离心式压缩机原理教程
- 格式:doc
- 大小:560.50 KB
- 文档页数:29
离心式压缩机工作原理及结构图一、工作原理汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。
而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。
气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。
如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。
级间的串联通过弯通,回流器来实现。
这就是离心式压缩机的工作原理。
二、基本结构离心式压缩机由转子及定子两大部分组成,结构如图1所示。
转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。
定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。
在转子与定子之间需要密封气体之处还设有密封元件。
各个部件的作用介绍如下。
1、叶轮叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。
叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。
2、主轴主轴是起支持旋转零件及传递扭矩作用的。
根据其结构形式。
有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。
3、平衡盘在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。
轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。
平衡盘是利用它两边气体压力差来平衡轴向力的零件。
它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,在平衡盘的外缘需安装气封,用来防止气体漏出,保持两侧的差压。
离心式压缩机原理
离心式压缩机是一种常用的空气压缩机,它利用离心力将空气压缩,从而提高空气的压力和温度。
其工作原理如下:
1. 空气吸入:离心式压缩机通过一个入气口将空气吸入,空气随着转子的旋转进入离心式压缩机的轮盘。
2. 加速:空气被转子迅速旋转,离心力使得空气被从中心向外部推进,从而加速了空气的流动速度。
3. 压缩:随着空气流动速度的增加,空气被推至离心式压缩机的外围。
在外围,由于叶轮的不断压缩,空气的压力逐渐上升。
4. 出气:当空气达到所需的压力时,压缩后的空气通过排气管道被释放出来,并被送入用途。
需要注意的是,离心式压缩机的压缩过程是连续不断的。
通过不断的旋转和压缩,离心式压缩机可以提供持续的高压空气。
离心式压缩机的主要优点是结构简单、体积小、重量轻、维护方便,并且具有较高的压缩比和较小的功率损失。
因此,离心式压缩机被广泛应用于空气压缩、空调、制冷等各个领域。
离心式压缩机原理教程§1 离心式压缩机的结构及应用排气压力超过34.3×104N/m2以上的气体机械为压缩机。
压缩机分为容积式和透平式两大类,后者是属于叶片式旋转机械,又分为离心式和轴流式两种。
透平式主要应用于低中压力,大流量场合。
离心式压缩机用途很广。
例如石油化学工业中,合成氨化肥生产中的氮,氢气体的离心压缩机,炼油和石化工业中普遍使用各种压缩机,天然气输送和制冷等场合的各种压缩机。
在动力工程中,离心式压缩机主要用于小功率的燃气轮机,内燃机增压以及动力风源等。
离心压缩机的结构如图8-1所示。
