campo magnetico.Il tubo a fascio filiforme è montato su una base con jack di raccordo colorati. Per la protezione del tubo, nello zoccolo è installato un circuito di sicu-rezza che spegne la tensione al di sopra della ten-sione di interdizione (cutoff voltage) indicata sullo zoccolo del tubo. Il circuito di sicurezza impedisce che una tensione troppo alta distrugga il riscalda-mento e fa sì che a l momento dell’accensione la tensione salga lentamente.Gas di riempimento: neonPressione gas: 1,3x10-5 bar Tensione di riscaldamento: da 5 a 7 V (vedi indica-zione …cutoff voltage“sullo zoccolo del tubo) Corrente di riscaldamento: < 150 mATensione di Wehnelt: da 0 a -50 V Tensione anodica: da 200 a 300 V Corrente anodica: < 0,3 mADiametro del circuito delfascio elettronico: da 20 a 120 mm Distanza tra le tacche dimisurazione: 20 mmDiametro pistone: 160 mmAltezza totale con base: 260 mmPiastra della base: 115 x 115 x 35 mm3 Peso: circa 820 gSu un elettrone che si sposta verticalmente ri-spetto ad un campo magnetico omogeneo B alla velocità v, ortogonalmente rispetto alla velocità e al campo magnetico agisce la forza di LorentzBveF⋅⋅=(1) e: carica fondamentaleSpinge l’elettrone come forza centripetarvmF2⋅=(2) m: massa elettronicasu una guida circolare con il raggio r. Pertanto, si harvmBe⋅=⋅(3)La velocità v dipende dalla tensione di accelera-zione U del cannone elettronico:Umev⋅⋅=2(4) Per la carica specifica dell’elettrone vale quindi: ()22BrUme⋅⋅=(5)Se per tensioni di accelerazione diverse U e per campi magnetici diversi B si misura rispettiva-mente il raggio della guida circolare r, i valori di misura in un diagramma r2B2-2U secondo l'equa-zione (5) si trovano su una retta di origine con in-cremento e/m.Il campo magnetico B viene generato in una cop-pia di bobine di Helmholtz ed è proporzionale alla corrente I H attraverso una singola bobina. Il fattore di proporzionalità k può essere calcolato sulla base del raggio della bobina R = 147,5 mm e del numero di spire N = 124 per bobina:HIkB⋅= conAmT756,0AmVs10454723=⋅⋅π⋅⎪⎭⎫⎝⎛=-RNkPertanto, tutte le grandezze di determinazione per la carica elettronica specifica sono note.1 Alimentatore CC 300 V (@230 V) 1001012 oppure1 Alimentatore CC 300 V (@115 V) 1001011 e1 Alimentatore CC 20 V, 5 A (@230 V) 1003312 oppure1 Alimentatore CC 20 V, 5 A (@115 V) 1003311 oppure1 Alimentatore CC 500 V (@230 V) 1003308 oppure1 Alimentatore CC 500 V (@115 V) 1003307 1 Coppia di bobine di Helmholtz 1000906 1 oppure2 Multimetro analogico ESCOLA 301013526 Cavi di sicurezza per esperimenti6.1 Montaggio∙Posizionare il tubo a fascio filiforme tra le bo-bine di Helmholtz.∙Per poter osservare meglio il fascio elettro-nico, l'esperimento dovrebbe essere eseguito in una stanza con poca luce.6.1.1 C ollegamento del tubo a fascio filiforme all'a-limentatore CC 300 V∙Cablare il tubo come indicato nella fig. 1.∙Collegare il voltmetro in parallelo all'uscita da 300 V.∙Collegare le bobine in serie all'alimentatore CC 20 V, come indicato nella fig. 2, in modo che la corrente attraversi entrambe le bobine nella stessa direzione.6.1.2 C ollegamento del tubo a fascio filiforme all'a-limentatore CC 500 V∙Cablare il tubo come indicato nella fig. 4.6.2 Regolazione del fascio elettronico∙Applicare la tensione di riscaldamento, ad esempio a 7,5 V. (La tensione di riscalda-mento deve essere inferiore al “cutoff vol-ta ge”.)