高二化学化学反应热的计算
- 格式:doc
- 大小:755.50 KB
- 文档页数:9
化学高二反应热的计算知识点总结在化学中,反应热是指在化学反应中放出或吸收的热量。
计算反应热可以帮助我们了解化学反应的热力学性质,预测反应的产热或吸热特点。
本文将针对化学高二学生在学习反应热计算中常见的知识点进行总结,以帮助同学们更好地掌握这一部分内容。
一、燃烧反应热的计算燃烧反应热是指燃烧反应中放出或吸收的热量。
在计算燃烧反应热时,我们需要根据反应方程式中的摩尔配比和标准燃烧焓来进行计算。
标准燃烧焓是指物质在标准状态下完全燃烧时放出或吸收的热量。
例如,当我们计算乙醇的燃烧反应热时,可以根据以下反应方程式进行计算:乙醇 + 3氧气 -> 2二氧化碳 + 3水根据反应方程式中的摩尔配比,可以得知乙醇与氧气的配比为1:3。
假设乙醇的标准燃烧焓为ΔH1,水和二氧化碳的标准燃烧焓分别为ΔH2和ΔH3,那么燃烧反应热ΔH就可以通过以下公式计算得出:ΔH = ΔH2 + 3ΔH3 - ΔH1二、反应热的计算与化学键在化学反应中,物质的化学键会发生断裂和形成,从而释放或吸收热量。
我们可以利用化学键的能量差来计算反应热。
当化学键断裂时,需要吸收能量,此时为正值;当化学键形成时,会放出能量,此时为负值。
通过计算所涉及的化学键能量差,我们可以得到反应热的近似值。
例如,当我们计算甲烷燃烧的反应热时,可以根据以下反应方程式进行计算:CH4 + 2O2 -> CO2 + 2H2O根据化学键的能量差,我们可以知道C-H键的断裂需要吸收435 kJ/mol的能量,C=O键的形成释放出743 kJ/mol的能量,O-H 键的形成释放出464 kJ/mol的能量。
那么甲烷燃烧的反应热ΔH就可以通过以下公式计算得出:ΔH = 1 * (2120 kJ/mol) + 2 * (-743 kJ/mol) + 2 * (-464 kJ/mol) - 1 * (435 kJ/mol)通过这种方法,我们可以计算其他含有化学键的反应的热量变化。
化学高二反应热焓变知识点在高中化学中,我们经常会遇到有关反应热焓变的概念和计算。
反应热焓变是指在化学反应中,反应物与生成物之间的能量差异。
了解反应热焓变的概念和计算方法对于理解化学反应的热力学过程非常重要。
一、反应热焓变的定义反应热焓变是指在常压条件下,单位摩尔反应物与生成物之间能量的差异。
反应热焓变可以表示为ΔH。
当反应热焓变为正值时,表示反应是吸热反应,能量被系统吸收;当反应热焓变为负值时,表示反应是放热反应,能量被系统释放。
二、反应热焓变的计算方法1. 反应热焓变的计算方法主要有两种:通过实验测量和利用反应热焓变的标准生成焓值进行计算。
2. 实验测量法:通过实验测量反应物与生成物的温度变化,结合热容量等参数,可计算得到反应热焓变。
例如,利用反应热量计测量方法可以测定一定量反应物反应后的温度变化,结合恒温条件和热容量的知识,可以计算得到反应热焓变。
3. 利用标准生成焓值计算法:通过已知物质的标准生成焓值,可以根据反应平衡态的生成物与反应物的物质量之比,计算得到反应热焓变。
标准生成焓值是指在标准状态下,1摩尔物质生成的焓变化值。
利用标准生成焓值进行计算的常用公式为:ΔH =ΣnΔHf(生成物) - ΣmΔHf(反应物),其中Σn和Σm分别表示生成物和反应物的物质量之比。
4. 反应热焓变的计算方法还可以结合热力学第一定律,利用反应物与生成物的化学键能与键能的变化来计算反应热焓变。
三、常见反应热焓变的特点1. 反应热焓变与反应性质的关系:通常情况下,反应热焓变与反应物的物质结构和化学键能有关。
化学键能越高,反应热焓变越大,说明反应热生成较强的化学键。
2. 反应热焓变与反应速率的关系:通常情况下,反应热焓变的绝对值越大,反应速率越快。
反应热焓变越大,说明反应物到生成物的能量转化程度更高,反应速率更快。
3. 反应热焓变与反应方程式的关系:反应热焓变可以通过热化学方程式来表示。
在热化学方程式中,反应物的系数表示摩尔比,反应热焓变的绝对值可以根据反应热焓变的计算方法进行计算。
化学反应热的计算知识点
化学反应热的计算主要涉及到几个关键知识点:
反应热的概念:化学反应的热效应,通常称为反应热,其符号为Qp。