高压的离心压缩机由多级组成,为了减少后级的压缩功,还需要中间冷却,其主要可分为转子和定子两大部分。
分述如下:1.转子。
转子由主轴、叶轮、平衡盘、推力盘、联轴器等主要部件组成。
2.定子。
由机壳、扩压器、弯道、回流器、轴承和蜗壳等组成。
图8-1 离心式压缩机纵剖面结构图(1:吸气室 2:叶轮 3:扩压器 4:弯道 5:回流器 6:涡室 7,8:密封 9:隔板密封10:轮盖密封11: 平衡盘12:推力盘 13:联轴节 14:卡环 15:主轴 16:机壳 17:轴承 18:推力轴承 19:隔板 20:导流叶片 )§2 离心式压缩机的基本方程一、欧拉方程离心式压缩机制的流动是很复杂的,是三元,周期性不稳定的流动。
我们在讲述基本方程一般采用如下的简化,即假设流动沿流道的每一个截面,气动参数是相同的,用平均值表示,这就是用一元流动来处理,同时平均后,认为气体流动时稳定的流动。
根据动量矩定理可以得到叶轮机械的欧拉方程,它表示叶轮的机械功能变成气体的能量,如果按每单位质量的气体计算,用表示,称为单位质量气体的理论能量:(8-1)式中和分别为气体绝对速度的周向分量,和叶轮的周向牵连速度,下标1和2分别表示进出口。
利用速度三角形可以得到欧拉方程的另一种形式:(8-2)二、能量方程离心式压缩机对于每单位质量气体所消耗的总功,可以认为是由叶轮对气体做功,内漏气损失和轮组损失所组成的。
超详细的离心式压缩机介绍离心式压缩机是一种常见的压缩设备,被广泛应用于工业、航空、石油化工、制药等领域。
本文将对离心式压缩机的工作原理、结构特点、性能参数以及应用领域进行详细介绍。
一、工作原理离心式压缩机利用离心力、动能转换和压缩空气来实现压缩的作用。
其工作原理可以简单地分为四个步骤:吸气、旋转运动、压缩和排气。
1.吸气:在吸气过程中,压缩机的进气口通过进气管道将大量的空气吸入到转子内部。
2.旋转运动:进气的空气经过进气口进入到离心式压缩机的转子内,受到高速旋转的转子叶片的作用,空气被带动向外发散。
在旋转过程中,转子叶片会不断地提升和压缩空气。
3.压缩:随着转子旋转速度的增加,空气受到离心作用力的作用,对空气进行加速,并通过转子叶片进行高速压缩。
在这一过程中,空气的温度和压力都会不断上升。
4.排气:旋转过程中,空气在进气部分的中心孔上生成高压区域,接着由高压区域流向较低压的周围区域,最终通过出气口排出。
二、结构特点离心式压缩机的结构主要由驱动装置、离心机组、排气部分、润滑装置和控制装置组成。
1.驱动装置:用于提供转子旋转的动力,通常是由电动机驱动。
2.离心机组:由转子、叶片、转子轴和壳体组成。
转子是离心式压缩机的核心部件,主要负责压缩气体。
3.排气部分:包括进气管道、进气口、气室、出气管道和出气口。
4.润滑装置:用于保证离心式压缩机的正常运行和延长使用寿命,通常采用润滑油进行润滑。
5.控制装置:用于控制离心式压缩机的运行参数和保护装置,确保其安全运行。
三、性能参数离心式压缩机的性能参数直接影响到其工作效率和性能。
1.流量:指单位时间内进入离心式压缩机的气体体积,通常以立方米/分钟或立方米/小时表示。
2.压力比:指离心式压缩机排气压力与进气压力之比,标志着其压缩效果。
3.压力水平:指离心式压缩机能够达到的最高压力。
4.转速:指离心式压缩机转子旋转的速度,通常以每分钟转数(RPM)表示。
5.能效比:指离心式压缩机消耗单位电能产生的压缩空气量,是衡量其能效的指标。
离心式压缩机工作原理离心式压缩机是一种常见的工业压缩机,它具有高效、稳定、低噪音等优点,在空调、制冷、气体输送、化工等行业应用广泛。
本文将详细介绍离心式压缩机的工作原理。
一、离心式压缩机简介离心式压缩机是指以离心力为主要作用力而工作的压缩机。