∙Attendere ca. 1 minuto finché si stabilizza la temperatura della spirale di riscaldamento.∙Aumentare lentamente la tensione anodica finoa massimo 300 V (il fascio elettronico inizial-mente orizzontale viene reso visibile da una de-bole luce blu). ∙Selezionare la tensione di Wehnelt in modo che si possa vedere un sottilissimo fascio di raggi dai contorni nitidi.∙Ottimizzare la nitidezza e la luminosità del fa-scio di raggi modificando la tensione di riscal-damento.∙Aumentare la corrente di bobina I H agendo sulle bobine di Helmholtz e controllare se il fa-scio elettronico si incurva verso l'alto. Qualora non si denoti alcuna curvatura del fascio elettronico:Invertire la polarità di una delle bobine, in modo che la corrente attraversi entrambe le bobine nella stessa direzione.Se il fascio elettronico non mostra una curvatura verso l'alto:∙Per invertire la polarità del campo magnetico scambiare i cavi di collegamento dell’alimen-tatore.∙Aumentare ulteriormente la corrente di bobinae controllare se il fascio elettronico genera unaguida circolare chiusa in se stessa.Se la guida circolare non è chiusa:∙Ruotare il tubo a fascio filiforme con tutta la base attorno all'asse verticale.Determinazione della carica specifica e/m dell'elettrone∙Impostare la corrente di bobina in modo che il raggio della guida circolare sia di 5 cm e an-notare il valore impostato.∙Ridurre la tensione anodica in fasi da 20 V fino a 200 V, quindi impostare la corrente di bobina I H in modo che il raggio rimanga costante e annotare questi valori.∙Registrare ulteriori serie di misurazioni per i raggi da 4 cm e 3 cm della guida circolare.∙Per un'ulteriore analisi, riportare i valori di mi-sura in un diagramma r2B2-2U (ved. Fig. 3). L’i ncremento delle rette di origine corrisponde a e/m.Fig. 1 Collegamento del tubo a fascio elettronico all'a-limentatore CC 300 VFig. 2 Collegamento elettrico della coppia di bobine di HelmholtzFig. 3 Diagramma r2B2-2U dei valori di misura (nero: r = 5 cm, rosso: r = 4 cm, verde: r = 3 cm)Fig. 4 Collegamento del tubo a fascio filiforme all'a-limentatore CC 500 V3B Scientific GmbH ▪ Ludwig-Erhard-Str. 20 ▪ 20459 Amburgo ▪ Germania ▪ 。
TX-DA102D 系列超大功率IGBT驱动板目录1、产品特点及应用概述2、驱动特性参数3、DC/DC辅助电源电性能参数4、工作条件参数5、过流保护参数及说明6、产品结构框图7、产品外型图8、元器件位置示意图9、输入输出接口和部分接插件的说明10、参数设置说明11、典型应用连接图12、报警信号输出说明13、特别提醒产品特点∙超大功率IGBT驱动板,每路输出20A驱动电流,可驱动高达2000A/1700V的IGBT模块,有一、二、四、六、七单元多种版本可选∙三段式完善的过电流保护功能(三段式过流保护:检测到过流信号后先降栅压,再延迟判断,确实短路时实行软关断,并封锁输入信号以执行一个完整的保护周期,未短路则恢复输出,避免干扰信号造成频繁启动)∙IGBT的栅极充电和放电速度可分别调节∙专门设计的输出插座,可支持单只IGBT或并联IGBT∙即插即用设置简单,一般只需设定IGBT的短路阈值电阻Rn,并调整栅极电阻Rg,其余驱动保护参数均可使用缺省值∙IGBT驱动保护报警输出与其它部分电隔离,用户可灵活处置,每路单独故障指示灯∙每单元自带独立的DC/DC辅助电源,各单元互不干扰∙输入电源15V(可定制12-20V、20-30V、12-50V宽范围版本),板载正负极性保护。
∙支持多种输入信号电平∙统一的输出使能端控制应用∙逆变器、不间断电源、变频器、电焊机、伺服系统等驱动特性(除另有指定外,均为在以下条件时测得:Ta=25℃,Vp=15V,Fop=50KHz,模拟负载电容CL=220nF)DC/DC辅助电源电性能参数(除另有指定外,均为在以下条件时测得:Ta=25℃,Vp=15V)1. 输入电压也可以定制12-20V、20-30V、12-50V宽范围版本。
2. 输入电流与负载情况有关,当以20KHz的频率驱动一只800A/1200V的IGBT(如SKM800GA126D)时,大致需要电0.2A。
同样频率驱动1只1600A/1200V(如FZ1600K12KE3)时,大致需要电流0.6A。
