高中数学《函数的单调性》公开课优秀教学设计三
- 格式:doc
- 大小:194.00 KB
- 文档页数:7
函数的单调性教案(优秀)一、教学目标知识与技能目标:理解函数单调性的概念,掌握判断函数单调性的方法,能够运用函数单调性解决实际问题。
过程与方法目标:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力。
情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受数学在生活中的应用。
二、教学重点与难点重点:函数单调性的概念及其判断方法。
难点:运用函数单调性解决实际问题。
三、教学准备教师准备:教学课件、例题、习题等教学资源。
学生准备:预习函数单调性的相关知识,准备积极参与课堂讨论。
四、教学过程1. 导入新课教师通过生活中的实例引入函数单调性的概念,激发学生的学习兴趣。
2. 自主学习学生自主学习函数单调性的定义,理解函数单调性的含义。
3. 课堂讲解教师讲解函数单调性的判断方法,结合实例进行分析,引导学生掌握判断函数单调性的技巧。
4. 互动环节学生分组讨论,合作完成教师布置的例题,教师引导学生总结解题思路。
5. 练习巩固学生独立完成教师布置的练习题,巩固所学知识。
6. 课堂小结教师引导学生总结本节课所学内容,强调函数单调性的重要性和应用价值。
五、课后作业1. 完成课后练习题,巩固函数单调性的知识。
2. 选择一个实际问题,运用函数单调性进行解决,并在下节课分享。
3. 预习下一节课的内容,为课堂学习做好充分准备。
六、教学策略1. 情境教学:通过生活实例引入函数单调性,让学生感受数学与生活的紧密联系。
2. 合作学习:鼓励学生分组讨论,共同解决问题,培养学生的团队协作能力。
3. 引导发现:教师引导学生发现函数单调性的规律,培养学生的观察力和思考能力。
4. 实践操作:让学生动手实践,通过完成例题和练习题,提高学生的动手能力。
5. 反馈评价:及时给予学生反馈,鼓励学生自我评价,提高学生的自我学习能力。
七、教学环节1. 导入新课:利用生活实例引入函数单调性,激发学生的学习兴趣。
2. 自主学习:学生自主学习函数单调性的定义,理解函数单调性的含义。
函数的单调性教案一、引入函数的单调性是高中数学中的重要概念,它描述的是函数在定义域上的变化趋势。
在解题中,了解函数的单调性能够帮助我们简化问题,提高解题效率。
本教案将通过详细的讲解和例题分析,帮助学生掌握函数的单调性的概念、判断和应用。
二、概念剖析1. 单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≤ f(x2),则称 f(x) 在定义域上是单调递增的。
2. 单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≥ f(x2),则称 f(x) 在定义域上是单调递减的。
3. 严格单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) < f(x2),则称 f(x) 在定义域上是严格单调递增的。
4. 严格单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) > f(x2),则称 f(x) 在定义域上是严格单调递减的。
三、判断方法1. 导数判断法:对于函数 f(x),通过求导数 f'(x),可以判断函数的单调性。
当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数f(x) 单调递减。
2. 一阶差分判断法:对于函数 f(x),通过计算相邻两点之间的函数值差来判断函数的单调性。
当 f(x2) - f(x1) > 0 时,函数 f(x) 单调递增;当 f(x2) - f(x1) < 0 时,函数 f(x) 单调递减。
四、应用示例1. 实例1:判断函数 f(x) = 3x + 2 的单调性。
解析:根据导数判断法,求出函数 f(x) 的导数 f'(x) = 3。
函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。
教学内容:(1) 引入函数单调性的概念。
(2) 讲解函数单调增和单调减的定义。
(3) 举例说明函数单调性的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。
(2) 采用提问法,引导学生思考函数单调性的含义和应用。
教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。
(2) 讲解函数单调增和单调减的定义,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。
(4) 总结函数单调性的应用,如解不等式、求最值等。
1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。
教学内容:(1) 讲解函数单调性的传递性。
(2) 讲解函数单调性的同增异减性质。
(3) 举例说明函数单调性性质的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的性质。
(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。
教学步骤:(1) 讲解函数单调性的传递性,举例说明。
(2) 讲解函数单调性的同增异减性质,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。
(4) 总结函数单调性性质的应用,如解不等式、求最值等。
第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。
教学内容:(1) 讲解导数与函数单调性的关系。
(2) 讲解利用导数判断函数单调性的方法。
(3) 举例说明利用导数判断函数单调性的应用。
教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。
(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。
教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。
(2) 讲解利用导数判断函数单调性的方法,举例说明。
《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。
高中数学公开课(函数的单调性)优秀教学设计及说课稿(教学目标)1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义推断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和言语表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特别到一般,从感性到理性的认知过程.(教学重点)函数单调性的概念、推断及证明.(教学难点)归纳抽象函数单调性的定义以及依据定义证明函数的单调性.(教学方法)教师启发讲授,学生探究学习.(教学手段)计算机、投影仪.(教学过程)一、创设情境,引入课题课前安排任务:(1) 由于某种原因,2022年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比拟适宜大型国际体育赛事.下列图是今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?方案:(1)当天的X温度、X温度以及何时到达;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关怀很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有援助的.问题:还能举出生活中其他的数据变化情况吗?方案:水位上下、燃油价格、X价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.(设计意图)由生活情境引入新课,激发兴趣.二、归纳探究,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了肯定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?方案:(1)函数在整个定义域内 y随x的增大而增大;函数在整个定义域内 y随x的增大而减小.(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.(3)函数在上 y随x的增大而减小,在上y随x的增大而减小.引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能依据自己的理解说说什么是增函数、减函数方案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.(设计意图)从图象直观感知函数单调性,完成对函数单调性的第—次认识.2.探究规律,理性认识问题1:下列图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点确实切位置.通过商量,使学生感受到用函数图象推断函数单调性虽然比拟直观,但有时不够X,需要结合解析式进行严密化、X化的研究.(设计意图)使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?方案: (1) 在给定区间内取两个数,例如1和2,因为12<22,所以在为增函数.(2) 仿(1),取很多组验证均满足,所以在为增函数.(3) 任取,因为,即,所以在为增函数.对于学生错误的答复,引导学生分别用图形言语和文字言语进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.