新北师大版八年级数学下册《合与实践⊙生活中的“一次模型”》教案_1
- 格式:pdf
- 大小:98.58 KB
- 文档页数:5
综合与实践(1)生活中的一次模型安徽灵璧县范桥初级中学张斌教学目标:• 1.知识与能力: 会综合运用一次函数与一元一次方程,一元一次不等式建立一次模型,解决实际问题。
• 2.过程与方法:通过阅读文字材料,分析表格或图像,自主探究,小组合作,获取有关信息,建立模型,解决实际问题。
• 3.情景态度与价值观:体会数学建模,分类讨论思想的运用。
培养学生用联想的观点看待数学问题的意识。
教学重点:探究一次函数,一元一次方程及一元一次不等式的建模。
•教学难点;建模的类型和数据的提炼。
•教材分析;一元一次方程,一元一次不等式及一次函数都是人们刻画现实世界的重要数学模型。
通过本节课的综合与实践的探索,不仅能加深理解,而且能将三者统一起来,加强知识的融会贯通。
本节课将三个一次集中认识,大大提升学生整体的处理问题的能力。
•学情分析:八年级学生的思维已逐步从直观的形象思维向抽象思维过渡,而且具备一定的信息收集能力,因此,三个一次关系的建模是本节课的难点,引导学生用联系的观点进行探究,是突破难点的关键。
•教学策略分析:• 1.创设实际生活情境,鼓励学生多向思维,引导学生感受三个一次的联系。
• 2.过程以学生‘自主探究’为主,教师引导为辅,设计的问题由易到难,由简到繁。
•教学过程:•一。
情境引入:一次函数与一元一次方程,一元一次不等式紧密相连,解题思路上要注意数学建模,分类讨论等数学知识的运用。
通常通过读题,读图获取信息,达到解题的目的,问题背景贴近社会生活,关注社会热点,引领我们了解时政,热爱家乡,关心经济的发展,增强试题的教育性。
试题采用文字,图形,图表等多种方式呈现试题条件•---动车思维:依次出示问题1课件,问题2课件,问题3课件,学生分组讨论,自主探究,交流归纳,教师适时点拨 1.某电器按成本价提高30%后标价,再打八折销售,销售价为2080元,设成本价为X元,下列关系式正确的是【】• A.80%(1+30%) X=2080• B.30%×80%·X=2080• C.2080×30%×80%=X• D.30%X=2080×80%• 2.某邮箱容量为60升的汽车,加满汽油后行驶了100千米,耗油20%,若加满油后汽车行驶路程为X千米,油箱中的余油量为y升,y与X的函数关系式及X的取值范围,正确的是【】• A.y=0.12X X>0• B.y=60-0.12X X>0• C.y=0.12X 0≤X≤500• D.y=60-0.12X 0≤X≤500• 3.某种植物适宜生长在温度为18----20摄氏度,已知海拔每升高100米,温度下降0.55摄氏度,现测得山脚下的温度为22摄氏度,问该植物在山上的哪一部分生长为宜,设海拔X米的山生长为宜,关系式正确的是【】• A.18≤22-X/100×0.55≤20• B.18≤22-X/100≤20• C.18≤20+X/100×0.55≤20• D.18≤22-0.55X≤20•二,合作探究:•出示问题4课件教师引领学生分析,学生板眼完成,教师引领学生集体分析订正•市政府为绿化计划购买甲.乙两种树苗共500株,甲树每株50元,乙树每株80元,统计表明,甲树的成活率为90%,乙树的成活率为95%,•(1)若购买树苗共用28000元,则可购买甲.乙两种树苗各多少株?•(2)若购买树苗总费用不超过34000元,该如何选购?•(3)若希望这批树苗的成活率不低于92%,且购买的总费用最少,该如何选购甲.乙两种树苗?总费用最小值是多少?•分析:•背景:生产设计经费预算•信息呈现的方式:文字信息•模型建立:• 1.方程模型-------- 有明确的相等关系• 2.不等式模型----- 有明确的不等式关系• 3.函数模型-------- 方案设计(最值)•解:(1)设购买甲树为X株,则购买乙树苗(500-X)株由题意得•50X+80(500-X)=28000•X=400•500-X=500-400=100(株)•所以购买的甲种树苗400株,乙种100株•(2)50X+80(500-X)≤34000•X≥200•所以购买甲种树苗至少200株•(3)90%X+95%(500-X)≥92%×500•X≤300•所以购买甲种树苗最多300株•设购买的总费用y元•由题意得•y=50X+80(500-X)=40000-30X•因为y随X增大而减小,所以当X=300时•y=40000-30×300=31000元•500-X=500-300=200株•所以当购买甲种树苗300株,乙种树苗200株时,总费用最少。
北师大版数学八年级下册《⊙ 生活中的“一次模型”》教案1一. 教材分析北师大版数学八年级下册《生活中的“一次模型”》这一节主要让学生了解一次函数在现实生活中的应用。
通过具体实例,让学生理解一次函数的定义,掌握一次函数的图像和性质,并能够运用一次函数解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了函数的基本概念,对函数有一定的理解。
但是对于一次函数在实际生活中的应用可能还比较陌生,需要通过实例来引导学生理解和掌握。
三. 教学目标1.了解一次函数的定义,掌握一次函数的图像和性质。
2.能够通过实例理解一次函数在实际生活中的应用。