当反应在恒压下进行时,反应热称为等压热效应。
反应热的计算公式:Qp = △U + p△V = △U + RT∑vB。
其中,△U表示反应产物的内能减去反应物的内能,p是压力,△V是反应产物的体积减去反应物的体积,R是气体常数,T 是绝对温度,∑vB(g) = △n(g)/mol,即发生1mol反应时,产物气体分子总数与反应物气体分子总数之差。
焓的定义:由于U、p、V都是状态函数,因此U+pV也是状态函数,我们将其定义为焓,符号为H。
于是,反应热可以表示为:Qp = △H = H终态- H始态。
反应热的测量与计算:反应热可以通过实验测量得到,也可以通过化学反应方程式和比热容公式进行计算。
另外,反应热与反应物各物质的物质的量成正比。
利用键能计算反应热:通常人们把拆开1mol某化学键所吸收的能量看成该化学键的键能,键能通常用E表示,单位为kJ/mol。
反应热等于反应物的键能总和与生成物键能总和之差,即△H = ΣE(反应物) - ΣE(生成物)。
由反应物和生成物的总能量计算反应热:△H = 生成物总能量- 反应物的总能量。
教学主题:复习反应热教学重难点:反应热计算的类型及方法教学过程:1.导入1、复习提问上次课知识2、复习提问有机相关知识2.呈现重难点一盖斯定律的应用1.盖斯定律的应用反应热的热效应只与始态和终态有关,就像登山至山顶一样,不管选择哪一条路线,山的海拔是不变的。
若反应物A变为生成物D,可以有两个途径:①由A直接变成D,反应热为ΔH;②由A经过B变成C,再由C变成D,每步的反应热分别为ΔH1、ΔH2、ΔH3。
如下图所示:则有:ΔH=ΔH1+ΔH2+ΔH3如:已知下列两个热化学方程式:①P4(白磷,s)+5O2(g)===P4O10(s)ΔH1=-2 983.2 kJ/mol②P(红磷,s)+O2(g)===P4O10(s)ΔH2=-738.5 kJ/mol要写出白磷转化为红磷的热化学方程式可虚拟如下过程:根据盖斯定律ΔH=ΔH1+(-ΔH2)×4=-2 983.2 kJ/mol+738.5 kJ/mol×4=-29.2 kJ/mol所以白磷转化为红磷的热化学方程式为P4(白磷,s)===4P(红磷,s)ΔH=-29.2 kJ/mol。
2.应用盖斯定律计算反应热时的注意事项(1)热化学方程式同乘以某一个数时,反应热数值也必须乘上该数。
(2)热化学方程式相加减时,同种物质之间可相加减,反应热也随之相加减。
(3)将一个热化学方程式颠倒时,ΔH的“+”、“-”号必须随之改变。
重难点二反应热计算的类型及方法1.根据热化学方程式计算:反应热与反应物各物质的物质的量成正比。
2.根据反应物和生成物的能量和计算:ΔH=生成物的能量和-反应物的能量和。
3.根据反应物和生成物的键能和计算:ΔH=反应物的键能和-生成物的键能和。
4.根据盖斯定律计算:将热化学方程式进行适当的“加”、“减”等变形后,由过程的热效应进行计算、比较。
5.根据物质燃烧放热数值计算:Q(放)=n(可燃物)×ΔH。
6.根据比热公式进行计算:Q=cmΔT。
化学反应热的计算一、盖斯定律1.盖斯定律的理解(1)大量实验证明,不管化学反应是一步完成或分几步完成,其反应热是相同的.(2)化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关.(3)始态和终态相同反应的途径有如下三种:ΔH=ΔH1+ΔH2=ΔH3+ΔH4+ΔH52.盖斯定律的应用根据如下两个反应Ⅰ。
C(s)+O2(g)=CO2(g)ΔH1=-393.5 kJ·mol-1Ⅱ。
CO(g)+错误!O2(g)=CO2(g)ΔH2=-283。
0 kJ·mol-1选用两种方法,计算出C(s)+错误!O2(g)=CO(g)的反应热ΔH。
(1)虚拟路径法反应C(s)+O2(g)=CO2(g)的途径可设计如下:则ΔH=-110。
5 kJ·mol-1.(2)加合法①写出目标反应的热化学方程式,确定各物质在各反应中的位置,C(s)+错误!O2(g)=CO(g).②将已知热化学方程式Ⅱ变形,得反应Ⅲ:CO2(g)=CO(g)+错误!O2(g)ΔH3=+283.0 kJ·mol-1;③将热化学方程式相加,ΔH也相加:Ⅰ+Ⅲ得,C(s)+错误!O2(g)=CO(g)ΔH=ΔH1+ΔH3,则ΔH=-110。
