集合的运算补集
- 格式:ppt
- 大小:407.00 KB
- 文档页数:10
集合的三种基本运算集合的三种运算分别是有交集、并集、补集。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。
集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
集合的基本运算:交集、并集、相对补集、绝对补集、子集。
(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。
(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。
(3)相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合:其元素属于B但不属于A,B - A= { x| x∈B且x∉A}。
(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。
(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。
符号语言:若∀a∈A,均有a∈B,则A⊆B。
基数:集合中元素的数目称为集合的基数,集合A的基数记作card(A)。
当其为有限大时,集合A称为有限集,反之则为无限集。
一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
假设有实数x < y:①[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;②(x,y):小括号是不包括边界,即表示大于x、小于y的数。
1.1.3集合的基本运算补集(1)全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
(2)补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:∁U A即:∁U A ={x|x ∈U ,且x ∉A}.(3)补集的Venn 图表示说明:补集的概念必须要有全集的限制1、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
2、集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A ,A ∪B=B ∪A (∁U A )∪A=U ,(∁U A )∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<< 求ð.解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤ , (){|1,9U C A B x x x =<-≥ 或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A C B C .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------ .(1)又{}3B C = ,∴()A B C = {}3;(2)又{}1,2,3,4,5,6B C = ,得{}()6,5,4,3,2,1,0A C B C =------ . ∴ ()A A C B C {}6,5,4,3,2,1,0=------. A B B A-1 3 59 x【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A = ,求实数m 的取值范围. 解:由A B A = ,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B = ,则(){6,7,9}U C A B = .由{5,8}A B = ,则(){1,2,3,4,6,7,9}U C A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,则()(){6,7,9}U U C A C B = ,()(){1,2,3,4,6,7,9}U U C A C B = .由计算结果可以知道,()()()U U U C A C B C A B = ,()()()U U U C A C B C A B = .点评:可用Venn 图研究()()()U U U C A C B C A B = 与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.【自主尝试】1.设全集{}|110,U x x x N =≤≤∈且,集合{}{}3,5,6,8,4,5,7,8A B ==,求A B ⋃,A B ⋂,()U C A B ⋃.2.设全集{}{}{}|25,|12,|13U x x A x x B x x =-<<=-<<=≤<集合,求A B ⋃,A B ⋂,()U C A B ⋂.3.设全集{}{}{}22|26,|450,|1U x x x Z A x x x B x x =-<<∈=--===且, 求A B ⋃,A B ⋂,()U C A B ⋃.-2 4 m x B A【典型例题】1.已知全集{}|U x x =是不大于30的素数,A,B 是U 的两个子集,且满足{}{}()5,13,23,()11,19,29U U A C B B C A ⋂=⋂=,{}()()3,7U U C A C B ⋂=,求集合A,B.2.设集合{}{}22|320,|220A x x x B x x ax =-+==-+=,若A B A ⋃=,求实数a 的取值集合.3. 已知{}{}|24,|A x x B x x a =-≤≤=<① 若A B φ⋂=,求实数a 的取值范围;② 若A B A ⋂≠,求实数a 的取值范围;③ 若A B A B A φ⋂≠⋂≠且,求实数a 的取值范围.4.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.【练习】1.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃=( )A {}0,1,8,10 B {}1,2,4,6 C {}0,8,10 D Φ2.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( ) A 1或0 B 1,0,或2 C 0,2或-2 D 1或23.若{}{}{}0,1,2,1,2,3,2,3,4A B C ===⋂⋃⋂则(A B)(B C)= ( )A {}1,2,3 B {}2,3 C {}2,3,4 D {}1,2,44.