3B SCIENTIFIC ® PHYSICSBedienungsanleitung11/17 ALF1,2 4-mm-Buchsen zum An-schluss der Heizung und Kathode3 4-mm-Steckerstift zumAnschluss der Anode 4 4-mm-Steckerstift zumAnschluss der Ablenkplatte 5 Axiale Elektronenkanone 6 Senkrechte Elektronenka-none7 Ablenkplatte 8 Halter9FluoreszenzschirmGlühkathodenröhren sind dünnwandige, evaku-ierte Glaskolben. Vorsichtig behandeln: Implosi-onsgefahr!∙ Röhre keinen mechanischen Belastungenaussetzen.∙ Verbindungskabeln keinen Zugbelastungenaussetzen.∙ Röhre nur in den Röhrenhalter D (1008507)einsetzen.Zu hohe Spannungen, Ströme sowie falsche Kathodenheiztemperatur können zur Zerstörung der Röhre führen.∙ Die angegebenen Betriebsparameter einhal-ten.Beim Betrieb der Röhren können am Anschluss-feld berührungsgefährliche Spannungen und Hochspannungen anliegen.∙ Schaltungen nur bei ausgeschalteten Ver-sorgungsgeräten vornehmen.∙ Röhren nur bei ausgeschalteten Versor-gungsgeräten ein- und ausbauen. Im Betrieb erwärmt sich der Röhrenhals.∙Röhre vor dem Ausbau abkühlen lassen. Die Einhaltung der EC Richtlinie zur elektro-magnetischen Verträglichkeit ist nur mit denempfohlenen Netzgeräten garantiert.Die Doppelstrahlröhre dient zur Bestimmung der spezifischen Ladung e /m aus dem Bahndurch-messer des Elektronenstrahls bei tangentialem Einschuss und senkrecht angelegtem Magnet-feld sowie zur Beobachtung der Spiralbahnen von Elektronen bei axialem Einschuss und koa-xialem Magnetfeld.Die Doppelstrahlröhre ist ein teilevakuierter, mit Neon gefüllter Glaskörper mit tangentialer und axialer Elektronenkanone mit je einer indirekt beheizten Oxid-Kathode. Die senkrecht zueinan-der angeordneten Elektronenstrahlen erlauben eine gemeinsame Ablenkplatte für beide Elektro-nenkanonen. Die Elektronenbahnen werden durch Stoßanregung der Neonatome als feiner, orangefarbener Leuchtstrahl sichtbar.Heizspannung: max. 7,5 V AC/DC Anodenstrom: max. 30 mA Anodenspannung: Maximalwert so, dassAnodenstrom ≤ 30 mA(typisch 120-300 V DC) Ablenkspannung: max. 50 V DC Glaskolben: ca. 130 mm Ø Gesamtlänge: ca. 260 mmGasfüllung: NeonZur Durchführung der Experimente mit der Dop-pelstrahlröhre sind folgende Geräte zusätzlich erforderlich:1 Röhrenhalter D 1008507 1 DC Netzgerät 0 – 500 V (@230 V) 1003308 oder1 DC Netzgerät 0 – 500 V(@115 V) 10033071 Helmholtz-Spulenpaar D 10006442 Analog Multimeter AM50 10030734.1 Einsetzen der Röhre in den Röhrenhalter ∙Röhre nur bei ausgeschalteten Versor-gungsgeräten ein- und ausbauen.∙Fixierschieber des Röhrenhalters ganz zu-rück schieben.∙Röhre in die Klemmen einsetzen.∙Mittels der Fixierschieber Röhre in den Klemmen sichern.4.2 Entnahme der Röhre aus dem Röhren-halter∙Zum Entnehmen der Röhre Fixierschieber wieder zurück schieben und Röhre entneh-men.4.3 Anmerkungen1. Begrenzung des Anodenstroms: Zur Vermei-dung von zu starkem Beschuss mit positiven Ionen auf die Elektronen emittierenden Chemi-kalien der Kathode sollte der Anodenstrom wann immer möglich auf 30 mA begrenzt sein. Höhere Ströme sind für kurze Zeit tolerierbar, über längere Zeit jedoch verkürzen sie jedoch die normale Lebenszeit der Röhre.2. Thermische Stabilität der Kathode: Aus dem gleichen Grund sollte der Beschuss einer kalten, sich gerade aufheizenden Kathode vermieden werden.3. Fokussierung des Strahls: Mittels kleiner Spannungen U P an der Ablenkplatte lässt sich der Strahl fokussieren. Spannungen über 6 V führen zu einer Verschlechterung der Ergebnisse.5.1 Abschätzung von e/mEin Elektron der Masse m mit der Ladung e, das sich mit der Geschwindigkeit v senkrecht zu ei-nem magnetischen Feld B bewegt, erfährt die Kraft F, die senkrecht sowohl zu B und v wirkt: evBF=Sie zwingt das Elektron in eine Kreisbahn mit dem Krümmungsradius R in einer Ebene senk-recht zu B. Die Zentripetalkraft ist gegeben durchevBRmvF==2.Für die Energie eines Elektrons in der Doppel-strahlröhre gilt:221mveU A=Durch Auflösung nach v und Einsetzen in die Gleichung ergibt sich:222RBUme A=Der Ausdruck e/m ist die spezifische Ladung eines Elektrons und hat die feste Größe (1,75888 ± 0,0004) x 1011C/kg.5.1.1 Bestimmung von BDie Spulen haben einen Durchmesser von 138 mm und in der Helmholtz-Anordnung eine Flussdichte B vonHB0μ== (4.17 x 10-3) I H T/A∙Beschaltung der Röhre gemäß Fig. 4 vor-nehmen.