5 kJ·mol -1。
【温馨提示】(1)热化学方程式同乘以某一个数时,反应热数值也必须乘上该数;(2)热化学方程式相加减时,同种物质之间可相加减,反应热也随之相加减带符号;(3)将一个热化学方程式颠倒时,ΔH的“+”“-”号必须随之改变,但数值不变。
【思维模型】根据盖斯定律书写热化学方程式(1)确定待求反应的热化学方程式.(2)找出待求热化学方程式中各物质出现在已知方程式中的位置(是同侧还是异侧).(3)利用同侧相加、异侧相减进行处理。
(4)根据未知方程式中各物质的化学计量数通过乘除来调整已知反应的化学计量数,并消去中间产物。
(5)实施叠加并确定反应热的变化。
高二化学热化学知识点热化学是化学的重要分支之一,研究物质在化学反应中的能量变化以及与能量变化相关的热力学参数。
高二化学热化学知识点包括热能、焓、热容、热平衡等内容,下面将逐一进行介绍。
一、热容量(C)热容量是指物质单位质量或单位摩尔在温度变化时吸收或放出的热量。
其计算公式为:Q = mCΔT其中,Q为吸热或放热量,m为物质的质量,C为热容量,ΔT 为温度变化。
热容量常用单位是焦耳/摩尔·开(J/(mol·K))或卡路里/摩尔·开(cal/(mol·K))。
二、焓变(ΔH)焓变是指化学反应过程中吸热或放热的能量变化。
在恒压下,焓变等于吸热或放热量。
ΔH的正负值表示反应是吸热反应还是放热反应。
当ΔH为正值时,表示吸热反应,反应物的能量高于产物;当ΔH为负值时,表示放热反应,反应物的能量低于产物。
三、热反应与反应热热反应是指化学反应与热量变化相关联的现象。
反应热是反应过程中放出或吸收的热量,可通过实验测量得到。
其计算公式为:ΔH = Q/n其中,ΔH为反应热,Q为吸热或放热量,n为摩尔数。
反应热常用单位是焦耳/摩尔(J/mol)或千焦/摩尔(kJ/mol)。
四、定压热容量与定容热容量定压热容量是指在恒定压力下,物质单位质量或单位摩尔在温度变化时吸热或放热量的变化量。
其计算公式为:Cp = ΔH/ΔT其中,Cp为定压热容量,ΔH为焓变,ΔT为温度变化。
定压热容量常用单位是焦耳/摩尔·开(J/(mol·K))或卡路里/摩尔·开(cal/(mol·K))。
定容热容量是指在恒定体积下,物质单位质量或单位摩尔在温度变化时吸热或放热量的变化量,通常用Cv表示。
五、热平衡与反应热力学定律热平衡是指系统与外界之间没有净热量交换,达到一定温度时,温度不再发生变化的状态。
热平衡与反应热力学定律密切相关。
根据热力学第一定律和热力学第二定律,热平衡可以由反应物到产物的熵变(ΔS)与焓变(ΔH)之间的关系来描述。
高二化学反应热知识点总结化学反应热是指在化学反应过程中伴随产生或吸收的能量变化。
了解化学反应热的知识对于理解反应过程的热力学特性以及工业和生活中的应用至关重要。
本文将对高二化学中常见的反应热知识点进行总结。
1. 反应热的定义反应热可以分为物质的内能变化和物质的焓变两种形式。
反应热的定义是指在恒压条件下,反应物和生成物之间的焓差。
2. 焓的定义和计算焓(H)是物质的一种能量状态函数,表示单位质量物质在一定温度和压力下的能量状态。
焓计算公式为:H = U + PV,其中U表示内能,P表示压强,V表示体积。
3. 反应焓的计算反应焓的计算需要根据反应方程式中各组分的摩尔数和反应热的系数。
根据热力学定律,可以得到反应焓的计算公式为:ΔH =Σ(n产品× ΔHf 产品) - Σ(n反应物× ΔHf 反应物),其中ΔH表示反应焓的变化,ΔHf表示标准反应焓。
4. 反应热的测定方法常见的反应热的测定方法包括热化学方程法、燃烧弧法、卡路里计量法、分解试剂法等。
这些方法都是根据反应热与温度之间的关系,通过测定温度变化或者物质的燃烧等方式来测量反应热。
5. 反应焓的表达方式反应焓可以以反应焓变ΔH的形式表示。
当ΔH为正时,表示反应为吸热反应,反应过程吸收能量。
当ΔH为负时,表示反应为放热反应,反应过程释放能量。
6. 热力学第一定律热力学第一定律,也称为能量守恒定律,表明能量不会从绝对热的物体传递到绝对冷的物体而不产生其他变化。
在化学反应中,根据热力学第一定律,反应物和生成物的能量守恒。