它通过贯穿在转子上的叶轮以及转子高速旋转产生的离心力将气体压缩,并将气体送入下游流体系统。
离心式压缩机通常由驱动机、压缩机本体以及控制系统三部分组成。
二、离心式压缩机工作原理1. 压缩室转子运动离心式压缩机的核心是压缩室,它由两个旋转的圆锥形元件组成,即进口叶轮和压缩叶轮。
进口叶轮和压缩叶轮之间有一个斜板,叫做导向叶片,将气体引导到压缩叶轮中心。
在正常工作状态下,驱动机会将马达的动力传输到压缩机本体内的主轴,主轴在高速旋转的将进口叶轮和压缩叶轮带动着一起旋转。
进口叶轮将气体引入压缩室,气体在导向叶片的作用下被引导到压缩叶轮的周围,并沿着压缩叶轮旋转,由于叶轮的高速旋转和离心力的作用,气体的压力和密度逐渐增大,最终被压缩为高压气体。
2. 压缩室压力变化过程在压缩室的运作中,气体在叶轮上和斜板上的作用下被压缩,并形成高压气体,这个过程中压缩室内外的压力也随之变化。
当气体经过进口叶轮后,压力和速度都较低,此时气体压力和周围环境大致相同;当气体进入到压缩叶轮内部,并随着转子高速旋转时,气体被不断加压,压力逐渐增大;当气体经过离心叶轮后,它达到了最高的压缩程度,压力已达到了较高的水平,接下来经过出口通道进入下一个部分。
3. 出口通道与电机驱动在离心叶轮的压缩作用下,气体被压缩成了高压气体,在压缩室的末端,压缩气体最终经过出口通道被排出,在此之前,出口通道通常连接着一个冷却器,对高温气体进行冷却,冷却后的气体密度变大,且易于被输送到下游流体系统。
驱动离心式压缩机的电机通常是三相异步电机,它提供转子所需的动力,驱动离心叶轮高速旋转,和气体进行压缩。
在工作过程中,需要对压缩机进行实时监测和控制,确保运行的稳定性和性能。
离心压缩机的工作原理
离心压缩机是一种常见的压缩机类型,其工作原理是将气体通过离心力的作用来提高气体的压缩比。
其基本组成部分包括压缩机壳体、转子、气体进口和排气口。
离心压缩机的工作过程如下:
1. 气体进入压缩机壳体:气体从进口进入离心压缩机的壳体。
2. 转子旋转:压缩机转子通过驱动装置旋转,创建强大的离心力。
3. 离心力提高气体压缩比:因为离心力的作用,气体被迫向外移动,并在转子的周围形成高压区域。
这导致气体的压缩比增加。
4. 排气:当气体压缩到一定程度后,通过排气口排出压缩后的气体。
排出的气体压力比进入时显著提高。
需要注意的是,离心压缩机的工作效率与离心力的大小和旋转速度有关。
更高的离心力和旋转速度通常会导致更高的压缩比,但同时也会产生更大的能量消耗和机械负荷。
因此,在实际应用中,需要根据具体需要来选择合适的离心压缩机型号和参数。
离心压缩机在工业生产和制冷系统中广泛应用,例如空调系统、制冷设备、气体输送等。
其工作原理的应用可使气体被有效地压缩和处理,并满足相应的生产或制冷需求。
约克离心式压缩机工作原理讲解首先,在吸入过程中,气体从外部环境进入压缩机。
当压缩机启动时,离心轴开始旋转,从而带动叶轮一起旋转。
离心轴上的叶轮通常由多个叶片组成,它们被安装在离心轴的间隙上,形成一个圆形的装置。
当离心轴旋转时,它会产生一个低压区域,使外部空气通过吸气入口进入压缩机的腔体。
接下来是压缩过程。
一旦空气进入腔体,它会被叶轮的旋转带动,并被离心力逐渐推向叶轮的外圈。
在叶轮推动下,空气会越来越紧密地被压缩,并沿离心轴前进。
当空气被推向叶轮的外圈时,离心力将空气的体积压缩到最小。
这个过程使得空气的压力和温度都显著增加。
最后是排放过程。
在压缩过程结束后,压缩气体被推到离心轴周围的排气道中。
离心轴上的排气口连接到制冷系统中的相应管道,将压缩气体排放到前一步骤中的高压系统中。
这些高压制冷剂将在后续的过程中被进一步处理和使用,以完成空调或制冷系统的工作。