∙Raumbeleuchtung abdunkeln.∙Heizspannung U F von 6,5 V einstellen und einige Minuten warten bis sich die Tempera-tur der Heizung stabilisiert hat (siehe 4.3). ∙Anodenspannung U A von 90 V einstellen und warten, bis sich der Anodenstrom stabi-lisiert hat (Plattenspannung U P = 0 V).∙Spulenstrom I H so einstellen, dass der abge-lenkte Strahl durch Punkt A am Rand des Leuchtschirms geht. Gleichzeitig mittels ei-ner Plattenspannung U P von maximal 6 V den Strahl fokussieren.∙U A erhöhen und I H so einstellen, dass der abgelenkte Strahl immer durch Punkt A geht. Anodenspannung nur so weit erhöhen,dass der Anodenstrom 30 mA nicht über-schreitet.∙Werte in einer Tabelle zusammenstellen.5.1.2 Bestimmung von RDer Elektronenstrahl tritt bei C aus der Elektro-nenkanone auf der Längsachse der Röhre, die eine Tangente zu jeder kreisförmigen Ablenkung des Strahls bildet. Der Mittelpunkt der Kreisbahn ist der Punkt B. Er liegt in der Ebene DCD’ u n-gefähr 2 mm entfernt von der Ebene EE’ (siehe Fig. 1).DC BC AC BC AB ⋅-+=2222 yy x DC AC AB BC R 22222+====22222⎥⎥⎦⎤⎢⎢⎣⎡+=y y x RFig. 1 Bestimmung von R5.2 Die kreisförmige Ablenkung und Ab-schätzung von e /m∙ Beschaltung der Röhre gemäß Fig. 5 vor-nehmen.∙ Anodenspannung U A von 100 V einstellenund warten, bis sich der Anodenstrom stabi-lisiert hat (Plattenspannung U P = 0 V).∙ Spulenstrom I H so einstellen, dass der abge-lenkte Strahl einen Kreis bildet und die Ebe-ne AA’ eine Tangente dazu ist.Zweckmäßig ist es dabei den Strahl von obenzu betrachten, der dann als gerade Linie er-scheint, und mit einer Plattenspannung von maximal 6 V zu fokussieren.Anmerkung: Die axiale Nicht-Linearität des Strahls bewirkt, dass er aus der Ebene der Elektronenkanone verschoben ist. Um genauere Resultate zu erreichen sollte die Röhre mittels der Halterungsgabel so gedreht werden, dass der Kreis in der Ebene der Elektronenkanone liegt. Gleichzeitig sollte I H so angepasst werden, dass die Ebene AA’ eine gute Tange nte zur Kreisbahn bildet. Ein leichter Winkelversatz zur Röhrenachse ist tolerierbar. Der Strahl bildet auch eine leichte Spirale statt einer Kreisbahn zu folgen.∙ U A erhöhen und I H so einstellen, dass dieEbene AA’ immer eine Tangente zum abg e-lenkten Strahl bildet. Anodenspannung nur so weit erhöhen, dass der Anodenstrom 30 mA nicht überschreitet. Werte in einer Tabelle zusammenstellen und grafisch dar-stellen.∙ R = AE /2 und R ² = AE ²/4 wie im Versuch 5.1bestimmen.Durch Einsetzen der Werte in die Gleichung5221015.1⋅⋅=RI Um e H A lässt sich ein Näherungswert für e /m errechnen.5.3 Der Effekt eines axialen Magnetfelds∙ Röhre in einem Winkel von 90° zu ihrernormalen Position im Halter platzieren (sie-he Fig.2).∙ Eine Spule so in den Röhrenhalter einsetzen,dass der Leuchtschirm von ihr umschlossen ist.∙ Beschaltung der Röhre gemäß Fig.6 vor-nehmen.Fig. 2 Aufbau der Spule∙Anodenspannung U A auf max. 60 V einstel-len und warten, bis sich der Anodenstrom stabilisiert hat (Plattenspannung U P = 0 V).