设集合{}{}|91,|32A x x B x x A B =-<<=-<<⋂=则 ( )A{}|31x x -<< B{}|12x x << C{}|92x x -<< D{}|1x x <【达标检测】一、选择题1.设集合{}{}|2,,|21,M x x n n Z N x x n n N ==∈==-∈则M N ⋂是 ( )A ΦB MC ZD {}02.下列关系中完全正确的是 ( )A {},a a b ⊂ B {}{},,a b a c a ⋂=C{}{},,b a a b ⊆ D {}{}{},,0b a a c ⋂=3.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 ( )A M B {}1,4 C {}1 D Φ4.若集合A,B,C满足,A B A B C C ⋂=⋃=,则A与C之间的关系一定是( )A A C B C A C A C ⊆ D C A ⊆5.设全集{}{}|4,,2,1,3U x x x Z S =<∈=-,若u C P S ⊆,则这样的集合P共有( )A 5个 B 6个 C 7个 D8个二、填空题6.满足条件{}{}1,2,31,2,3,4,5A ⋃=的所有集合A的个数是__________.7.若集合{}{}|2,|A x x B x x a =≤=≥,满足{}2A B ⋂=则实数a =_______.8.集合{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-,则集合B=_____.9.已知{}{}1,2,3,4,5,1,3,5U A ==,则U C U =________________.10.对于集合A,B,定义{}|A B x x A -=∈∉且B ,A⊙B=()()A B B A -⋃-, 设集合{}{}1,2,3,4,5,6,4,5,6,7,8,9,10M N ==,则M⊙N=__________.三、解答题11.已知全集{}|16U x N x =∈≤≤,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.12.已知全集U=R,集合{}{}|,|12A x x a B x x =<=<<,且()U A C B R ⋃=,求实数a 的取值范围13.设集合{}{}22|350,|3100A x x px B x x x q =+-==++=,且13A B ⎧⎫⋂=-⎨⎬⎩⎭求A B ⋃.。
集合的交集、并集与补集集合是数学中的一个重要概念,它是由一些确定的对象组成的整体。
在集合论中,我们通常会涉及到集合的交集、并集与补集等操作。
这些操作不仅在数学中有广泛的应用,也在计算机科学、逻辑学等领域中起着重要的作用。
本文将详细介绍集合的交集、并集与补集的定义和性质,并给出一些具体的例子。
一、交集(Intersection)集合的交集是指包含同时属于两个集合的所有元素的新集合。
记为A ∩ B,读作“集合A与集合B的交集”。
如果一个元素同时属于A和B,那么它就属于A ∩ B。
交集的定义可以扩展到多个集合之间。
对于n个集合A1, A2, …, An,它们的交集是同时属于所有这些集合的元素的集合,记为A1 ∩ A2 ∩ … ∩ An。
交集的运算特性如下: 1. 交换律:A ∩ B = B ∩ A 2. 结合律:(A ∩ B) ∩ C = A ∩ (B ∩ C) 3. 吸收律:A ∩ (A ∪ B) = A 4. 分配律:A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)以下是一个具体的例子来说明交集的概念。
假设有两个集合A = {1, 2, 3}和B = {2, 3, 4},它们的交集是A ∩ B = {2, 3}。
因为数字2和3同时属于集合A和B,所以它们也属于它们的交集。
二、并集(Union)集合的并集是指包含至少属于两个集合中的所有元素的新集合。
记为A ∪ B,读作“集合A与集合B的并集”。
如果一个元素属于A或B中的一个,那么它就属于A ∪ B。
并集的定义同样可以扩展到多个集合之间。
对于n个集合A1, A2, …, An,它们的并集是至少属于其中一个集合的元素的集合,记为A1 ∪ A2 ∪ … ∪ An。
并集的运算特性如下: 1. 交换律:A ∪ B =B ∪ A 2. 结合律:(A ∪ B) ∪ C = A ∪ (B ∪ C) 3. 吸收律:A ∪ (A ∩ B) = A 4. 分配律:A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)继续以上面的集合A和B为例,它们的并集是A ∪ B = {1, 2, 3, 4}。
三个集合运算公式大全
1、交集:A∩B= {x | x∈A 且x∈B}
2、并集:A∪B= {x | x∈A 或x∈B}
3、补集:A’= {x | x不属于A}
4、相反集:Aˉ = {x | x∈A 且x∈B’}
5、差集:A-B = {x | x∈A 且x∈B’}
6、排序集:A-B = {x | x∈A 且x∈B’}
7、对称差集:A⊕B = (A-B)∪(B-A)
8、真子集:A是B的真子集当且仅当 A⊆B
9、超集:A是B的超集当且仅当 A⊇B
10、空集:空集表示一个空的集合,符号用∅表示
11、向量空间:向量空间就是集合中的元素都是向量,要满足加法及数乘的结合律
12、非排序集:非排序集是指集合中的元素不需要按照某种特定的序列进行排序
13、复合空间:复合空间就是由两个或多个空间的组合而成的新的空间
14、等价类:等价类是指将在一个集合中相同的元素放到一个类里面的操作
15、带有条件的集合:带有条件的集合就是指要求集合中的元素必须满足某种特定的条件才能进行操作
16、连接集:连接集是指通过将两个或多个集合的元素进行连接而成的新的集合
17、图:图是集合中的一种特殊的操作,其概念是指将集合中的元素结构化,形成一个表示集合关系的网状图
18、全集:全集就是指一个集合中包含了其他所有可能的元素。