(设计意图)把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用X的数学符号言语表述出增函数的定义吗师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)稳固概念推断题:①.②假设函数.③假设函数在区间和(2,3)上均为增函数,则函数在区间(1,3)上为增函数.④因为函数在区间上都是减函数,所以在上是减函数.通过推断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A,B上都是增〔或减〕函数,一般不能认为函数在上是增〔或减〕函数.思考:如何说明一个函数在某个区间上不是单调函数(设计意图)让学生由特别到一般,从具体到抽象归纳出单调性的定义,通过对推断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生商量、交流.2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数在上是增函数.问题:要证明函数在区间上是增函数,除了用定义来证,如果可以证得对任意的,且有可以吗引导学生分析这种表达与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.(设计意图)初步掌握依据定义证明函数单调性的方法和步骤.等价形式进一步开展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、特别到一般、感性到理性.(2) 证明方法和步骤:设元、作差、变形、断号、定论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第60页习题2.3 第4,5,6题.课后探究:(1) 证明:函数在区间上是增函数的充要条件是对任意的,且有.(2) 研究函数的单调性,并结合描点法画出函数的草图.(函数的单调性)教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第—个性质,是函数学习中第—个用数学符号言语刻画的概念,为进一步学习函数其它性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:〔1〕要求用X的数学符号言语去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比拟困难的;〔2〕单调性的证明是学生在函数内容中第—次接触到的代数论证内容,而学生在代数方面的推理论证能力是比拟薄弱的.依据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标确实定依据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调推断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出言语表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采纳教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为到达本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:〔1〕在探究概念阶段, 让学生经历从直观到抽象、从特别到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深刻.〔2〕在应用概念阶段,通过对证明过程的分析,援助学生掌握用定义证明函数单调性的方法和步骤.〔3〕考虑到我校学生数学根底较好、思维较为活泼的特点,对推断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。
函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。
掌握函数单调性的证明方法,能运用定义证明函数的单调性。
2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。
通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。
3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。
通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
二、教学重难点1、教学重点函数单调性的概念。
运用定义证明函数的单调性。
2、教学难点函数单调性定义的理解。
利用定义证明函数的单调性。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。
引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。
3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。
分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。
解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。
函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。
1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。
1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。
第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。
2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。
2.3 练习:判断一些复杂函数的单调性,并进行验证。
第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。
3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。
3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。
第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。
4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。
4.3 练习:运用性质与定理解决一些实际问题。
第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。
5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。
5.3 练习:判断函数的单调性,并找出其极值点。
第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。
6.2 讲解:复合函数单调性的定义和判断方法。
6.3 练习:判断复合函数的单调性,并进行验证。
第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。
7.2 讲解:反函数单调性的性质和判断方法。
函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)教学目标:知识目标:让学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。
能力目标:通过探究函数单调性定义,培养学生观察、归纳、抽象的能力和语言表达能力;通过证明函数单调性,提高学生的推理论证能力。
德育目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维惯,让学生经历从具体到抽象、从特殊到一般、从感性到理性的认知过程。
教学重点:函数单调性的概念、判断及证明。
教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性。
教材分析:函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起。
本节课在教材中的作用如下:1)函数的单调性在初中数学中有广泛的应用。
它与前一节内容函数的概念和图像知识的延续有密切的联系,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
2)函数的单调性是培养学生数学能力的良好题材。
本节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。
教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。
同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。
3)函数的单调性有着广泛的实际应用。
在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。
函数的单调性在中学数学中扮演着十分重要的角色,因为它反映了函数的变化趋势和特点。
在解决问题时,利用函数单调性的观点是十分重要的,这为培养创新意识和实践能力提供了重要的途径和方式。
函数的单调性教学设计
一.教学内容解析:
1.教材内容及地位
本节课是北师大版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.