总结起来,约克离心式压缩机的工作原理可概括为通过离心力将气体推向离心轴外周,以压缩气体并提高气体的压力和温度。
它的工作过程包括吸入过程、压缩过程和排气过程。
在吸入过程中,空气从外部环境进入腔体;在压缩过程中,空气被离心力推向离心轴外周,逐渐被压缩并达到最高压力和温度;最后,在排气过程中,压缩气体通过排气口被排放到系统中的相应管道。
约克离心式压缩机的工作原理使其成为空调和制冷系统中不可或缺的关键组件。
它通过高效地压缩气体,提高了制冷系统的效率和性能。
同时,该压缩机还具有较低的振动和噪音水平,使其在商业和工业领域得到广泛应用。
通过了解约克离心式压缩机的工作原理,我们可以更好地理解其如何在制冷系统中发挥作用,并应用于实际的工程项目中。
离心式压缩机原理教程§1 离心式压缩机的结构及应用排气压力超过×104N/m2以上的气体机械为压缩机。
压缩机分为容积式和透平式两大类,后者是属于叶片式旋转机械,又分为离心式和轴流式两种。
透平式主要应用于低中压力,大流量场合。
离心式压缩机用途很广。
例如石油化学工业中,合成氨化肥生产中的氮,氢气体的离心压缩机,炼油和石化工业中普遍使用各种压缩机,天然气输送和制冷等场合的各种压缩机。
在动力工程中,离心式压缩机主要用于小功率的燃气轮机,内燃机增压以及动力风源等。
离心压缩机的结构如图8-1所示。
高压的离心压缩机由多级组成,为了减少后级的压缩功,还需要中间冷却,其主要可分为转子和定子两大部分。
分述如下:1.转子。
转子由主轴、叶轮、平衡盘、推力盘、联轴器等主要部件组成。
2.定子。
由机壳、扩压器、弯道、回流器、轴承和蜗壳等组成。
图8-1 离心式压缩机纵剖面结构图(1:吸气室 2:叶轮 3:扩压器 4:弯道 5:回流器 6:涡室 7,8:密封 9:隔板密封10:轮盖密封11: 平衡盘12:推力盘 13:联轴节 14:卡环 15:主轴 16:机壳 17:轴承 18:推力轴承 19:隔板 20:导流叶片 )§2 离心式压缩机的基本方程一、欧拉方程离心式压缩机制的流动是很复杂的,是三元,周期性不稳定的流动。
我们在讲述基本方程一般采用如下的简化,即假设流动沿流道的每一个截面,气动参数是相同的,用平均值表示,这就是用一元流动来处理,同时平均后,认为气体流动时稳定的流动。
根据动量矩定理可以得到叶轮机械的欧拉方程,它表示叶轮的机械功能变成气体的能量,如果按每单位质量的气体计算,用表示,称为单位质量气体的理论能量:(8-1)式中和分别为气体绝对速度的周向分量,和叶轮的周向牵连速度,下标1和2分别表示进出口。
利用速度三角形可以得到欧拉方程的另一种形式:(8-2)二、能量方程离心式压缩机对于每单位质量气体所消耗的总功,可以认为是由叶轮对气体做功,内漏气损失和轮组损失所组成的。
首先根据能量守恒定律可以得到:(8-3)式中为输入的热量,为内能,为压能,为动能。
那么(8-3)式表示:叶轮对气体所做功,加上外界传入的热量等于压缩机内气体的内能,压能和动能的增加之和。
可以把内漏气损失和轮阻损失看成是传入到气体内的热量,因为损失和转化成热量会使机内气体的温度升高。
那么:(8-4) 就会得到(8-5)那么压气机所做的总功等于气体的焓增和动能的增加。
三、伯诺里方程对于可压缩的气体,压缩机中的伯诺里方程可以用下式表示:(8-6)式中:为压缩机中从进口1到出口2之间的流动损失,积分表示压缩机压缩过程的压缩功,与变化的过程有关。
(8-6)式可以从热力学第一定律和能量方程(9-3)式得出,热力学第一定律的微分形式为:(8-7)即系统能量的增加等于传入的热量与绝对功之和,其中为比容,积分(8-7)式得到:(8-8)其中(8-9) 是流动损失,、为出口和进口的焓。