第二讲 集合的基本运算二一、全集在研究某些集合的时候,这些集合往往是 的子集,这个给定的集合叫作全集,常用符号U 表示.全集含有我们所要研究的这些集合的全部元素.二、补集1.补集的概念2.补集的性质(1)特殊集合的补集:(1)∁U U = ,∁U ∅= ;(2)补集的运算:∁U (∁U A )= ,A ∪(∁U A )= ,A ∩(∁U A )= .类型一 补集的运算例1.判断(正确的打“√”,错误的打“×”)(1)全集一定是实数集.( )(2)集合C ⊆A ,C ⊆B ,则∁A C =∁B C .( )(3)若x ∈U ,A ⊆U ,则x ∈A ,x ∈∁U A 二者有且只有一个成立.( )2.设集合U ={1,2,3,4,5,6},M ={1,2,4},则∁U M =( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}例2.(1)已知全集U ={x |-1≤x ≤4},A ={x |-1≤x ≤1},B ={x |0<x ≤3},求∁U A ,(∁U B )∩A ;(2)设U ={x |-5≤x <-2,或2<x ≤5,x ∈Z },A ={x |x 2-2x -15=0},B ={-3,3,4},求∁U A ,∁U B .变式练习1.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P =⎩⎨⎧⎭⎬⎫x |x ≤0,或x ≥52, (1)求A ∩B ;(2)求(∁U B )∪P ;(3)求(A ∩B )∩(∁U P ).类型二 交,并,补的综合运算例5.(1)(2015·天津高考)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}(2)已知全集U =R ,A ={x |2≤x <4},B ={x |3x -7≥8-2x },求①(∁U A )∩B ;②∁U (A ∪B ).变式练习1.已知集合U ={1,2,3,4},A ={1,3},B ={1,3,4},则A ∪(∁U B )=__________.2.设U ={x |-5≤x <-2,或2<x ≤5,x ∈Z },A ={x |x 2-x -20=0},B ={3,4},求∁U (A ∪B ).方法总结解决集合交、并、补问题时的策略:解决与不等式有关的集合问题时,画数轴这也是集合的图形语言的常用表示方式可以使问题变得形象直观,要注意求解时端点的值是否能取到.解决集合的混合运算时,一般先运算括号内的部分,如求∁U A B时,可先求出∁U A,再求交集;求∁U A∪B时,可先求出A∪B,再求补集.六、与集合交、并、补运算有关的求参数问题例6.已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},且B⊆∁R A,求a的取值范围.变式练习1.已知集合A={x|x<a},B={x|x<-1,或x>0},若A∩(∁R B)=∅,求实数a的取值范围.课后练习1.(2016·雅安检测)已知集合A ={x |-1<x <2},B ={x |0<x <4}.则集合A ∩(∁R B )=( )A .{x |0<x <2}B .{x |-1<x ≤0}C .{x |2<x <4}D .{x |-1<x <0}2.(2016·武昌检测)已知全集U =R ,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ -4<x <12,B ={x |x ≤-4},C =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥12,则集合C =( ) A .A ∩B B .A ∪B C .∁U (A ∩B ) D .∁U (A ∪B )3.(2016·瑞安市高一月考)图中的阴影表示的集合是( )A .(∁U A )∩B B .(∁U B )∩BC .∁U (A ∩B )D .∁U (A ∪B )4.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则[A ∩(∁U B )]∪[B ∩(∁U A )]=( )A .∅B .{x |x ≤0}C .{x |x >-1}D .{x |x >0,或x ≤-1}5.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A .a ≤2B .a <1C .a ≥2D .a >26.已知集合A ={x |0≤x ≤5},B ={x |2≤x <5},则∁A B =________.7.如果S ={x ∈N |x <6},A ={1,2,3},B ={2,4,5},那么(∁S A )∪(∁S B )=________.8.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________.9.已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3<x ≤3}.求∁U A ,A ∩B ,∁U (A ∩B ),(∁U A )∩B .10.设全集U ={x ∈Z ||x |<4},a ∈U ,集合A ={x |(x -1)(x -a )=0},B ={x |x 2+2x -3=0},求(∁U A )∩B .11.已知集合A ={x |-1≤x ≤3},集合B ={x |m -2≤x ≤m +2,x ∈R }.(1)若A ∩B ={x |0≤x ≤3},求实数m 的值;(2)若A ∩(∁R B )=A ,求实数m 的取值范围.。
集合的运算律什么是集合的运算?集合的运算指的是在集合的数学操作,也可以称之为集合的运算法则。
集合的运算包括集合的并集、交集、补集、运算符号及其顺序。
集合运算可以分为简单集合运算和复杂集合运算。
1.简单集合运算简单集合运算既可以用符号表示,也可以用文字表示,一般用符号表示:(1)并集(∪):示两个或者多个集合的全部元素的集合,用符号“∪”表示,如:A∪B={a,b,c,d}。
(2)交集(∩):表示两个或多个集合的共有元素的集合,用符号“∩”表示,如:A∩B={a,b}。
(3)补集(’):表示属于一个集合,而不属于另一个集合的元素的集合,用符号“’”表示,如:A’={c,d}。
2.复杂集合运算复杂集合运算既可以用符号表示,也可以用文字表示,一般用符号表示:(1)差集(-):表示属于第一个集合,而不属于第二个集合的元素的集合,用符号“-”表示,如:A-B={c,d}。
(2)对称差(△):表示两个集合中元素在其他集合中不存在的元素的集合,用符号“△”表示,如:A△B={a,d}。
(3)包含关系():表示第一个集合中包含第二个集合中的所有元素,用符号“”表示,如:AB。
(4)真子集():表示第一个集合中包含第二个集合中一部分元素,用符号“”表示,如:AB。
(5)不包含关系():表示第一个集合不包含第二个集合中的任何元素,用符号“”表示,如:AB。
3.运算符号的顺序在进行集合的运算时,先进行的操作符是最重要的,它的优先级高于其他操作符。
一般来说,优先级从高到低排列依次是:(1)“-”>∩”>∪” >△” >” >” >”。
最后,需要强调的是,集合的运算法则在数学中有着广泛的应用,充分发挥着它简洁、易于学习和使用的优点,可以为我们提供更多的帮助,从而使我们更好的应用它来解决一些问题。