一元一次不等式的解法(1).pdf
- 格式:pdf
- 大小:2.09 MB
- 文档页数:16
⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量已知:两种情况各自与总量比较(两个不等式)【习题1】某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人。
问该宾馆底层有客房多少间?【例2】把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量未知:两种情况相互比较(其中一种情况可计算总量,另一种情况有上下限)【习题2】某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
【例3】某校校长暑假将带领该校“市级三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。
已知两家旅行社的全票价都是240元,哪家旅行社比较好?解两种“方案比较”应用题的方法⑴找出两种方案的,设未知数⑵分别列出两种方案的费用⑶分情况讨论(结合人数)【习题3】某单位计划10月份组织员工到H地旅游人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元.该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠;问该单位应怎样选择,使其支付的旅游总费用较少?【练习】1、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?2、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
B型抽水机比A型抽水机每分钟约多抽多少吨水?3、A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/3吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?练习题:1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
一元一次不等式的解集一元一次不等式在数学中是一类基础且常见的问题类型,其解集表示了不等式的解的范围。
本文将详细讨论一元一次不等式的解集,并通过示例来说明解集的求解方法。
一元一次不等式的一般形式为 ax + b > c (或 < 或≥ 或≤),其中a、b、c为已知实数且a ≠ 0。
我们的目标是找到x的取值范围,使得不等式成立。
解一元一次不等式的基本步骤如下:步骤一:将不等式转化为等价的形式。
对于>和≥的不等式,可以直接保持原有形式。
对于<和≤的不等式,需要将不等号翻转,将其转化为>或≥的形式。
步骤二:将不等式化简为标准形式 ax + b > 0(或 < 或≥ 或≤)。
将不等式中的常数项移到右侧,使得等式左侧只有一个未知数,右侧为0。
步骤三:确定不等式的解集。
考虑a的正负情况,进行讨论。
接下来,我们将通过几个具体的示例来说明一元一次不等式的解集求解方法。
示例一:解不等式 2x - 1 > 5步骤一:保持原有形式。
2x - 1 > 5步骤二:化简为标准形式。
2x - 1 - 5 > 02x - 6 > 0步骤三:确定解集。
当a = 2 > 0时,不等式解集为x > 3。
示例二:解不等式 -3x + 4 ≤ 10步骤一:将不等式翻转。
-3x + 4 ≤ 10 变为 3x - 4 ≥ -10步骤二:化简为标准形式。
3x - 4 + 10 ≥ 03x + 6 ≥ 0步骤三:确定解集。
当a = 3 > 0时,不等式解集为x ≥ -2。
通过以上两个示例,我们可以看到一元一次不等式的解集求解过程。
根据具体的不等式形式,我们可以灵活运用求解方法来得出正确的解集。
在实际问题中,一元一次不等式的解集常常用来表示一些约束条件或范围,例如线性规划、经济学模型等。
通过解集的求解,我们可以得出对应问题的有价值的数值范围。
总结起来,一元一次不等式的解集求解是数学中的基础技能之一。
一元一次不等式的解法步骤
解一元一次不等式的基本思路是将未知数(例如x)移项,从而把x的系数与常数分离开来。
以下是解一元一次不等式的具体步骤:
1. 检视不等式的形式,确定左边是未知数的系数和常数,右边是未知数的系数和常数。