∙Spulenstrom I H langsam erhöhen.Mit nur einem axialen Vektor der Geschwindig-keit v a wird die axiale Nicht-Linearität des Strahls korrigiert und fällt mit der wahren Achse des Felds zusammen.∙Mit einem Filzstift die Lage des Strahls mar-kieren.∙I H auf 1,5 A einstellen, U P langsam erhöhen, so dass ein zweiter Geschwindigkeitsvektor v p auf den Strahl wirkt.∙Den Elektronenstrahl durch die Spule hin-durch beobachten.Der Strahlengang wird in eine Helix umgeformt. Der Strahl geht dabei nicht um die Feldachse, sondern kehrt jeweils nach jeder Schleife dorthin zurück.∙Feld B durch Umpolung der Helmholtzspule umkehren und den Strahl beobachten.∙Anodenspannung verändern und Auswir-kung auf die Helix beobachten, wieder auf60 V zurückkehren. Anodenspannung nur soweit erhöhen, dass der Anodenstrom 30 mA nicht überschreitet.Fig. 3 Helix des abgelenkten Strahls1. Der kreisförmige Strahl in Experiment 5.2 ist sichtbar durch Photonenemission. Diese Ener-gie geht verloren und wird nicht ersetzt. Aus diesem Grund tendiert der Strahl zu einem spi-ralförmigen Verlauf statt einer Kreisbahn zu folgen. Bei einem festen Radius R und einer wirklichen Kreisbahn ist U A/I H² größer als ge-messen und deshalb ist der Fehler bei der Be-stimmung von e/m immer auf der negativen Seite. Trotzdem lassen sich Ergebnisse erzie-len, die innerhalb 20% genau sind.2. Bei Experimenten mit halbkreisförmig abge-lenkten Strahlen wie in Experiment 5.1 werden Ergebnisse erzielt, die größer sind als der Lite-raturwert. Die Punkte A und E, zu denen der Strahl abgelenkt wird, liegen außerhalb der ho-mogenen Region der Helmholtzspulen. Dort nimmt die Flussdichte ab. Bei einem bestimmten Radius R und einem homogenen Feld ist U A/I H² kleiner als gemessen und deshalb ist der Fehler bei der Bestimmung von e/m immer auf der positiven Seite. Trotzdem lassen sich Ergebnis-se erzielen, die innerhalb 20% genau sind.Fig. 4 Bestimmung von e/m mittels der axialen ElektronenkanoneFig. 5 Bestimmung von e/m mittels der senkrechten ElektronenkanoneFig. 6 Der Effekt eines axialen Magnetfelds3B Scientific GmbH ▪ Rudorffweg 8 ▪ 21031 Hamburg ▪ Deutschland ▪ 。
DCG-10DBA说明书DCG-10DBA是目前唯一一款能用于驱动工业用直流电源的单片机,也可以用来驱动工业电视等电子设备。
它采用了可编程的数字信号处理技术,在提供控制和信号处理功能的同时提供了输出结果。
在传统控制中,它通常是一个整数位数字信号由一个处理器处理。
这种处理方式称为逻辑处理。
通过一组微处理器处理它来控制计算机的逻辑系统。
同时在处理一个或多个控制指令上提供信号的处理单元。
在一些特殊场合通常会用到这些指令包括模拟数字信号(一般是模拟信号)。
例如在生产过程中必须使用模拟信号对数字信号进行处理时所使用的电子系统就是数字信号处理装置。
由于它是在一个电平上进行处理和判断实现信息的输出,因此它本身就具有一定的功能.例如:模拟输入信号:数据输入输出信号:(输入)在模拟信号产生以后对信号进行处理(包括变换成数字信号)同时还将输出信息记录在一张PROFIBE中,使其不是静止的(1-10个)或一组连续运动的时间间隔,而是由一个或多个不同时钟(即时间)产生的时间来控制电源提供频率。
可以在计算机上用来处理多个数字通信通道时的状态.数据和时钟都是模拟信号所不能代替实际存在的物理过程。
因此需要一个数字转换设备来将它转换成电信号.我们可以把一个简单地模拟成为另一个数字脉冲(即数字信号)或者以其为单位进行数据压缩、存储和处理,这样就可以输出到计算机上了。
•1、电源电压范围:±10 V在这里,使用电源时,我们必须了解两点:1)电源有哪些工作模式,有哪些运行模式,2)这个电源上有多少个继电器,怎么控制它们?如果按着这些基本的标准来衡量整个系统,则整个系统对我们来说太过简单了。
但如果把这些数据汇总起来,就会发现整个系统对于我们来说是很复杂的。
因此对用户来说,我们需要先了解具体的操作,再去选择合适的型号去实现他们的工作,这正是我们需要研究和学习的知识!DCG-10DBA作为一个多核系统,具有高达24路控制继电器;8路电流反馈开关;5路自动电压调节器和7路自动频率调节器、6路功率开关、7路功率电阻、9路电感、10路低电平电阻、11路同步电阻、12路可编程定时器、16路时钟源、18路高精度模拟电平转换、16个自定义脉冲编码器、10个数字信号解码电路等。
