直角三角形小结
- 格式:doc
- 大小:494.85 KB
- 文档页数:9
第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。
二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。
如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。
显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。
2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。
这样就突出了直角三角形中边与角之间的相互关系。
3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。
4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。
同时要强调三角函数的实质是比值。
防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。
如果学生产生类似的错误,应引导学生重新复习三角函数定义。
5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。
第十一章 解直角三角形 小结考点一、直角三角形的性质 (3~5分)1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30° 可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒ AB AD AC ∙=2CD ⊥AB AB BD BC ∙=26、常用关系式由三角形面积公式可得:AB ∙CD=AC ∙BC考点二、直角三角形的判定 (3~5分)1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念 (3~8分)1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即ca sin =∠=斜边的对边A A ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cb cos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即ba tan =∠∠=的邻边的对边A A A ④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即ab cot =∠∠=的对边的邻边A A A 2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值 三角函数0° 30° 45° 60° 90° sinα 0 21 22 23 1 cos α 1 23 22 21 0 tan α 0 33 1 3 不存在 cot α 不存在 3 1 33 04、各锐角三角函数之间的关系(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A)(2)平方关系1cos sin 22=+A A(3)倒数关系tanA ∙tan(90°—A)=1(4)弦切关系tanA=AA cos sin 5、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形 (3~5)1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
第十二章全等三角形小结教学反思三角形教学反思在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。
范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,盼望对大家有所关心,下面我们就来了解一下吧。
第十二章全等三角形小结教学反思篇一在其次阶段,探究三角形的三条边之间的重要关系过程中,由于是再现课,同学的乐观性不是很高,由于他们已经知道了结果,再加上我对这种状况的'处理阅历有限,所以在突破重难点时不够深刻。
