材料力学性能 金属的疲劳
- 格式:pptx
- 大小:5.83 MB
- 文档页数:2
金属的疲劳实际工作中构件,一般工作于变动的应力状态,称之为动载。
§1金属的疲劳现象一、变动载荷及应力循环1.变动载荷——大小、方向随时间变化而变化的载荷①周期性的:②无规则的:长期、长周期来看也可能成为有规则的和周期性的2.应力循环(周期性)描述(参数)特性物理量:σmax,σmin;平均应力σm=(σmax+σmin)/2;应力半辐σ a =(σmax-σmin)/2;应力循环对称系数(应力比):r = σmin/σmax;对称应力循环:r =-1 轴类构件所有r≠-1的应力循环均叫不对称应力循环脉动应力循环:r = 0齿轮类构件二、金属的疲劳现象及特点:1.疲劳:构件在变动载荷作用下,经一定时间工作后,因细微损伤的累积而造成构件断裂的现象,叫疲劳断裂。
2.特点:①应力处于变动状态;②低的工作应力值:无论材料是塑性还是脆性的,在静载下的断裂表现为脆性还是韧性,在疲劳断裂时其宏观表现均无明显塑性变形,表现为低应力脆断,一般工作应力远低于σ甚至远低于σp和σe,断裂常常是突然发生的,具有0.2隐蔽性和危害大的特点;③时间性损伤积累性:客观上表现为具有一定的使用寿命或一定的应力循环周次(Nf);一般地并不一定要求Nf = ∞,只须Nf大于某要求值即可。
常规正常情况下使用而断裂的工程构件,绝大多数破断是由疲劳引起,其原因:①工作应力不可能永久恒定;、σe或σp;②正常工作应力一般较低,其设计均低于σ0.2③一次性破断常于厂内质检时或第一次使用时即发生,为质量不合格产品,不属于正常使用状态。
对于疲劳断裂还需要注意的是:1)Nf与工作应力σ有密切关系;2)为裂纹的萌生、扩展过程,即所谓的损伤积累过程;指工作构件常为带裂纹工作体,其裂纹扩展的主过程为亚临界扩展,在工作时裂纹因应力循环而逐步亚稳扩展,直至其最终连接部分不能承受(KI ≥KI C)而最后快速扩展而断裂。
这就提出一种工作的安全模式:含正在扩展的裂纹的工程构件可能是安全的,其使用寿命是可能估算的。
金属材料的力学性能-疲劳强度疲劳强度:机械零件,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。
在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。
疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
实际上,金属材料并不可能作无限多次交变载荷试验。
一般试验时规定,钢在经受107次、非铁(有色)金属材料经受108次交变载荷作用时不产生断裂时的最大应力称为疲劳强度。
疲劳破坏是机械零件失效的主要原因之一。
据统计,在机械零件失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。
金属疲劳及加工硬化对金属材料力学性能的影响金属材料是广泛应用于各个行业的重要材料之一。
然而,在长时间的使用过程中,金属材料会出现疲劳现象,从而对其力学性能产生影响。
另外,金属加工过程中的硬化也是影响金属材料力学性能的重要因素之一。
本文将探讨金属疲劳及加工硬化对金属材料力学性能的影响。
一、金属疲劳对金属材料力学性能的影响金属材料在长期的应力作用下,会发生疲劳现象。
疲劳现象表现为金属材料在应力远小于抗拉强度或屈服强度时也会出现裂纹、剥落等损伤。
其中,金属材料的疲劳断裂是最常见的一种损伤形式。
疲劳断裂会对金属材料的力学性能产生直接而严重的影响。
首先,疲劳断裂会降低金属材料的强度和韧性。
经过疲劳断裂的金属材料,其抗拉强度和屈服强度会显著下降。
此外,疲劳断裂后的金属材料断面往往会出现粗糙的裂纹,导致材料的韧性也会大幅减弱。
其次,疲劳断裂还会导致金属材料的松弛和变形。
经过疲劳断裂的金属材料内部组织结构会出现变形和损伤,导致其在应力加载下产生松弛和变形的现象。
这些现象进一步降低了金属材料的强度和韧性。
总之,疲劳断裂在金属材料的应用过程中是非常重要的问题。
它对金属材料的实际使用寿命和力学性能产生了深远的影响。
因此,在金属材料设计和使用过程中,必须要考虑到疲劳效应对其性能的影响。