Foxboro ™ DCSFBM243/243b, FoxCom Dual Baud Rate, Intelligent Device ModulesPSS 41H-2S243Product SpecificationAugust2019Legal InformationThe Schneider Electric brand and any trademarks of Schneider Electric SE and itssubsidiaries referred to in this guide are the property of Schneider Electric SE or itssubsidiaries.All other brands may be trademarks of their respective owners.This guide and its content are protected under applicable copyright laws and furnishedfor informational use only.No part of this guide may be reproduced or transmitted inany form or by any means(electronic,mechanical,photocopying,recording,orotherwise),for any purpose,without the prior written permission of Schneider Electric.Schneider Electric does not grant any right or license for commercial use of the guideor its content,except for a non-exclusive and personal license to consult it on an"as is"basis.Schneider Electric products and equipment should be installed,operated,serviced,and maintained only by qualified personnel.As standards,specifications,and designs change from time to time,informationcontained in this guide may be subject to change without notice.To the extent permitted by applicable law,no responsibility or liability is assumed bySchneider Electric and its subsidiaries for any errors or omissions in the informationalcontent of this material or consequences arising out of or resulting from the use of theinformation contained herein.Overview FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModulesOverviewThe FBM243,FoxCom Dual Baud Rate,Intelligent Device Module contains eightindividual channels.The FBM243b,FoxCom Dual Baud Rate,Intelligent DeviceModule contains four individual input channels and four0to20mA analog outputchannels.Each input provides internal isolated power and digital communication capabilities to aFoxboro Intelligent Field Device.Each channel communicates over a single twistedpair of wires and each channel of the FBM243/243b is channel isolated.The modules also allow the use of an external power supply to power the IntelligentField Device.(The use of an external power supply common to two or more loopsneeds the use of a cable balun module to maintain digital communication linebalance).The baud rate is determined by the configuration of the field deviceconnected to each channel,independently of the other channels.The modulesprovide bidirectional digital communication at4800baud rate between the IntelligentField Device and the system redundant Fieldbus,or provides bidirectional digitalcommunication at600baud rate between the field device and the modules whileallowing a simultaneous4to20mA analog signal from the field device to anemergency shutdown system.The FBM243/243b is an Intelligent Field Device host,enabling the system to receivedigital messages from the field device in engineering units.Each message is receivedten times per second at4800baud,and two times per second at600baud.Eachmessage contains:•Up to three measured variables in IEEE32-bit floating-point format•Security information•Diagnostics•Message checkingThis information is available to each of the elements of the system.Since communication is bidirectional,the system can display the output,transmittertemperature(°C and°F),and the results of continuous self-diagnostics.In addition,the following information can be displayed or reconfigured from a console,a FieldCommunicator,or PC-Based Configurator:•Output in engineering units•Fail-safe information•Tag number,name and location•Device name(letterbug)•Last calibration date•Two levels of upload/download capabilitiesWhen connected to the appropriate TAs,the FBM243/243b modules providefunctionality formerly provided by the100Series FBM I/O subsystem.TAs areavailable for the FBM243that