今日这节课,让我更加深刻地熟悉到一堂真正胜利的数学课堂,过程才是最重要的。
数学教学内容是数学基础学问和数学思想方法的有机结合,在今日的数学课上,加上是再现课的缘由,孩子一味地利用“三角形两边之和大于第三边”来回答问题,而对于这句话的理解却很模糊,甚至消失错误,这说明他们对是如何得出这句结论的过程并没有深刻理解,这也反映了同学往往只留意对数学学问的学习和运用,而忽视了连结这些学问的观点及由此产生的解决问题的方法与策略。
只注意结果而不注意数学学习过程的这种学习模式,不是一时半会养成的,这是孩子在常年的学习中形成的一种错误学习模式。
我现在带的是一班级数学,在遇到解决实际问题的题目时,许多孩子上来就列算式,只要看到数字,要么就加要么就减,这是一种很危急的信号,假如这种学习持续下去,最终的结果就是孩子只会“做”题目,不会论述、思索、讨论问题。
因此我盼望自己在将来的教学中更加注意在数学课堂中渗透数学思想方法的教育,让同学在学到数学学问的同时也学到数学思想方法,在以后的生活,工作中都可以随时随地用它们去解决问题,在培育智力的同时也培育了孩子观看、分析、综合概括、语言组织表达等力量,这也将更促进我们素养教育的开展。
第十二章全等三角形小结教学反思篇二全等三角形第一课时,这节课比较简洁,我采纳了先学后教的教学策略。
教学过程大致是:首先,同学自学。
其次,老师多媒体展现教材上的图案以及制作的一些图案,引导同学识图,检测同学自我建构全等三角形概念的状况。
初中三角形知识点总结初中三角形知识点总结「篇一」1.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有条对角线。
初中三角形知识点总结「篇二」初中三角形数学知识点总结三角形的一个外角大于任何一个和它不相邻的内角。
接下来为大家整合的是上海初中数学三角形知识点总结。
三角形知识点三角形两边的和大于第三边推论三角形两边的差小于第三边三角形内角和定理三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角中考知识点总结:三角形的一个外角等于和它不相邻的两个内角的和。
第十一章三角形复习小结教学目标:1、回忆本章知识,形本钱章知识构造.2、总结本章解题规律,进展跟踪训练.重点:归纳本章知识构造,进展跟踪训练.难点:总结本章解题规律.教学过程:一、回忆本章知识,形本钱章知识构造二、双基训练:⒈在活动课上,小红有两根长为4cm,8cm的小木棒,现打算拼一个等腰三角形,那么小红应取的第三根小木棒的长应为8 cm.⒉⊿ABC中,假设∠A∶∠B∶∠C=1∶2∶3,那么△ABC是直角三角形.⒊三角形中至少有一个角不小于60 °;没有对角线的多边形是三角形;一个多边形中,锐角最多有三个;一个四边形截去一个角后可以得到的多边形是三角形或四边形或五边形.⒋一个多边形的每个外角都是30°,那么它是十二边形,其内角和是1800°.⒌一个多边形的每个内角都相等,且比它的一个外角大100°,那么边数n=9 .⒍如图⑴,在直角△ABD中,∠D=90°,C为BD上一点,那么x可能是〔B〕A、10B、20C、30D、40⒎如图⑵有两个正方形和一个等边三角形,那么图中度数为30°的角有〔D〕A、1个B、2个C、3个D、4个⒏一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成其中三个分别为正三角形、正四边形、正六边形,那么另一个为〔B〕A、正三边形B、正四边形C、正五边形D、正六边形三、例题解析:例1.等腰三角形一腰上的中线将周长分为6和15两局部,求此三角形的腰长. 解:如图等腰△ABC中,AB=AC,BD是腰AC上的中线,x设AB=AC=x ,BC=y 那么AD=DC=2①当AB+AD=6 , BC+CD=15时,即:x +2x =6,y +2x =15 解得x =4, y =13 ∵4+4<13∴此时不能组成三角形,故x =4, y =13不合题意,舍去.②当AB +AD =15 , BC +CD =6时,即:x +2x =15,y +2x =6 解得x =10, y =1∵10+1>10∴10、10、1能构成三角形.∴此三角形的腰长为10.例2.如图⑶一个四边形ABCD 模板,设计要求AD 与BC 的夹角应为30°,CD与BA 的夹角应为20°.