二、加工硬化对金属材料力学性能的影响金属材料在加工过程中,通常会经历锤击、折弯、冷镦、冲压等加工过程。
在这些加工过程中,金属材料会发生加工硬化现象。
加工硬化通常是通过加工应力改变材料的晶体结构,从而使其变得更加坚硬而耐用。
然而,加工硬化也会对金属材料的力学性能产生影响。
首先,加工硬化会降低金属材料的塑性。
在经过加工硬化的金属材料中,晶粒的尺寸变小了,损伤和缺陷也减少了。
这使其具有了更高的抗拉强度和屈服强度,但对其塑性造成削弱。
其次,加工硬化还会导致金属材料的脆性增加。
金属材料经过加工硬化后,其晶粒尺寸变小,当承受外力的时候金属内部晶粒的聚拢和滑动更加困难,就容易出现快速断裂,说明金属材料在加工过程中过度硬化也会降低其的韧性,使其变得更加脆性。
第二节金属材料的力学性能(硬度、韧性、疲劳)及工艺性能一、复习要求1、知道硬度的概念;2、熟悉硬度测试的方法及原理;3、知道各种硬度测试的表示方法;4、知道各种硬度测试方法的特点并能根据特点进行合理选用;5、知道冲击韧性的概念并了解其测试原理、方法及适用;6、知道疲劳的概念并了解其特征和产生疲劳的原因;7、知道疲劳曲线和疲劳极限的概念并了解影响疲劳极限的因素;8、了解工艺性能的种类及影响因素。
二、课前自主复习(一)、复法指导1、复习内容1)、硬度、韧性、疲劳概念;2)、硬度、韧性、疲劳的测试方法及应用场合;3)、影响硬度、韧性、疲劳的因素。
2、怎么复1)、抓住载荷特性及衡量指标结合强度、塑性的概念对硬度、韧性、疲劳的概念进行比较记忆;2)、课堂以探究解析硬度、韧性、疲劳等知识应用选择来帮助同学理解知识为主;3)、提出问题、分析问题、解决问题并及时巩固问题并学会对知识的迁移应用。
(二)、知识准备1)、硬度是指金属材料在静载荷的作用下抵抗局部变形特别是塑性变形、压痕或划痕的能力。
2)、硬度的测试方法有很多,最常用的有布氏硬度测试法、洛氏硬度测试法和维氏硬度测试法。
分别用HB、HR、HV表示。
3)、布氏硬度值根据所采用的压头材料不一样,分别用符号HBS(钢球)和HBW(硬质合金球)表示。
4)、洛氏硬度有HRA、HRB、HRC三种标尺,压头型式分为1200的金刚石圆锥体和直径为Φ1.588mm的钢球两种。
5)、维氏硬度用的是1360的正四棱锥体金钢石压头。
6)、冲击韧性在指金属材料在冲击载荷的作用下而不破坏的能力。
常用的测试方法有大能量一次冲击试验和小能量多次冲击试验,测试结果分别用冲击韧度αk和规定冲击载荷下冲击的次数N表示的。
7)、疲劳是金属材料在交变载荷作用下虽然承受小于或远远小于屈服点的应力但在较长的时间后产生裂纹或突然发生完全断裂的现象。
8)、疲劳曲线指的是作用的交变应力与循环次数的关系曲线。
金属材料疲劳概念金属疲劳(Metal Fatigue):许多机械零件,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。
在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。
在循环加载下,发生在材料某点处局部的、永久性的损伤递增过程。
经足够的应力或应变循环后,损伤累积可使材料产生裂纹(图1),或使裂纹进一步扩展至完全断裂(图2)。
出现可见裂纹或者完全断裂都叫疲劳破坏。
美国材料试验协会(American Society for Testing Materials, ASTM)将疲劳定义为:“材料某一点或某一些点在承受交变应力和应变条件下,使材料产生局部的永久性的逐步发展的结构性变化过程。
在足夠多的交变次数后,它可能造成裂纹的累积或材料完全断裂”。
法国的J.-V.彭赛列于1839年首先论述了疲劳问题并提出“疲劳”这一术语。
但疲劳研究的奠基人则是德国的A.沃勒。
他在19世纪50~60年代首先得到表征疲劳性能的S-N曲线,并提出疲劳极限的概念。
疲劳研究虽有百余年历史,文献极多,但理论不够完善。
近年来,断裂力学的进展,丰富了传统疲劳理论的内容,促进了疲劳理论的发展。
当前的发展趋势是把微观理论和宏观理论结合起来从本质上探究疲劳破坏的机理。
为什么金属疲劳时会产生破坏作用呢?这是因为金属内部结构并不均匀,从而造成应力传递的不平衡,有的地方会成为应力集中区。