support the functionality of the100Series FBM18andFBM43.TAs are available for the FBM243b that support the functionality of the100SeriesFBM39and FBM44.FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModules Features Features•For the FBM243,8individual digital communication channels•For the FBM243b,4individual dual baud,FoxCom communication channels andfour0to20mA analog output channels•Receives messages10times per second at4800baud,or2times per second at600baud,and contains:◦Up to3measured variables in IEEE◦32-bit floating-point format◦Security information◦Diagnostics◦Message checking•Allows use of an external power supply or the FBM243internal isolated power topower the Intelligent Field Device•Digital communication capabilities to a Foxboro Intelligent Field Device over asingle twisted pair of wires•Allows a simultaneous4to20mA analog signal from the field device to anemergency shutdown system•Termination Assemblies(TAs)for locally or remotely connecting field wiring to theFBM243•Termination Assemblies(TAs)for non-intrinsically safe or intrinsically safeapplicationsFeatures FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModulesStandard DesignThe FBM243/243b has a rugged extruded aluminum exterior for physical protection ofthe circuits.Enclosures specially designed for mounting of the FBMs provide variouslevels of environmental protection,up to harsh environments per ISA StandardS71.04.Visual IndicatorsLight-emitting diodes(LEDs)incorporated into the front of the module provide visualindication of the module operational status,and communication activity of the inputchannels.Easy Removal/ReplacementThe module can be removed/replaced without removing field device terminationcabling,power,or communication cabling.Figure1-FBM243/243b I/O ConfigurationFBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModules Features Fieldbus CommunicationThe Fieldbus Communications Module(FCM)or the Field Control Processor(FCP)interfaces to the redundant2Mbps module Fieldbus used by the FBMs.TheFBM243/243b accepts communication from either path(A or B)of the2MbpsFieldbus.If one path is unsuccessful or is switched at the system level,the modulecontinues communication over the active path.Modular Baseplate MountingThe FBM243/243b mounts on a Standard200Series Modular Baseplate(see Figure1),which accommodates up to four or eight Fieldbus Modules.TheModular Baseplate is either DIN rail mounted or rack mounted,and includes signalconnectors for redundant Module Fieldbus,redundant independent dc power,andtermination cables.Termination AssembliesField I/O signals connect to the FBM subsystem via DIN rail mounted terminationassemblies(TAs).For the FBM243,TA RH931KJ contains a51ohm resistor in series with each channelfor use in non-intrinsically safe applications.TA RH917XW is a direct channel for use in intrinsically safe applications.An intrinsicsafety barrier needs to be connected to each channel of this TA providing thenecessary resistance for each channel.TAs RH931KJ,RH917XW,and RH931KJ are available in Polyamide material.For the FBM243b,TAs RH924QQ and RH924QY are available for use in non-intrinsically safe applications.TA RH924QY has output bypass jacks that help removeFBMs from service during system maintenance.An Output Bypass Station providesmanually driven milliamp output signals through the bypass jacks to deter interruptionof the process output