7. 反应热与反应速率的关系反应热与反应速率之间存在一定的关系。
通常情况下,反应热越大,反应速率越快。
这是因为反应热的增加可以提供更多的能量,促使反应物分子碰撞更频繁,从而增加了反应速率。
8. 反应热的应用反应热在工业和生活中有广泛的应用。
例如,工业中常常利用放热反应来提供能量,如火力发电厂中的燃煤反应;在家庭中使用火柴点燃蜡烛时,也是利用放热反应来产生光和热能。
13化学反应热的计算解析化学反应热是指在进行化学反应时产生或吸收的热量,是一个重要的热力学概念。
化学反应热的计算可以帮助我们了解反应的放热或吸热程度,从而预测反应的方向或速率。
在进行化学反应热的计算时,通常使用反应焓变来表示反应热量的变化。
反应焓变是化学反应过程中,反应物和生成物之间焓的变化量。
化学反应的热量可以通过以下两种方式进行计算:1. 通过反应焓变的计算:反应焓变可以通过反应物和生成物之间的焓差来计算。
反应焓变的公式可以表示为ΔH = ΣH(生成物) - ΣH(反应物)。
其中ΔH表示反应焓变,ΣH(生成物)表示生成物的总焓,ΣH(反应物)表示反应物的总焓。
反应焓变的单位通常为焦耳/mol或千焦/mol。
2.通过热量平衡方程进行计算:热量平衡方程可以用来计算化学反应的热量。
热量平衡方程表示为Σq=0,其中Σq为反应物和生成物之间吸热和放热的总和。
通过热量平衡方程可以计算出反应的热量变化。
在进行化学反应热的计算时,需要注意以下几点:1.反应物和生成物的热化学性质需要事先确定:在进行反应焓变计算时,需要确保反应物和生成物的热化学性质是准确的。
通常可以通过实验方法或文献数据来获取反应物和生成物的热化学性质。
2.反应物和生成物的物质量需要明确:在计算反应焓变时,需要明确反应物和生成物的物质量,以便正确计算反应的热量变化。
3.考虑反应的放热或吸热性质:在计算反应焓变时,需要考虑反应是放热还是吸热的性质。
放热反应ΔH为负值,吸热反应ΔH为正值。
综上所述,化学反应热的计算是一个重要的热力学问题,可以通过反应焓变或热量平衡方程来计算。
在进行化学反应热的计算时,需要注意反应物和生成物的热化学性质、物质量和反应的放热或吸热性质。
通过正确计算反应热,我们可以更好地了解化学反应的热力学性质,为实验设计和反应优化提供参考。
高二化学下册《化学反应热的计算》知识点总结热化学方程式的简单计算的依据:热化学方程式中化学计量数之比等于各物质物质的量之比;还等于反应热之比。
热化学方程式之间可以进行加减运算。
【规律方法指导】有关反应热的计算依据归纳根据实验测得热量的数据求算反应热的定义表明:反应热是指化学反应过程中放出或吸收的热量,可以通过实验直接测定。
例如:燃烧6g炭全部生成气体时放出的热量,如果全部被水吸收,可使1g水由20℃升高到67℃,水的比热为4.2j/,求炭的燃烧热。
分析:燃烧热是反应热的一种,它是指在101pa时,1ol 纯净可燃物完全燃烧生成稳定氧化物时所放出的热量。
据题意,先求得1g水吸收的热量:Q=c△t=197.4j,由此得出该反应燃烧热为394.8j/ol。
根据物质能量的变化求算根据能量守恒,反应热等于生成物具有的总能量与反应物具有的总能量的差值。
当E1>E2时,△H<0,是放热反应;反之,是吸热反应。
△H=ΣE生成物-ΣE反应物根据反应实质键能的大小求算化学反应的实质是旧键的断裂和新键的生成,其中旧键的断裂要吸收能量,新键的生成要放出能量,由此得出化学反应的热效应和键能的关系:△H=E1-E2根据热化学方程式求算热化学方程式中表明了化学反应中能量的变化。
△H的大小与方程式中物质的系数大小成正比。
例如:H2+o2=H2o△H=-241.8j/ol则:2H2+o2=2H2o△H=?j/ol分析:当物质的系数变为2倍时,反应热也同时变为2倍。
所以△H=-483.6j/ol根据盖斯定律的规律求算盖斯定律是热化学中一个相当有实用价值的定律。
其内容是不管化学反应过程是一步完成还是分几步完成,总过程的热效应是相同的,即一步完成的反应热等于分几步完成的反应热之和。
利用这一规律,可以从已经测定的反应的热效应来计算难于测量或不能测量反应的热效应,它是间接求算反应热的常用方法。
具体计算方法是:通过热化学方程式的叠加,进行△H 的加减运算。