与此同时,金属内部的缺陷处还存在许多微小的裂纹。
在力的持续作用下,裂纹会越来越大,材料中能够传递应力部分越来越少,直至剩余部分不能继续传递负载时,金属构件就会全部毁坏。
早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。
但由于技术的落后,还不能查明疲劳破坏的原因。
直到显微镜和电子显微镜相继出现之后,使人类在揭开金属疲劳秘密的道路上不断取得新的成果,并且有了巧妙的办法来对付这个大敌。
材料力学性能第五章-金属的疲劳一、前言金属是工业中广泛使用的材料之一,而疲劳是金属失效的常见原因。
疲劳现象是指材料在循环加载下,由于应力的交变和变形的累积,导致材料最终发生断裂的失效现象。
由于疲劳是材料失效的高发期之一,因此疲劳强度及其寿命评估在工程实践中极其重要。
本文将对金属疲劳相关的概念、实验方法、疲劳表征和机理等方面进行详细介绍。
二、疲劳相关概念2.1 疲劳应力和疲劳极限疲劳应力是指材料在循环加载下,在一个给定的时间内重复加载的最大应力,其值通常低于材料的屈服强度。
疲劳极限是指材料在循环加载下,在一个给定的时间内可以承受的最大应力,其值也低于材料的屈服强度。
2.2 疲劳曲线疲劳曲线通常是由应力-amplitude循环次数(N)图给出,包括S-N曲线和e-N 曲线。
其中S-N曲线是指材料应力振幅和循环次数之间的关系曲线,其垂直轴是应力振幅,水平轴是循环次数(N)。
e-N曲线是指材料应变振幅和循环次数之间的关系曲线,其垂直轴是应变振幅,水平轴也是循环次数(N)。
三、疲劳实验方法3.1 疲劳试验机疲劳试验机一般分为拉伸疲劳试验机、弯曲疲劳试验机和转子疲劳试验机等。
其中拉伸疲劳试验机主要用于金属杆件、薄壁件等线性部件的疲劳试验。
弯曲疲劳试验机主要用于梁疲劳试验,其挠度和载荷均可调节。
转子疲劳试验机主要用于模拟飞机、发动机等转子叶片的疲劳试验。
3.2 疲劳试验方法常用的疲劳试验方法包括:恒振幅疲劳试验、逐渐增加振幅疲劳试验、多级疲劳试验和积累损伤疲劳试验等。
其中恒振幅疲劳试验是常见的疲劳试验方法,以波形、频率和振幅不变的周期周次循环载入,记录疲劳寿命。
逐渐增加振幅疲劳试验是从小到大逐渐增加载荷振幅的疲劳试验,称为低对高试验。
多级疲劳试验则是将恒定载荷振幅的疲劳试验进行多个不同振幅载荷循环,记录没个载荷级的疲劳寿命,绘制多级S-N曲线。
四、疲劳表征4.1 疲劳极限疲劳极限是材料在循环加载下允许承受的最大应力,疲劳极限的单位是MPa(N/mm^2)。
金属材料的疲劳性能金属材料是工程中应用最广泛的一类材料,因其优良的力学性能、良好的加工性和广泛的适用性而受到青睐。
然而,在实际应用中,金属材料往往需要承受周期性的载荷,这种条件下的失效主要表现为疲劳破坏。
因此,了解金属材料的疲劳性能,对提高产品的可靠性与安全性具有至关重要的意义。
疲劳的基本概念疲劳是指材料在反复或交变载荷作用下,经过一定的循环次数后,出现的逐渐积累损伤并导致破坏的现象。
疲劳破坏通常是由微小的裂纹开始,在多次循环加载下逐步扩展,最终导致材料的断裂。
疲劳破坏与静态强度无直接关系,且其发生往往是在较低于材料屈服强度和抗拉强度的荷载下进行,表明这是一种特殊的破坏模式。
疲劳寿命疲劳寿命一般用于描述材料在特定载荷和环境条件下能承受多少次循环而不发生破坏。
通常我们用以下两个指标来表征疲劳寿命:循环次数(Nf):这是指在出现疲劳破坏之前材料所能承受的加载循环次数。
疲劳极限(σf):对于大多数金属材料,存在一个应力水平(称为疲劳极限),低于这个水平时材料即使经过无限次循环也不会发生疲劳破坏。
值得注意的是,并非所有金属都具有明显的疲劳极限,如铝合金等常见金属,其 fatigue limit 不易确定。
疲劳性能影响因素影响金属材料疲劳性能的因素包括但不限于以下几个方面:材料成分金属材料中的化学成分对其疲劳性能有明显影响。
例如,合金元素如镍、钼、铬等可以显著提高钢材的抗疲劳性能。
适当增加合金元素的比例,使得金属晶体结构更加稳定,从而提高了其疲劳强度。
此外,非金属杂质(如硫、磷等)的存在,则会降低材料的疲劳性能。
材料组织材料的微观组织结构直接决定了其机械性能。
在热处理过程中,通过控制冷却速度和温度,可以改变金属材料的相组成与晶粒尺寸,从而优化组织,提高疲劳性能。
