复合材料力学性能表征(教学资料)
- 格式:doc
- 大小:81.50 KB
- 文档页数:4
复合材料力学性能表征(characterization of mechanical properties of composites)力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。
试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。
此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。
拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。
通过拉伸试验可获得如下材料的性能指标:式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。
式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。
拉伸弹性模量Et式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。
由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目:σL:∥纤维方向的拉伸强度;σT:⊥纤维方向的拉伸强度;EL:∥纤维方向的拉伸模量;ET:⊥纤维方向的拉伸模量。
应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。
压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。
由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测σL:∥纤维方向的压缩强度;σT:⊥纤维方向的压缩强度;EL:∥纤维方向的压缩模量;ET:上纤维方向的压缩模量。
弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。
复合材料力学课程设计一、课程目标知识目标:1. 让学生理解复合材料的定义、分类和基本性质,掌握复合材料的基本力学原理;2. 使学生掌握复合材料力学性能的表征方法,了解影响复合材料力学性能的因素;3. 引导学生运用所学知识,分析复合材料在工程实际中的应用,并能解决简单问题。
技能目标:1. 培养学生运用数学和力学知识分析复合材料力学问题的能力;2. 提高学生设计复合材料结构的能力,能根据实际需求选择合适的复合材料和结构;3. 培养学生通过实验和计算等方法,对复合材料力学性能进行测试和评估的能力。
情感态度价值观目标:1. 激发学生对复合材料及其力学性能的兴趣,培养学生对材料科学的热爱;2. 培养学生的创新意识和团队协作精神,让学生在探讨问题中学会尊重他人意见;3. 使学生认识到复合材料在现代科技发展中的重要性,增强学生的社会责任感和使命感。
课程性质:本课程为高二年级选修课程,旨在让学生在掌握力学基础知识的基础上,进一步学习复合材料的力学性质及其应用。
学生特点:高二学生在知识结构、思维能力和实践能力方面有一定基础,具备一定的自主学习能力和合作探究精神。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的创新能力和实践操作能力。
在教学过程中,注重目标导向,分解课程目标为具体学习成果,以便教学设计和评估。
二、教学内容1. 复合材料概述- 复合材料的定义、分类及特点- 复合材料的应用领域2. 复合材料基本力学原理- 弹性力学基础理论- 复合材料的应力-应变关系- 复合材料的强度理论3. 复合材料力学性能表征- 弹性模量、泊松比等力学性能参数- 力学性能测试方法及设备- 影响复合材料力学性能的因素4. 复合材料设计与应用- 复合材料结构设计原则- 复合材料选材及结构优化- 复合材料在工程实际中的应用案例5. 复合材料力学问题分析- 简单复合材料结构的力学分析- 复合材料力学问题的求解方法- 复合材料力学问题的实验研究教学大纲安排:第一周:复合材料概述第二周:复合材料基本力学原理第三周:复合材料力学性能表征第四周:复合材料设计与应用第五周:复合材料力学问题分析教材章节:第一章:复合材料概述第二章:复合材料基本力学原理第三章:复合材料力学性能表征第四章:复合材料设计与应用第五章:复合材料力学问题分析教学内容与课程目标紧密关联,旨在确保学生掌握复合材料力学的基本知识和实践应用,注重内容的科学性和系统性。