现在已测得∠A =80°,∠B =70°,∠C =90°,请问:这块模板是否合格?并说明理由.解:这块模板合格.理由:延长AD 、BC 相交于点E,延长BA 、CD 相交于点F在△ABE 中∵∠EAB =80°,∠B =70°∴∠E =180°―∠EAB―∠B =30°在△CFB 中∵∠FCB =90°,∠B =70°∴∠F =180°―∠FCB―∠B =20°∴这块模板合格.例3. ⊿ABC 中,⑴如图⑷,∠DBC 和∠ECB 的角平分线相交于点O ;⑵如图⑸,∠ABC 的角平分线BD 和∠ACE 的角平分线相交于点O ;如图⑹,∠CBD 的角平分线BO 和∠BCE 的角平分线CO 相交于点0,试猜测∠A 与∠D 的关系,并选择其中一个进展证明.提示:⑴∠BOC =180°-〔∠2+∠3〕=180°-〔∠1+∠4〕=180°-〔∠5+∠6+∠7+∠8〕=180°-〔∠BAC +∠BOC 〕=90°-2BAC ∠ ⑵∠A =322∠-∠=2O ∠⑶∠BOC =180°-2ABC ACB ∠+∠ =180°-1802A -∠=90°+2A ∠.三、稳固练习: 1.有四条线段,长度分别是12cm,10cm,8cm,4cm,选其中的三条组成三角形,那么可组成 3 个不同的三角形.2.如果等腰三角形的两边长为5cm 和9cm ,那么三角形周长为19cm 或23cm .3.△ABC 中,假设∠A ∶∠B ∶∠C=3∶4∶7,那么△ABC 是 直角 三角形.4.一个n 边形的每个内角都相等,且比它的一个外角大60°,那么边数n = 6 .5..三角形最长边等于10,另两条边的长分别为x 和4,周长为C ,那么x 和C 的取值范围分别是 6<x≤10 ,20<C≤246.如图⑺,AB ∥CE, ∠C =37°,∠A =114°,那么∠F 的度数为 77°.7.如图⑻所示,△ABC 中AB =AC ,请你添加一个条件....AD 平分∠EAC 〔不唯一〕,使得AD ∥BC.8.如图⑼,D 、E 是边AC 的三等分点假设△ABC 的面积为12㎝2,那么△BDC 的面积是8 ㎝2.9.如图⑽,∠1+∠2+∠3+∠4的度数是300°.10.一个多边形的内角和是1980°,那么它的边数是_13 _,它的外角和是360 ° ,共有__65__条对角线.11.一个正多边形,它的一个外角等于与它相邻的内角的15,那么这个多边形是〔 D 〕A 、五边形B 、八边形C 、九边形D 、十二边形12.以下说法不正确的选项是〔 D 〕A 、任意形状的一些三角形可镶嵌地面B、用形状大小完全一样的六边形可镶嵌地面C、用形状大小完全一样的任意四边形可镶嵌地面D、用任意一种多边形可镶嵌地面13.用两个正三角形与下面的假设干个〔B〕可以进展平面镶嵌.A、正方形B、正六边形C、正八边形D、正十二边形14.如图⑾,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,那么∠A、∠1、∠2之间的关系是〔B〕A、∠A=∠1-∠2B、2∠A=∠1-∠2C、3∠A=2∠1-∠2D、3∠A=2〔∠2-∠1〕15.如图⑿,∠1+∠2=180°,DG∥AC,求证:∠A=∠DFE.证明:∵∠1+∠2=180°,∠1+∠DFE=180°∴∠2=∠DFE∴AB∥EF∴∠A=∠3又∵DG∥AC∴∠3=∠DFE ∴∠A=∠DFE.16.如图⒀, △ABC中,点D在AC上,且∠ABC=∠C=∠BDC, ∠ABD=∠A,求∠A的度数.解:设∠ABD=∠A=x°∵∠BDC=∠ABD+∠A∴∠ABC=∠C=∠BDC=2x°∵∠A+∠ABC+∠C=180°∴x°+2x°+2x°=180°∴x=36,∴∠A=36°17.如图⒁,D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.解:∵DF⊥AB∴∠AFE=90°又∵∠CEF =∠AFE +∠A,∠CEF =∠ECD +∠D∴∠AFE +∠A =∠ECD +∠D又∵∠A =35°,∠D =42°∴90°+35°=∠ECD +42°∴∠ECD =83°,即∠ACD =83°.18.如图⒂,△ABC 中,∠ACB =90°,CD 是AB 边上的高,BE 是AC 边上的中线,AB =10cm,BC =8cm,AC =6cm.⑴求CD 的长;⑵求△ABE 的面积.