2.教学重点函数单调性的概念,判断和证明简单函数的单调性.3.教学难点函数单调性概念的生成,证明单调性的代数推理论证.二.教学目标设置
1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.
3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.
4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.
三.学生学情分析
1.教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“y随x的增大而增大(减小)”描述函数图象的上升(下降)的趋势.蒲城县尧山中学重点班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.
2.教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.
四、教学策略分析
在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“y随x的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:
1.指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.
2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结
合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.
3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.
4.在“学以致用”阶段.首先通过2个问题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.
五、教学过程
(一)创设情境,引入课题
问题1:科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?
设计说明:设置悬念,从实际生活出发使学生懂得数学来源于生活,激发学生的求知欲望
问题:2:观察下列函数图象,请你说说这些函数有什么变化趋势?
设计说明:明确目标、引起思考。
给出函数单调性的图形语言,调动学生的参与意识,通过直观图形得出结论,渗透数形结合的数学思想。
(二)引导探索,生成概念
问题3:如何用数学语言准确刻画函数在区间D 上递增呢?
设计说明:给出函数单调性的数学语言。
通过教师指图说明,分析定义,提问等办法,使学生把定义与直观图象结合起来,加深对概念的理解,渗透数形结合分析问题的数学思想方法。
问题4:如果函数y=x2在区间[-3,3]内存在-1<2,恰有 f(-1)< f (2),那么函数y=f(x)在该区间上一定是单调递增的吗?
问题5:函数x x f 1)(=是减函数吗?
设计说明:通过学生的积极思维探索,从抽象到具体,并通过反例反衬,使学生对概念有了本质的认识,同时也锻炼了学生的逻辑思维能力
(三)学以致用,理解感悟
例1:证明函数 x x x f 1)(+=在(0,1)上单调递减。
设计说明:主要考查定义法。
让学生归纳证明单调性的一般步骤,使学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性,从而提高学生的推理论证能力。
通过解题,帮助学生初步构建解题模式。
练习:函数21
)(x x f =在()+∞,0上是增函数。
设计说明:请学生板演,然后由其他学生完善步骤.
(四)回顾反思,深化认识
课堂小结:通过本节课的学习,你的主要收获有哪些?
关键词:概念,证明方法,数学思想等。
设计说明:通过小结使学生对本节课所学知识的结构有一个明确的认识,能抓住重点进行课后复习。
(五)布置作业 习题2-3 A 组:2,4,5;
(六)板书设计
函数的单调性
递增:(板书定义) 例题(提炼步骤,明确变形方向) 递减:(学生类比) 练习(学生板演)
(七)教后反思
数无形时少直觉,形少数时难入微。
数形结合百般好,隔离分家万事休。
——华罗庚以后教学中,要注意“数”和“形”的和谐统一。
函数单调性课例点评
课例点评:
1、在“概念教学”上,本课例能注意高一学生由初中到高中的知识与能力的衔接。
初中对函数的理解较直观、感性,而高中要上升到理性的认识。
这节课的授课时间是第一学期前阶段,学生正处于由形象经验型向抽象理论型转变时期。
课例能从函数图像入手,从形象到抽象形成定义,最后应用与强化。
2、能发展数学应用知识,这是新课标所提倡的。
课例开始引用的实际例子,来源于生活,体现了数学的应用价值,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。
3、本课例一大特点是应用信息多媒体技术,借助计算机使函数形象化,动态化,可控化,同时提高课堂效率。
而例题的证明又能够板书,这样有利于学生思维形成过程及书写规范性。
意见与建议:
1、在“函数单调性概念”教学上,虽然符合形象到抽象,感性到理性的认知过程,但力度不够。
我认为该课重点是理解函数单调性概念的本质特征,难点是概念的数学化提炼过程。
在处理到课例中任务二时,老师问学生:你能用数学语言描述函数递增这一特性吗?这是重点和难点,如没有适当的引导,显得跨度大,我建议要用具体数据做一个探讨和引入,再由特殊到一般,归纳出定义。
2、内容偏多,45分钟的课堂教学显仓促。
要抓重点,懂取舍。