上两式与式(8-4)(8-5)结合可以得到式(8-6)式,(8-6)与式(8-2)比较,得出:(8-10)式(8-10)中为压缩功表示为了提高压力所做的功,压力的提高由叶轮通道进出口的动能减少和离心力所做的功()组成,并且要减去流动损失部分。
压缩功与叶轮中的气体变化过程有关。
1.等温过程。
用表示压缩功(8-11)2.绝热过程对于完全绝热过程,。
其过程方程为:=常数或=常数绝热过程压缩功为:(8-12)3.多变过程的压缩功为:(8-13)四、压缩过程在T—S图上的表示热力学第二定律的表达式为:(8-14)式中S为熵。
在T—S图中,为过程曲线下的面积,如图8-2(a)表示。
图8-2(a)图8-2(b)同样,从过程起点1至终点2,热量为:=如图8-2(b)所示,为吸入热量q12根据热力学第一定律可以得出:(8-15)对于等压过程:常数,,故有:(8-16)(8-17)由式(8-16)可知等压过程在S—T图上为对数曲线,如图8-3所示。
所吸入的热量用式(8-17)表示。
图8-3 等压过程线1.等温过程等温过程在T—S图上为水平线,当从至点时(),即从图8-4上的1点至点,此时应该传出热量,其值由图8-4中的面积表示,即:(8-18)式(8-18)表示传出的热量为等温过程中的压缩功。
图8-4 等温过程线2.绝热过程绝热过程在S—T图上为垂直线,即为图8-4中的线。
绝热过程中,传入的热量,同时没有流动损失,即那么dS=0,S=常数,故又称为等熵过程,此时压缩功可表示为:(8-19)即相当于等压压缩从至,也相当于所围的面积,同时可以看出:所以等熵压缩功大于等温压缩功,差值为,这是由于等熵压缩的终点温度高,压缩功就必然大。
3.多变过程实际的压缩过程比较复杂,可用多变过程表示,在多变过程中,,为了简单分别讨论:a.在多变过程中存在流动损失,无传入的热量,即,此种多变过程由图8-5(a)中12曲线表示。
图8-5(a)多变过程线路图8-5(b)多变压缩功为(8-20) 为图8-5(a)中的a2”2’21ba所围的面积。
而理论功为:(8-21)其中为图8-5(a)中所围的面积,在不考虑动能变化时,为所围的面积,在图8-5(a)中流动损失所做的功即为损失转化为热量传入系统,此热量为。
当有热量传入时,总功为:(8-22)当不考虑动能变化时,此时即为所围的面积。
此时图8-中为。
b.有热交换的多变过程,考虑比较简单的,的情况,可用图8-5(b)中的曲线12表示,此时过程为放热过程。
仍由图8-5(b)中面积表示,为,而为那么在不考虑动能变化时,为所围的面积。
此种多变过程为放热过程,由于有冷却那么。
五、总耗功和功率对于压缩机的一个工作级,其理论功率可用表示:(w),为有效质量流量。
同理,总功率为:式中:为轮阻损失功率,为漏气损失。
(8-21a)可用下式表示:其中:和那么:那么总功率为:(kw)(8-21b)轮阻功率为:(kw)(8-21c)漏气功率为:(kw)(8-21d)六、滞止参数的表示:令为滞止温度(即总温),其表示为:(8-22a)或令M为马赫数,那用表示时,总功可以写成:(8-22b)为滞止焓。
滞止压力,可以用绝热过程表示出:在绝热流动中,,那么如果有流动损失存在,故在绝热流动中存在,使减少,那么七、压缩机效率的表达式由于压缩机中存在多种压缩过程,故可以用各种效率来表示,其中有多变效率,绝热效率,以及等温效率1.多变效率多变效率为多变压缩功与总功率之比:(8-23a)其中多变效率(8-23b)当忽略的动能变化时:(8-23c)2.绝热效率绝热效率可以用和表示,后者为滞止绝热效率,它们分别定义如下:(8-24a)忽略动能变化时:(8-24b)(8-25a)(8-25b) 此时:(8-26)3.等温效率和流动效率等温效率为:(8-27)流动效率为:(8-28)§3 压缩机内的基本过程变化图8-6 离心式压缩机简图离心式压缩机的每一个工作级一般由(1)、进气道;(2)、叶轮分导风轮和工作轮组成;(3)、无叶扩压器22-33;(4)、叶片扩压器33-55(44断面为叶片扩压器喉部截面);(5)、集气管等组成(55有时表示集气管出口)。