解:⑴∵S △ABC =12(AC×BC)=12(AB×CD) ∴12(6×8)=12(10×CD) ∴CD = 4.8(cm) .⑵∵BE 是AC 边上的中线∴S △ABE =12S △ABC =12 (682)=12(cm 2). 19.如图⒂,∠xoy =90°,点A 、B 分别在射线ox,oy 上移动,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于点C ,试问∠C 的大小是否随点A 、B 的移动而发生变化?如果保持不变,求出∠C 的大小,如果随点A 、B 的移动而发生变化,请求出变化范围.解:∠C 的大小保持不变.∵BE 是∠ABy 的平分线∴∠3=∠2=12∠ABy 又∵AC 平分∠OAB∴∠1=12∠OAB ∴∠C =∠3-∠1=12∠ABy -12∠OAB =12 (∠ABy -∠OAB)=12∠xoy 又∵∠xoy =90°∴∠C =45°.。
直角三角形的边角关系《回顾与思考》教学设计说明一、学生知识状况分析学生的认知水平:学生在本章以前的学习中,已经掌握了直角三角形三边之间的关系(勾股定理),三角之间的关系(两锐角之和为900),以及有30°角的特殊直角三角形的边角关系,即;直角三角形中,30°角所对的直角边是斜边的一半.而通过本章的学习,学生已更深入的学到了直角三角形的边角关系,基本掌握了特殊角(30°,45°,60°)的三角函数值,并能用三角函数将直角三角形的边与角联系起来,解直角三角形.还会应用三角函数知识解决生活中的实际问题.学生活动感知基础:,学生已经经历了对特殊角三角函数值的探究及总结过程,利用计算器进行任意锐角的度数与其对应的三角函数值的互换的操作,也能把简单的实际问题转化为数学问题.因此,学生能熟练使用计算器,具备了一定的探究能力,解决实际问题的能力也有了一定的提升.二、教学任务分析本节课是本章的复习课,主要是让学生熟练掌握本章各知识点并能解决实际问题,同时逐步渗透“转化思想、数形结合思想、方程思想、从特殊到一般的思想、数学的建模思想.”加深学生对本章知识的理解,提升学生应用本章知识的能力.知识与技能:1.以问题的形式梳理本章的内容,通过实例进一步掌握锐角三角函数的定义,并能熟练掌握特殊角的三角函数值.使学生进一步会运用三角函数知识解直角三角形,并能解决与直角三角形有关的实际问题.2.提升学生操作计算器解决实际问题的能力.过程与方法:在练习过程中,使学生进一步体会数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.情感与态度:通过本节课的学习,让学生在熟练掌握知识的基础上提升他们解决实际问题能力,培养学生学习数学的兴趣.重点:能综合运用直角三角形的边角关系解决实际问题.提高知识的理解水平和综合能力.突出策略:通过例题讲解和练习的分析与知识归纳,加深学生对本章知识的理解.难点;能根据实际问题设计活动方案.及时地把有关知识上升为数学经验,形成个性化的学习技能.突破策略:通过例题及练习的思考与分析提升学生的能力.本章主要数学思想方法:数形结合思想:此部分内容经常用到数形结合思想,对于每一个题都可结合图形分析,会更清楚简捷.数与形相结合,是问题清晰,思路简捷有条理,是几何知识中最常用的思想方法之一,也是最应该坚持实施的方法.从特殊到一般的思想;锐角三角函数中包含了特殊角的三角函数值,对于三角函数之间的关系和转化,都可从特殊角开始.转化思想:把直角三角形的线段比,转化为三角函数值或面积的比.数学的建模思想:解直角三角形的实际应用,即将实际问题“数学化”,构建直角三角形来解决问题.教学方法:启发式、合作交流式.教学手段:多媒体课件、学案三、教学过程分析本节课设计了五个教学环节:热身练习——知识归纳——应用分析——归纳与总结——布置作业.第一环节热身练习(5分钟)活动内容:一、根据给出的条件,由学生给出相应的锐角的三角函数值或角度,完成复习题的4、5题二、学生独立练习:1、在Rt △ABC 中,∠B =900,AB =3,BC =4,求 A sin ,conA ,tanA ;2、(1)︒︒-︒30cos 30sin 260sin ;(2)0045cos 360sin 2+; (3)130sin 560cos 300-. 3、(1)Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;(2)在Rt △ABC 中,︒=∠=︒=∠45,17,90B b C ,求a 、c 与A ∠4. 