3.培养学生的观察能力,提高学生解决实际问题的能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际生活中的应用。
五. 教学方法采用实例教学法,通过具体的例子让学生理解和掌握一次函数的定义和性质,以及一次函数在实际生活中的应用。
六. 教学准备1.准备相关的实例,如购物、出行等。
2.准备一次函数的图像,帮助学生理解。
七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学模型来表示购物问题。
让学生认识到数学在解决实际问题中的重要性。
2.呈现(10分钟)呈现一次函数的定义和性质,通过具体的例子让学生理解和掌握。
同时,引导学生观察一次函数的图像,加深对一次函数的理解。
3.操练(10分钟)让学生分组讨论,每组找一个实际问题,尝试用一次函数来解决。
如出行问题、购物问题等。
4.巩固(10分钟)让学生汇报自己的成果,其他学生和教师进行评价。
通过评价,让学生巩固一次函数的知识。
5.拓展(10分钟)引导学生思考一次函数在实际生活中的其他应用,如工资问题、投资问题等。
6.小结(5分钟)对本节课的内容进行小结,让学生明确一次函数的定义、性质以及在实际生活中的应用。
7.家庭作业(5分钟)布置相关的作业,让学生巩固所学知识。
如找一组实际数据,用一次函数来拟合。
8.板书(5分钟)板书一次函数的定义、性质以及实际应用,方便学生复习。
生活中的“一次模型”-北师大版八年级数学下册教案前言对于数学不是太好的学生来说,数学课上的“一次函数”、“一次方程”等难度较大的内容,很容易让他们感到无从下手。
但是,如果教师能够从生活实际中找到“一次模型”这个点,通过生动、形象的教学方法,帮助学生找到问题解决的思路,那么对于学生来说,就会是一次愉快的学习体验。
本文就是基于这样的理念,分享了北师大版八年级数学下册的“一次模型”教案。
教学目标通过本节课的学习,学生们将会掌握以下知识和能力:1.学习掌握一次函数的概念和基本性质;2.学习掌握一次方程及其解法;3.学习掌握利用实际问题建立一次函数模型的方法;4.培养学生解决实际问题的思维和能力。
教学重点和难点1.重点:建立一次函数模型的方法。
2.难点:如何将实际问题转化为一次函数模型的形式。
教学准备1.教师准备课件、笔记板书以及相关的课件辅助材料;2.学生准备自己的课堂笔记和课后作业。
教学过程1. 课堂导入首先,教师可以从日常生活中的实例引入课堂。
例如,在打车时,出租车司机根据开车的公里数收取费用,这种计费方式就可以用一次函数描述。
教师可以通过这些实际例子,引起学生的学习兴趣,同时了解一次函数的实际应用场景。
2. 学习一次函数的概念和基本性质接下来,教师将介绍一次函数的概念和基本性质,主要包括函数的概念、图像的表示和基本性质等。
通过对一次函数的深入了解,学生们能够更好地理解后续课程的内容,并且为建立一次函数模型奠定基础。
3. 学习一次方程及其解法一次方程是与一次函数联系最紧密的内容之一。
在这一部分的学习中,教师可以先通过三种基本形式的方程,通过讲解原理和案例演示的方式逐一介绍解方程的方法。
学生们需通过多次练习,掌握一次方程解法的技巧,为下一步建模打下基础。
4. 阐述建立一次函数模型的方法在前面的知识学习之后,教师可通过生活中的问题,例如购物打折优惠、能耗与温度之间的关系、航班时间与飞行距离的关系等实际问题,让学生感性理解一次函数模型的构建和应用过程。
综合与实践生活中的“一次模型”【教学内容】生活中的“一次模型”【教学目标】知识与技能综合运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,体会三者之间的内在联系。
过程与方法经历用数学的眼光发现现实生活中的数学问题,尝试提出问题,并加以解决的全过程,体会模型思想,发展应用意识,提高实践能力,了解数学的价值。
情感、态度与价值观会反思参与活动的全过程,将研究的过程和结果形成报告,并能进行交流,进一步积累数学活动经验。
【教学重难点】重点:会运用一元一次不等式与一元一次方程、一次函数的相关知识解决问题,难点:体会一元一次不等式、一元一次方程与一次函数三者之间的内在联系。
【导学过程】【知识回顾】1.举例说明一元一次方程(组)、一次函数、一元一次不等式(组)之间有什么样的关系?2.举例说明生活中常见的用一元一次方程(组)或一次函数或一元一次不等式(组)相关知识解决的实际问题。
【新知探究】探究一、在学生提出的实际问题基础之上,汇总出几个有价值的研究材料供学生选择。
材料1探索出租车如何计价1.日间出租车价与里程数之间的函数关系;2.夜间出租车价与里程数之间的函数关系;3.当遇到红灯或堵车时的计价情况等。
材料2探索商场促销现象节假日商场经常打出打折的牌子,在各种以打折名义进行的促销活动中,如何选择最实惠的商品是大多数人常常面临的问题。
调查学校或居住小区附近某一商场的促销方式,列出相应的方程、函数或不等关系并作出分析,用你得到的结论,指导周围的人理性消费。
材料3关于集资活动的调查1.学校的社团常常需要筹措资金,如果你是某个组织中的成员,请列出一张清单,写出你所需要的资金项目。
2.在1的基础上,计划一下资金增长的方式,当你完成你的计划时,同时考虑一下为了增长资金是否还需要一些必要的开销,用方程、不等式和函数表示你的计划及盈利情况。
3.将你筹措资金的情况展示给大家,做一个报告叙述你的观点,并与同伴交流,报告中要用到2中的方程、不等式和函数。