叶轮进口直径为 (和分别为进口轮缘和轮毂直径)。
各部分的气动参数变化如图8-7所示。
图8-7 压气机多部分参数的变化压缩机工作级中的气体压缩过程可以用焓熵图表示。
如图8-8所示,各部分的压缩过程分别叙述如下:1.压缩机进气道进气道从至1―1,进气道的滞止压力为,叶轮进口的滞止压力为,如图8-8所示,由于有流动损失 <,可以认为在进气道的膨振过程由点至1点,1点(点)的熵值大于的熵值,流动损失使的内能加大,而滞止焓而可以认为(8-29)图8-8 离心机压缩机级的焓熵图2.工作级间的等熵压缩过程现在考虑工作级间1-1至5-5断面的压缩过程,首先考虑等熵压缩过程,即不考虑流动损失于外界的热交换。
在整个工作级中,从叶轮进口1点到扩压器出口5点,等熵压缩的过程线为至,在叶轮中从1-1至2-2断面,工作过程线为图8-8中1*点至2I点,在全部扩压器中为2I点至。
3.级中实际压缩过程实际上空气在叶轮内的流动过程存在着流动损失,所以实际上叶轮出口状态2点的温度比等熵压缩2I点的温度I高。
这样全部扩压器中的等熵过程线不是2I至点,而是图8-8中的2点至点。
叶轮出口的总焓为所以叶轮做功使气体在叶轮中获得的总焓增量为△,(8-30)叶轮出口气体的动能为。
如果在扩压器全部等熵的转变成压力能的话,那么扩压器出口的静压力为,即图8-9上的点,但这实际上是不可能的,因为扩压器中的实际扩压过程中存在流动损失和余速损失。
扩压器中的实际扩压线为2点至5点。
扩压器中出口静压为,而滞止压力为,即点,而 <但是点和点的总焓相等(8-31)相当于上述各状态的压缩功表示如下:(1)、1点至2点,或1点至5点的多变压缩功如(8-20)式所示。
(2)、从点至点多变压缩功(滞止功),包括静压压缩功以及动能的变化用表示:(8-32a)(3)、从点至点的等熵压缩总功为:(8-32b)叶轮的反作用度为:(8-33)§4 进气道进气道的形式有三种:轴向进气,径向-轴向进气,弯管进气。
当进气需有予旋时,进气管安装静止导叶。
一、管内气动参数的决定1.进口截面处的气流参数该处的滞止气流参数就等于环境的气体参数:由能量方程,并忽略与外界的热交换后有:(8-34)(8-35)由于进口的速度值较小,所以计算中常用:,2.出口截面1-1处的气流参数,(8-36)(8-37) 为了使进气均匀,减少流动损失,进气道截面沿气流方向是收敛的。
出口处的气流压力于温度都有所下降,而速度稍有增加。
一般出口的平均速度=50~150m/s,该膨胀过程是多变得膨振过程。
多变指数一般为~。
主要与进气道的流动损失有关,流动损失为:(8-38) 式中-进气道的流动损失系数,它与进气道的形式,长度,进出口面积之比有关。
轴向进气道=~。
径向一轴向进气道为~。
求以后,可以求出(8-39) 已求出(40)滞止参数为:一般可以选取=~≈~§5 叶轮压气机叶轮一般分为两部分:前一部分为导风轮,后一部分叫工作轮。
这是由于压气机叶片前缘部分弯曲较大,形状复杂。
大型的压气机为了便于制造把前后二部分分开制造,而形成两个轮子。
尤其实对于径向直叶片的工作轮,前面设导风轮是必要的。
因为叶轮进口处从轮毂到轮缘的半径是变化的,圆周速度也就是变化的,那么进口气流角是变化的。
全进口叶片角为,那么(8-41) 式中为冲角,那么叶轮进口叶片角也是变化的。
图8-9 叶轮导风轮也是一个扩张性流道,出口速度大于进口速度,故气体静压有所提高。