在Rt △ABC 中,∠C =900,若1312sin =A 求 A cos ,B sin ,B cos ; 5.已知cosA=0.6,求sinA,tanA.设计意图:通过做几道练习题,巩固已实现的三角函数的基础目标(定义、特殊角的值、解直角三角形),及对三角函数公式的应用;熟练利用计算器进行三角函数值及其对应的锐角度数间的互换;主要是让学生回顾基础知识,巩固基本解题能力,为下一环节的知识归纳作铺垫.教学实际效果:这些题涉及到的知识点多,相对比较简单,绝大大部分学生都能在规定时间内完成,准确度比较高,基本实现了设计意图.第二环节 知识归纳(8分钟)设计内容:总结归纳直角三角形的边、角相关系,以及本章基础知识点.1、直角三角形三边的关系: 勾股定理 a2+b2=c2.2、直角三角形两锐角的关系:两锐角互余 ∠A+∠B=900.3、直角三角形边与角之间的关系:锐角三角函数4、互余两角之间的三角函数关系: sinA=cosB5、同角之间的三角函数关系: sin2A+cos2A=16、 特殊角300,450,600角的三角函数值.设计意图:通过知识归纳总结,让学生把所做的练习题与知识点很自然的联系起来,使学生能全面的掌握、理解并能应用这些知识点.教学实际效果:绝大部分学生对本章知识点有了更全面、更清晰的认识和理解,为下环 ,cos sin c a B A ==,sin cos c b B A ==节的教学打下了基础.第三环节 应用分析(16分钟)设计内容:一、学生独立练习;完成课本复习题第8(2)、9、10题;二、例题分析两题题目及答案:(师生交流实现转化目标)1、如图,甲,乙两楼相距30m,甲楼高40m,自甲楼楼顶看乙楼楼顶,仰角为300多高?(结果根号表示).分析:解三角函数应用题目首先要把实际问题转化为学过的数学问题,最关键的是要构造合适的直角三角形,把已知角和边放在所构造的直角三角形中.如图二,把一个实际的问题转化为一个数学的几何问题,再结合刚学的三角函数知识,此题就不难解答了.解:过A 作DAE ⊥DC 于E在Rt △ADE 中,AE=BC=30, ∠A=300 ∵ tan A=AE DE ∴ DE=33×30=310 DC=30+310乙楼的高度为(30+310)m.2、如图,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.(结果根号表示).(1)问B 处是否会受到影响?请说明理由.D图二(2)为避免受到台风的影响,该船应在多少小时内卸分析:台风中心在AC 上移动,要知道B 处是否受影响,只要求出B 到AC 的最短距离并比较这个最短距离与200的关系,若大于或等于200海里则受影响,若小于200海里则不受影响.(2)要使卸货过程不受台风影响,就应在台风中心从出发到第一次到达距B 处200海里的这段时间内卸完货,弄清楚这一点,再结合直角三角形边角关系,此题就得到解决.解:(1)过B 作BD ⊥AC 于D根据题意得:∠BAC=30°,在Rt △ABD 中∴B 处会受到影响.(2)以B 为圆心,以200海里为半径画圆交AC 于E 、F (如图)则E 点表示台风中心第一次到达距B 处200海里的位置,在Rt △DBE 中,DB=160,BE=200,由勾股定理可知DE=120,在Rt △BAD 中,AB=320,BD=160,由勾股定理可知:(小时))334(10401203160+=-=∴t ∴该船应在()334(10+小时内卸完货物.(约为3.8小时)设计意图: 增强学生对问题的分析能力,能根据具体问题情景及已知条件,根据需要作出辅助线,联系三角函数解题;增强学生将实际问题转为数学问题,并能针对性的利用三角函数来解决.其中渗透“数形结合思想、转化思想、方程思想、”等思想方法.教学效果: 对第8题还有一部分同学需要老师提示,主要是点拨如何将题目的已知与问题联系起来,利用图形的特点来添加辅助线解题,在此基础上第9题大部分学生都能独立完成. 同样,第9题是给学生一个缓冲的容易接受的题目,感受到解决实际问题的基本方法和过程,而第10题则是对学生一个解题能力的挑战,少部分同学能形成一点思路,只有几同学解决的较好.通过这几道题的练习,每个学生的解题能力都能到了巩固和提高,层次较高的学生也有机会得到更大的提升.