车载网络的基本概念
- 格式:ppt
- 大小:1.30 MB
- 文档页数:1
大数据技术在车联网中的应用研究随着互联网普及和智能手机的普及,人们对车联网(Connected Car)的需求越来越高。
车联网是指智能汽车和互联网的结合,将汽车、道路、驾驶员和周围环境连接在一起,以提供更智能、更便捷、更安全的出行体验。
在这一趋势下,大数据技术成为了车联网的重要组成部分。
一、大数据技术在车联网中的基本概念和应用1.1 大数据技术简介大数据技术(Big Data)是指以数据作为基础,通过数据挖掘、数据分析、数据展示等手段,对人类行为、经济活动、自然环境等现象进行深度挖掘和分析。
随着互联网的快速发展,产生的数据也日趋庞大和复杂,如何准确高效地处理这些数据成为了一项新的科技挑战。
大数据技术的应用范围非常广泛,既可以应用于商业领域,也可以应用于科学研究等方面。
1.2 车联网的基本概念车联网指的是通过计算机技术、通信技术、传感器技术等手段,将车辆、设备、网络和基础设施相互连接和智能化,构建起一个车辆-车辆之间、车辆-基础设施之间,以及车辆和网络之间相互关联的网络。
车联网在普及后,将会大幅提升驾驶体验的智能化水平和“人、车、路”的安全。
同时,车载设备和云服联合控制、数据采集、信息分析等技术将更加智能和人性化。
1.3 大数据技术在车联网中的应用在车联网领域,大数据技术广泛应用于以下几个方面:1)车辆安全性方面。
车联网利用传感器可以实时监控车辆的状态,如刹车、油门和方向盘等操作,以此来避免发生车祸。
通过收集驾驶员的驾驶习惯、交通事故等数据信息,可以进行数据分析、预测和预警,为驾驶员提供更加安全的出行体验。
2)车辆维修方面。
车联网通过传感器获取车辆的实时数据,在故障发生时可以自动检测和诊断,并通过移动设备通知车主和相关技术维修人员,提高车辆维修效率,并迅速将问题解决。
3)导航和交通流量方面。
车联网可以获取不同地域汽车的行驶数据,为驾驶员提供更好的导航和出行规划。
同时,大数据技术可以分析交通流量状况,为城市交通规划提供方向,并优化路线选择。
车载网络通信基础知识目录一、基础概念 (2)1. 车载网络通信的定义 (3)2. 车载网络通信的重要性 (3)3. 车载网络通信的发展历程 (5)二、基本原理 (6)1. 车载网络通信的协议层次结构 (7)2. 数据传输方式 (9)2.1 串行传输 (11)2.2 并行传输 (12)3. 车载网络通信的拓扑结构 (13)3.1 星型拓扑 (14)3.2 总线拓扑 (16)3.3 环型拓扑 (17)3.4 网状拓扑 (18)三、常用车载网络通信协议 (18)四、车载网络通信设备 (20)1. 车载通信控制器 (21)2. 车载通信接口 (22)3. 车载通信线缆 (23)4. 车载通信设备故障诊断与维修 (25)五、车载网络通信系统的应用 (26)1. 汽车电子控制单元的通信 (28)2. 车辆网络化控制系统 (29)3. 车载信息服务系统 (30)4. 车载导航与娱乐系统 (31)六、未来发展趋势与挑战 (32)1. 车载网络通信技术的创新 (33)2. 车载网络通信的安全性问题 (35)3. 车载网络通信的标准化与互操作性 (36)4. 车载网络通信在智能交通系统中的应用 (37)一、基础概念车载网络通信技术:车载网络通信技术是指在汽车内部,通过各种通信协议和设备,实现车辆内部各个系统之间以及车辆与外部环境之间的数据传输和信息交互的技术。
通信协议:通信协议是车载网络通信的基础,它规定了车辆内部各个系统之间以及车辆与外部环境之间的数据传输格式、通信速率、可靠性等方面的要求。
车载通信设备:车载通信设备包括车载以太网、车载CAN总线、车载FlexRay总线、WiFi等,它们是实现车载网络通信的关键组件。
车载网络拓扑结构:车载网络拓扑结构是指车辆内部各个系统之间的连接关系和组织方式,常见的拓扑结构有星型、总线型和环型等。
车载网络通信协议栈:车载网络通信协议栈是指为实现车载网络通信而建立的一组层次化的协议,包括物理层、数据链路层、网络层、传输层和应用层等。
Ad hoc网是一种多跳的、无中心的、自组织无线网络,又称为多跳网(Multi-hop Network)、无基础设施网(Infrastructureless Network)或自组织网(Self-or-ganizing Network)。
整个网络没有固定的基础设施,每个节点都是移动的,并且都能以任意方式动态地保持与其它节点的联系。
在这种网络中,由于终端无线覆盖取值范围的有限性,两个无法直接进行通信的用户终端可以借助其它节点进行分组转发。
每一个节点同时是一个路由器,它们能完成发现以及维持到其它节点路由的功能。
节点的单跳通信范围只有几百米到一千米,每一个节点(车辆)不仅是一个收发器,同时还是一个路由器,因此采用多跳的方式把数据转发给更远的车辆。
在电子检查中,短距离通信技术(DSRC)用于区分车辆,存储和转发其他检测数据。
DSRC技术用于提供移动车辆和路边设备之间的数据通信,以供电子检查机制处理。
DSRC是通过装在车顶部的转发器与安装在路边的读取器和天线互相通信实现的。
转发器要包含车辆ID信息。
转发器有声音和图像指示,用于给驾驶员提供信号。
可以看到,卫星通信系统分别为车载自组网提供全球定位服务(GPS,global positioning system)和数字多媒体服务(DMB,digital multimedia broad—casting)。
车与车通信使车辆之间能够通过多跳的方式进行自动互联,这好比车与车之间能够像人一样互相交谈,起到提高车辆运行的安全和疏导交通流量等作用。
车载自组网除了可以单独组网实现局部的通信外,还可以通过路灯、加油站等作为接入点的网关(gateway),连接到其他的固定或移动通信网络上,提供更为丰富的娱乐、车内办公等服务。
车载自组网在交通运输中出现,将会扩展司机的视野与车载部件的功能,从而提高道路交通的安全与高效。
典型的应用包括:行驶安全预警,利用车辆间相互交换状态信息,通过车载自组网提前通告给司机,建议司机根据情况作出及时、适当的驾驶行为,这便有效的提升了司机的注意力,提高驾驶的安全性;协助驾驶,帮助驾驶员快速、安全的通过“盲区”,例如在高速路出/入口或交通十字路口处的车辆协调通行;分布式交通信息发布,改变传统的基于中心式网络结构的交通信息发布形式,车辆从车载自组网中获取实时交通信息,提高路况信息的实时性,例如,综合出与自身相关的车流量状况,更新电子地图以便更高效地决定路径规划;基于通信的纵向车辆控制,通过车载自组网,车辆能根据尾随车辆和更多前边视线范围外的车辆相互协同行驶,这样能够自动形成一个更为和谐的车辆行驶队列,避免更多的交通事故。