例如,细化晶粒可以显著提高金属件的抗疲劳能力。
调质处理后的钢材,相较于退火状态下,会表现出更高的抗疲劳能力。
应力集中在实际使用中,构件往往因为几何形状的不均匀性(如凹坑、切口、焊缝等)而产生应力集中现象。
金属材料的疲劳性能金属材料是工程领域中常用的材料之一,其疲劳性能对于工程结构的安全性和可靠性具有重要影响。
疲劳是指材料在交变载荷作用下,经过一定次数的循环加载和卸载后,产生裂纹并最终破坏的现象。
本文将介绍金属材料的疲劳机理、影响因素以及改善疲劳性能的方法。
一、疲劳机理金属材料的疲劳机理主要包括以下几个方面:1. 微观裂纹形成和扩展:在交变载荷作用下,金属材料内部会产生微观裂纹,这些裂纹会随着循环加载和卸载的重复作用逐渐扩展,最终导致材料破坏。
2. 塑性变形和应力集中:在循环加载和卸载的过程中,金属材料会发生塑性变形,这会导致应力集中,从而加速裂纹的形成和扩展。
3. 金属材料的内部缺陷:金属材料内部存在各种缺陷,如夹杂物、气孔等,这些缺陷会成为裂纹的起始点,加速裂纹的扩展。
二、影响因素金属材料的疲劳性能受到多种因素的影响,主要包括以下几个方面:1. 材料的力学性能:材料的强度、韧性、硬度等力学性能对疲劳性能有重要影响。
强度高的材料能够承受更大的载荷,韧性好的材料能够吸收更多的能量,硬度高的材料能够抵抗塑性变形。
2. 循环载荷的幅值和频率:循环载荷的幅值和频率对疲劳性能有直接影响。
幅值越大、频率越高,材料的疲劳寿命越短。
3. 温度和环境条件:温度和环境条件对金属材料的疲劳性能也有一定影响。
高温环境下,金属材料的疲劳寿命会降低。
4. 表面处理和应力状态:表面处理和应力状态对金属材料的疲劳性能有重要影响。
表面处理可以改善材料的表面质量,减少裂纹的形成和扩展;应力状态的合理控制可以减少应力集中,延缓裂纹的扩展。
三、改善疲劳性能的方法为了改善金属材料的疲劳性能,可以采取以下几种方法:1. 优化材料的组织结构:通过合理的热处理、合金设计等方法,优化金属材料的组织结构,提高其强度和韧性,从而提高疲劳寿命。
2. 表面处理:采用表面处理技术,如喷丸、镀层等,可以改善金属材料的表面质量,减少裂纹的形成和扩展。
3. 控制应力状态:通过合理的设计和加工工艺,控制金属材料的应力状态,减少应力集中,延缓裂纹的扩展。
金属材料的力学性能金属材料在现代工业生产中广泛应用,原因是因为金属材料的机械性能优异,其力学性能在诸多领域都是重要的参考指标。
一、强度金属材料中最为重要的力学性能莫过于强度。
强度是指材料在受到外力时抵抗变形和破坏的能力。
通俗地说,就是指物质能够承受多大的外部负荷。
强度分为屈服强度、抗拉强度和抗压强度。
其中屈服强度是指材料在受到一定压力后开始变形的压力值,抗拉强度是指材料在被拉伸时承受的最大拉力,抗压强度则是指材料在被挤压时所能承受的最大压力。
三者的单位均为N/mm2(纳牛/平方毫米)。
二、延展性金属材料的延展性代表了其受力后能够发生多大的形变,并且保持强大的耐久性。
在加工过程中,延展性的指标非常重要。
延展性又分为材料的伸长率和冷弯性。
伸长率是指材料在拉伸过程中能够延长的量,通常以百分比表示;冷弯性则是指材料在被弯曲或者压缩后仍然能够恢复成原来的形状,并且该过程不会破坏材料的结构。
三、弹性模量弹性模量是金属材料的另一个重要指标,是指材料在受到外来力量后,变形保持弹性状态的能力。
弹性模量越高,材料的抗弯性和抗扭性就越高,同时在结构加工方面也更加有利。
四、硬度硬度是金属材料的固有属性,它描述了材料的抗划痕和抗磨损能力。
硬度指标通常以维氏硬度(HV)表示,维氏硬度是指在标准试件被标准钢球压铸后,钢球和试件之间的形变深度。
五、疲劳强度金属材料的疲劳强度是个复杂的性质。
它是指材料在受到重复荷载后能够承受的最大荷载。
在使用时,金属材料常常会遭受到来自不同方向上的变化载荷,如果材料的疲劳强度不足,则容易出现疲劳破坏的现象。
总体而言,金属材料的力学性能是不可或缺的,它们的强度、延展性、弹性模量、硬度和疲劳强度可为工程师们提供参考指标,帮助他们更好地设计制造各种结构。
在材料科学和工程的领域中,力学性能是研究和开发新材料的基础,因此它对于推动现代工艺和工程技术的发展至关重要。