2. 将左边的常数移到右边,将右边的系数移到左边,使得未知数的系数全部在左边,常数全部在右边。
3. 如果未知数系数的前面有一个负号,就把不等式的符号取反。
4. 化简不等式,将系数和常数约分,消去多余项。
5. 再次检查不等式的形式,确保未知数只出现在左边而不在右边。
6. 将不等式解释成为图形上的区间,即开一条数轴,找到未知数的取值区间。
7. 判断区间的两端点是否包含在不等式的解中,如果是,则将其作为解的端点,如果不是,则继续缩小区间,找到另一个端点。
8. 将解写成区间的形式。
一元一次不等式和它的解法〔一〕教学目标:1.知道什么是一元一次不等式.2.掌握一元一次不等式的解法.3.通过"等与不等"的比照使学生进一步领会对立统一的思想.教学重点、难点与关键:重点:掌握解法步骤并准确地求出解集.难点:正确地运用不等式根本性质3关键:一元一次不等式与一元一次方程的解法步骤的区别,等式性质2与不等式的根本性质的区别。
教材分析:一元一次不等式与一元一次方程无论是定义还是解法都极其相似,因此教学可以从复习一元一次方程的相关知识入手,类比到一元一次不等式,温故而知新.一元一次不等式的定义与一元一次方程区别仅在于一个是不等式另一个是等式.一元一次不等式的解法与一元一次方程解法步骤一样,即去分母、去括号、移项、合并同类项,系数化成1,唯一要注意的是在去分母和系数化成1的过程中,假设遇到同乘以〔或除以〕同一负数时,不等号要改变方向。
教学过程:1、导言:这一节课,我和同学们来共同学习一元一次不等式和它的解法,探索解一元一次不等式的方法和步骤。
这节课并不难,只要我们掌握了不等式的根本性质,就能学会一元一次不等式和它的解法,这就是这节课的容。
请看课文P56的黑体字,复习不等式的三条根本性质。
2、读、议、练、讲师:用多媒体教学设备将制好的幻灯片放出:1、题组练习:用“>〞和“<〞填空〔1〕20;-52;-7-10;〔2〕设a>b,那么:a+1b+1 a-3___b-33a3b -a-b-a/7____-b/7; a/4___b/4〔3〕由2x > -2,得x___-1;由-8x > 1,得x___- 1/8; ;由x < -3x,得4x___0.2、议论〔P81 B组第1题〕:〔用幻灯片打出〕:〔1〕根据不等式的根本性质,说明以下语句对不对:①从5 > 4一定能得到5a>4b,②从 1/3< 1一定能得到 1/3a<a.〔2〕①甲在不等式-100 < 0的两边都乘以-1,竟得到100<0!它错在哪里?②乙在不等式2x > 5x的两边都除以x,竟得到2 > 5!它错在哪里?生:[由学习小组〔4人或6人〕讨论后选一代表答复]生甲:⑴不对。
解一元一次不等式的方法一元一次不等式是初中数学中常见的题型,解题的方法有很多种。
下面我将介绍几种常用的解一元一次不等式的方法,希望能够帮助同学们更好地理解和掌握。
方法一:逐个试数法逐个试数法是一种简单直观的解题方法。
对于不等式ax+b>0(或ax+b<0)来说,我们可以逐个试数,找出满足不等式的数值范围。
以不等式2x+3>0为例,我们可以先试x=0,代入不等式中得到3>0,不满足条件;再试x=1,代入不等式中得到5>0,满足条件。
因此,解集为x>1。
方法二:移项法移项法是一种常用的解一元一次不等式的方法。
对于不等式ax+b>0(或ax+b<0)来说,我们可以通过移项的方式将不等式转化为等价的形式。
以不等式2x+3>0为例,我们可以先将3移到不等式的另一侧,得到2x>-3;然后再将不等式两边同时除以2,得到x>-3/2。
因此,解集为x>-3/2。
方法三:分析法分析法是一种较为抽象的解题方法,适用于一些特殊的不等式。
对于不等式ax+b>0(或ax+b<0)来说,我们可以通过分析a的正负和b的正负来确定解集的范围。
以不等式2x-4<0为例,我们可以观察到a=2>0,b=-4<0。
由于a>0,所以解集应该在x的右侧;由于b<0,所以解集应该在x的左侧。
因此,解集为x<2。
方法四:图像法图像法是一种直观形象的解题方法,适用于一些较为复杂的不等式。
我们可以将不等式转化为函数图像,通过观察图像来确定解集的范围。
以不等式x^2-4x+3>0为例,我们可以将不等式转化为函数y=x^2-4x+3的图像。
通过观察图像,我们可以发现函数图像在x=1和x=3处交叉x轴,因此解集为x<1或x>3。
综上所述,解一元一次不等式的方法有逐个试数法、移项法、分析法和图像法等。
不同的方法适用于不同的题型和情况,我们需要根据具体的题目选择合适的解题方法。