signals.The DIN rail mounted TAs connect to the FBM subsystem baseplate by means of aremovable termination cable.The cable is available in a variety of lengths,up to30meters(98feet),allowing the TA to be mounted in either the enclosure or in anadjacent enclosure.Termination cables are available in these materials:•Polyurethane•Low Smoke Zero Halogen(LSZH)Refer to Table1.Features FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModulesCable Balun ModuleA Cable Balun Module maintains digital communication line balance for IntelligentField Devices connected in FBM loops that are powered from a common externalpower supply.This powering method effectively connects one line of each loop to asingle point.(Without the baluns,the multiple common connections at the externalpower source cause communication cross-talk between the loops.)Baluns are notneeded for loops that use internal power sourcing(powered from the FBM).TheCable Balun Module(RH903SV)contains four baluns,with one balun used for eachloop powered from the external power supply.Each balun adds28ohms of resistanceto its associated loop.FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModules Functional Specifications Functional SpecificationsFunctional Specifications FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModulesFBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceSpecificationsModules FunctionalEnvironmental SpecificationsFBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModulesEnvironmental SpecificationsNOTE:The environmental limits of this module may be enhanced by the type of enclosure containing the module.Refer to the applicable Product Specification Sheet (PSS)that describes the specific type of enclosure that is to be used.FBM243/243b,FoxCom Dual Baud Rate,Intelligent Device ModulesPhysicalSpecificationsPhysical SpecificationsPhysical Specifications FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModulesFBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModules Physical SpecificationsTable1-Termination Cable Types and Part NumbersUpgrade Use of Termination AssembliesWhen an FBM243/243b is used to replace the100Series FBM,it may use any of theappropriate termination assemblies listed in this PSS for the100Series FBM’s fieldI/O wiring.Alternatively,the FBM243/243b can accept this field wiring through aTermination Assembly Adapter(TAA)instead of a termination assembly.This isdiscussed in Termination Assembly Adapter Modules for100Series Upgrade(PSS41H-2W4).Dimensions-Nominal FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModulesDimensions-NominalFigure2-Termination Assemblies(a)Overall width—for determining DIN rail loading.(b)Height above DIN rail(add to DIN rail height for total).FBM243/243b,FoxCom Dual Baud Rate,Intelligent DeviceModules Related Product Documents Related Product DocumentsWARNING: This product canexpose you to chemicalsincluding lead and leadcompounds, which areknown to the State ofCalifornia to cause cancerand birth defects or otherreproductive harm. For moreinformation, go to/. Schneider Electric Systems USA,Inc.38Neponset AvenueFoxborough,Massachusetts02035–2037United States of AmericaGlobal Customer Support:https://As standards,specifications,and design change from time to time,please ask for confirmation of the information given in this publication.©2015–2019Schneider Electric.All rights reserved.PSS41H-2S243,Rev A。