(3)G1与G2的差,定义为图G3=〈V3,E3〉,记为G3=G1-G2。 其中E3=E1-E2,V3=(V1-V2)∪{E3中边所关联的顶点}。 (4)G1与G2的环和,定义为图G3=〈V3,E3〉,
G3=(G1∪G2)-(G1∩G2),记为G3=G1 G2。
除以上4种运算外,还有以下两种操作:
E={e1,e2}={(v1,v2),(ห้องสมุดไป่ตู้2,v3)};
f(v1)=5,f(v2)=8,f(v3)=11;
g(e1)=4.6,g(e2)=7.5
8.1.2 结点的次数
定义8.1―4在有向图中,对于任何结点v,以v为始点的 边的条数称为结点v的引出次数(或出度),记为deg+(v); 以v为终点的边的条数称为结点v的引入次数(或入度), 记为deg-(v);结点v的引出次数和引入次数之和称为 结点v的次数(或度数),记作deg(v)。在无向图中,结点 v的次数是与结点v相关联的边的条数,也记为deg(v)。
i 1
i 1
定理8.1―2在图中,次数为奇数的结点必为偶数个。
证 设次数为偶数的结点有n1个,记为(i=1,2,…,n1)。 次数为奇数的结点有n2个,记为(i=1,2,…,n2)。
由上一定理得
n
n1
n2
2m deg(i ) deg(Ei ) deg(Oi )
i 1
i 1
i 1
因为次数为偶数的各结点次数之和为偶数。所以
孤立结点的次数为零。
定理8.1―1 设G是一个(n,m)图,它的结点集合为
V={v1,v2,…,vn},则 n
deg(i ) 2m
i 1
证 因为每一条边提供两个次数,而所有各结点次数
之和为m条边所提供,所以上式成立。