碳纤维复合材料的表征和力学性能分析碳纤维复合材料是一种具有优异力学性能的新材料,其广泛应用于汽车、飞机、火箭等领域。
本文旨在探讨碳纤维复合材料的表征和力学性能分析,以及相关研究领域的发展趋势。
一、碳纤维复合材料的表征(1)纤维型号及组织碳纤维是制备碳纤维复合材料的关键原料,其型号及组织结构对材料性能有重要影响。
常见的碳纤维型号有T300、T700、M40等,其强度和模量随着型号提高而增加。
同时,碳纤维的组织结构也影响复合材料的性能。
纤维间的排列方式、纤维的分布密度等都会影响材料的力学性能。
(2)基体树脂碳纤维复合材料中的基体树脂也对其性能具有重要影响。
基体树脂一般选择环氧树脂、酚醛树脂等。
不同的基体树脂在温度、湿度等环境下的性能表现有所不同。
因此,对基体树脂进行适当选择很关键。
(3)工艺参数制备碳纤维复合材料的工艺参数也是影响材料性能的关键因素。
工艺参数包括热处理温度、压力、固化时间等。
不同的工艺参数对材料的力学性能、热学性能等产生重要影响。
因此,在制备过程中需要严格控制这些工艺参数。
二、碳纤维复合材料的力学性能分析(1)强度碳纤维复合材料在强度方面表现优异,具有很高的拉伸和压缩强度。
其中,双向编织的 T700 碳纤维复合材料的拉伸强度可达到2000 MPa 以上,压缩强度为1300 MPa 左右。
但碳纤维复合材料的剪切强度相对较低。
(2)刚度碳纤维具有很高的弹性模量,使碳纤维复合材料具有很高的刚度。
在刚度方面,碳纤维复合材料比钢铁、铝合金等传统材料还要高出1-2倍。
这也是碳纤维复合材料应用于飞机等领域的重要原因之一。
(3)耐疲劳性能碳纤维复合材料在疲劳方面表现也非常出色,其疲劳寿命比金属材料长得多。
尤其是在不同的温度、湿度等环境下,碳纤维复合材料的疲劳寿命表现更加稳定。
三、碳纤维复合材料的发展趋势随着全球经济的快速发展,碳纤维复合材料在汽车、飞机、火箭等领域的应用越来越广泛。
未来,碳纤维复合材料的制备技术将会更加成熟,同时优化碳纤维和基体树脂的配比也将成为研究的重点。
复合材料中的材料力学性能分析复合材料是由两种或两种以上不同材料组合而成的新材料,其具有优异的力学性能,如高强度、高刚度、低密度等。
因此,对复合材料的力学性能进行分析,对于材料的设计、制备、应用等方面具有重要意义。
本文将从两个方面对复合材料中的材料力学性能进行分析:材料力学性能评价和材料力学性能分析方法。
一、材料力学性能评价材料力学性能评价是对复合材料力学性能进行定量评估和比较的过程。
常用的力学性能指标包括强度、弹性模量、断裂韧性、疲劳寿命等。
1. 强度:强度是材料抵抗外部载荷而产生破坏的能力。
在复合材料中,强度可以分为拉伸强度、压缩强度、剪切强度等。
通过力学试验,可以测定复合材料在不同载荷下的强度,并进行比较和评价。
2. 弹性模量:弹性模量反映了材料在受力时的变形能力。
对于复合材料来说,弹性模量通常通过静态拉伸试验中的应力-应变曲线来计算。
弹性模量高,表示材料具有较好的刚度特性。
3. 断裂韧性:断裂韧性是材料抵抗断裂的能力。
在复合材料中,断裂韧性的评价可以通过冲击试验或断裂韧性试验来进行。
断裂韧性高的材料具有抗冲击、抗断裂的能力。
4. 疲劳寿命:疲劳寿命是材料在交变载荷下能够承受的循环次数。
复合材料的疲劳寿命是指在特定应力水平下,材料能够进行多少次完全循环才会发生失效。
通过疲劳试验可以评估复合材料的疲劳性能。
二、材料力学性能分析方法要进行复合材料的力学性能分析,需要使用一些合适的试验方法和数值模拟技术,以下是常用的材料力学性能分析方法:1. 静态力学试验:静态力学试验是研究材料在静态加载下的力学性能的基本方法。
通过服从背景的应力-应变关系曲线可以获得弹性模量和屈服强度等性能参数。
2. 动态力学试验:动态力学试验是研究材料在动态加载下的力学性能的方法。
冲击试验和振动试验是常用的动态力学试验方法,可以评估复合材料在冲击或振动环境下的力学性能。
3. 数值模拟:数值模拟是通过计算方法来预测和分析材料力学性能的方法。
复合材料力学性能表征(characterization of mechanical properties of composites)
力学性能包括拉伸、压缩、弯曲、剪切、冲击、硬度、疲劳等,这些数据的取得必须严格遵照标准。
试验的标准环境条件为:温度23℃±2℃,相对湿度45%~55%,试样数量每项试验不少于5个。
此检测方法适用于树脂基复合材料,金属基复合材料力学性能可参考此方法进行。
拉伸拉伸试验是对尺寸符合标准的试样,在规定的试验速度下沿纵轴方向施加拉伸载荷,直至其破坏。
通过拉伸试验可获得如下材料的性能指标:
式中P为最大载荷,N;b,h分别为试样的宽度和厚度,mm。
式中△L为试样破坏时标距L0内的伸长量,mm;L0为拉伸试样的测量标距,mm。
拉伸弹性模量Et
式中△P为载荷一形变曲线上初始直线段的载荷增量,N;△L为与△P相对应的标距L0内的变形增量,mm。
由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测以下项目:
σL:∥纤维方向的拉伸强度;
σT:⊥纤维方向的拉伸强度;
EL:∥纤维方向的拉伸模量;
ET:⊥纤维方向的拉伸模量。
应力-应变曲线记录拉伸过程中应力-应变变化规律的曲线,用于求取材料的力学参数和分析材料拉伸破坏的机制。
压缩对标准试样的两端施加均匀的、连续的轴向静压加载荷,直至试样破坏,以获得有关压缩性能的参数,若压缩试验中试样破坏或达最大载荷时的压缩应力为P(N),试样横截面积为F(mm2),则压缩强度σc为:
由压缩试验中应力-应变曲线上初始直线段的斜率,即应力与应变之比,可求出压缩弹性模量(MPa)。
由于复合材料的各向异性,特别是用单向预浸带做的复合材料通常同时测
σL:∥纤维方向的压缩强度;
σT:⊥纤维方向的压缩强度;
EL:∥纤维方向的压缩模量;
ET:上纤维方向的压缩模量。
弯曲复合材料在弯曲试验中受力状态比较复杂,拉、压、剪、挤压等力同时对试样作用,因而对成型工艺配方,试验条件等因素的敏感性较大。
用弯曲试验作为筛选试验是简单易行的方法。
复合材料的弯曲试验一般采用三点加载简支梁法,即将标准试样放在两支点上,在中间施加载荷,使试样变形直至破坏。
材料的弯曲强度σ f为:
式中P为破坏载荷,N(或挠度为1.5倍试样厚度时的载荷);l为跨度,mm;b,h分别为试样的宽度和厚度,mm。
弯曲弹性模量Ef是指比例极限内应力与应变的比值,可按下式计算:
式中△P为载荷,N(或挠度曲线上使直线段产生弯曲的载荷增量);△f为与△P对应的试样跨距中点处的挠度增量。
剪切复合材料的特点之一是层间剪切强度低,并且层问剪切形式复杂,因此剪切试验对于复合材料的质量控制特别重要。
层问剪切强度测试方法有直接剪切法和短梁弯曲法等。
(1)直接剪切法。
试样的形式和尺寸如图,对试样的A、C面以一定的加载速度施加剪切,直至试样破坏。
试样破坏时单位面积上所承受的载荷值为层间剪切强度τs。
式中Pb为破坏载荷,N;b,h分别为受剪面的宽度和高度,mm。
(2)短梁弯曲法。
本方法用来测定单向纤维增强树脂复合材料平板的层间剪切强度,采用短梁三点弯曲法。
试样厚度h=2~5mm,宽度b=6.0mm±0.5mm,跨度l=5h,试样长度
L=1+10mm。
层间剪切强度τs。
按下式计算:
式中P为试样破坏时的最大载荷,N。
(3)纵横剪切试验。
由层板理论可以导出,用[±45°]s对称层板进行轴向拉伸所获得的应力一应变曲线能够表达0°铺层层板的剪切应力一应变曲线。
这种测定0°层板剪切性能的方法,称为纵横剪切试验。
该法与公认的薄壁圆筒扭转剪切相比,方法简单易行、省时省料,两者测定结果一致性较好,所测得的剪切强度和剪切模量,可以作为层板设计参量。
式中为纵横剪切强度,MPa;Pb为试样破坏时的最大破坏载荷,N;b为试样宽度,mm;h为试样厚度,mm。
式中GLT为纵横剪切弹性模量,GPa;△P为载荷一应变曲线直线段上选取的载荷增量,N;△εx为与△P相对应的试样轴向应变增量;△εy为与△P相对应的试样轴线垂直方向的应变增量。
冲击冲击试验是用来衡量复合材料在经受高速冲击状态下的韧性或抗断裂能力的试验方法,一般用简支梁摆锤冲击试验测定。
标准试样的中部开有V形缺口,以使试样受冲击时产生应力集中而呈现脆性断裂。
若试样冲断所耗的功为A(J),则冲击韧性aK:
式中b为试样缺口处宽度,m;h为试样缺口下厚度,m。
除简支梁冲击试验外,冲击试验还有悬臂梁冲击试验,落球式冲击试验,高速拉伸冲击试验等。
硬度材料的硬度表示抵抗其他硬物压入的能力,通过硬度的测量可间接了解其他力学性能,如磨耗、拉伸强度等,还可作为估计复合材料中基质固化程度的依据,硬度测试操作方便、迅速、不损坏试样、可现场进行,所以硬度作为质量检验和工艺指标而获得广泛应用。
硬度测试有布氏硬度、洛氏硬度、巴氏硬度、邵氏硬度等。
在复合材料中应用最广的为巴氏硬度。
巴氏硬度是一种压痕硬度,它以特定压头在标准弹簧作用下压入试样,以压痕深浅来表征试样的硬度。
巴氏硬度计有3种型号,其中GYZJ934—1和HBa—1适用于复合材料。
硬度计的指示仪表盘有100分度,每一分度相当于压入0.0076mm深度,压痕深度为0.76mm时表头读数为零;压痕深度为零时,表头读数为100。
表头读数越高表示材料越硬。