为下环节的教学埋下伏笔.第四环节归纳与总结(11分钟)设计内容:师生互相交流总结本章的知识要点,以及知识点之间的联系.一起构建本章知识框架图,课前有布置,(1)小组完善框架图(2)展示小组好的作品(3)师生共同交流,形成共识,得出大家认为最好的知识网络框架图本章知识结构框图设计意图:鼓励学生自己进行章节知识总结,加深对本章知识整体性认识,形成系统的知识体系.水到渠成的完成本章知识框架图.教学效果:通过学生对本节课所学内容的归纳、总结,加深了“直角三角形的边角关系”的认识和理解,通过框架图不断完善,从而清晰的展现了本章知识点与其他章节知识点之间的内在联系,第五环节 作业布置(5分钟)设计内容: A 组 复习题3、6、9、12、16题.B 组 复习题3、6、9、12、19题.C 组 复习题3、6、9、11、16题,选作题(附后)1.在Rt△ABC 中, ∠C=90°,如果sinA ,cosB 是方程2210x mx -+=的两实根,求m 的值和∠A 的度数是多少? 2、如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要 经过DC ,沿折线A →D→C→B 到达,现在新建了桥EF ,可直接 沿直线AB 从A 地到达B 地.已知BC=11km ,∠A=45°,∠B=37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km 1.41,sin37°≈0.60,cos37°≈0.80)解:如图,过点D 作DH ⊥AB 于H ,DG ∥CB 交AB 于G.∵ DC ∥AB ,∴ 四边形DCBG 为平行四边形.∴ 两条路线路程之差为AD+DG-AG.因此 在Rt △DGH 中,DH=DG ×sin370≈11×0.6 = 6.60GH=DG ×cos370≈11×0.8 = 8.80在Rt △ADH 中,即现在从A 地到B 地可比原来少走约4.9km. 设计意图;由于本班学生基础较差,因此在布置练习题是,坚持 “不同学生有不同的学习需要”的原则,设计三层次练习题,使每个学生都能得到相应的提升.体现了因材施教的教学原则.使每一个教学环节都严格的遵循课程标准.教学效果: 加强学生对三角函数与其他运算公式结合的的运算能力,巩固利用三角函数解决楼高的实际问题.选作题让学生学会根据实际背景、有限的条件进行综合分析、思考,多次分散和组合应用三角函数,并在对三角函数的应用中渗透数形结合的思想.基本实现本课的教学目标.四、教学反思1.切合学生认知水平,练习提升适度新版教科书给教师提供了大家都适用的教学素材,而我们可以根据学生的实际情况进行适当整合.我带班级学生总体素质和能力较低,个体差异比较大.因此,我只在课本上选用了较多练习题做为基础练习,只加了两道难度较大练习,题目全部来源于课本练习的变式,这可以让不同层次的学生都有不同的学习机会,绝大部分学生都能学到自己需要的知识.而且练习题难度层层深入,让学生容易接受,是他们逐步进入学习状态.教学过程环环相扣,整节课围绕教学目标,达到了较好的学习效果.2.坚持练习和知识点归纳的相结合复习方式单元复习课要注意练习和知识归纳兼顾,在练习和知识归纳的时间分配上,我侧重于知识归纳,在这节课里,我先用几道不同层次的课本练习题,让学生智力热身,在讲评练习的过程中把用到的知识归纳起来,然而顺理成章的和学生一起把本章的知识框架图呈现出来;在此基础上播出三角函数的实际应用问题(复习题第12题),难度适当提高,课堂衔接平滑,学生容易接受,最后再对本章内容进行全面的概述并完整知识框架图,使学生对本章知识有了系统的认识.整节课我始终坚持以学生活动为主,多倾听适当引导的原则,在教学中充分体现学生的主体地位,让学生主动参与到学习中去,形成了较好的学习氛围,目标达成效果较好.3.需要注意和改进的方面本节课内容较不算多,但是在进行知识归纳和在实际问题转化时花时间不少,因此整个课堂时间药相当科学,可以考虑课前让学生先归纳知识框架图,在课堂上不留思考讨论的时间,师生归纳会快一些;最后一道题的时间有可能不够,应灵活处理,也可以考虑设为课后练习.总而言之,本节课体现新课标的教学理念,对新课标下的新课堂的丰富内涵进行积极的探索与有益的尝试.我突破了自己的传统教学模式,尝试让学生自主探究,把数学课真正的让给学生,激发学生的潜力,让学生充分展示自己,真正实现了“以生为本教育”!。