新人教A版高中数学(选修2-3)1.2《排列与组合》(组合)
- 格式:ppt
- 大小:1.26 MB
- 文档页数:42
第1课时组合与组合数公式知识点组合的定义从n个不同元素中取出m(m≤n)个元素□01合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点组合与组合数公式组合的定义包含两个基本内容:一是“取出元素”;二是“合成一组”,表示与元素的顺序无关,排列与组合的相同点是从n 个不同元素中任取m 个元素,不同点是组合是“不管元素的顺序合成一组”,而排列是要求元素按照一定的顺序排成一列.因此区分某一问题是组合还是排列,关键是看取出的元素有无顺序.组合数的两个性质,性质1反映了组合数的对称性,在m >n2时,通常不直接计算C mn 而改为C n -m n ,对于性质2,C m n +1=C m n +C m -1n 要会正用、逆用、变形用.1.判一判(正确的打“√”,错误的打“×”)(1)从a ,b ,c 三个不同的元素中任取两个元素的一个组合是C 23.( ) (2)从1,3,5,7中任取两个数相乘可得C 24个积.( ) (3)1,2,3与3,2,1是同一个组合.( ) (4)C 35=5×4×3=60.( ) 答案 (1)× (2)√ (3)√ (4)×2.做一做(1)从6名学生中选出3名学生参加数学竞赛的不同选法种数是________. (2)C 1820=________. (3)C 399+C 299=________.答案 (1)20 (2)190 (3)161700解析 (1)由组合数公式知C 36=6×5×43×2×1=20.(2)C 1820=C 220=20×192×1=190. (3)C 399+C 299=C 3100=100×99×983×2×1=161700.探究1 组合的有关概念 例1 给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法? (2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种? (6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种? 在上述问题中,哪些是组合问题?哪些是排列问题?[解] (1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的元素,没有顺序,是组合问题. (6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题. 拓展提升判断是否为组合问题,关键是判断问题是否与顺序有关,可以结合条件理解,也可以选择一个结果,交换这个结果中两个元素先后顺序,看是否对结果产生影响,若无新变化,则是组合问题.总之,与顺序有关是排列问题,若与顺序无关,则是组合问题.[跟踪训练1] 判断下列问题是排列问题,还是组合问题.(1)从集合A ={-1,1,10,8,6,4}中任取两个数相加,得到的和共有多少个? (2)从集合A ={-1,1,10,8,6,4}中任取两个数相除,得到的商共有多少个?(3)从a ,b ,c ,d 这四名同学中任取两名同学去参加某一活动,共有多少种不同的选法? (4)四个人互发一个电子邮件,共写了多少个电子邮件?解 (1)从集合A 中取出两个数后,改变两个数的顺序,其和不变.因此此问题,只与取出的元素有关,与元素的顺序无关,故是组合问题.(2)从集合A 中取出两个数相除,若改变其分子、分母的位置,其结果就不同,因此其商的值与元素的顺序有关,是排列问题.(3)由于从4名同学中取出的两名同学参加的同一项活动,没有顺序,因此是组合问题. (4)四人互发电子邮件,由于发信人与收信人是有区别的,与顺序有关,是排列问题. 探究2 组合数及组合数性质的运用 例2 (1)计算:C 410-C 37·A 33; (2)已知1C m 5-1C m 6=710C m 7,求C m8;(3)求C 38-n3n +C 3n21+n 的值; (4)证明:m C m n =n C m -1n -1. [解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)原方程可化为m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21(不符合题意,舍去).∴C m 8=C 28=28.(3)∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5,∵n ∈N *,∴n =10, ∴C 38-n3n +C 3n21+n =C 2830+C 3031=30!28!·2!+31!30!·1!=466.(4)证明:m C mn =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.拓展提升(1)像排列数公式一样,公式C mn=n (n -1)(n -2)…(n -m +1)m !一般用于计算;而公式C m n =n !m !(n -m )!及C mn =A mn A m m 一般用于证明、解方程(不等式)等.(2)在解决与组合数有关的问题时,要注意隐含条件“m ≤n 且m ,n ∈N *”的运用.如本例(3).(3)要注意公式Am n =C m n A m m 的逆向运用,如本例(1)中可利用“C 37A 33=A 37”简化计算过程. (4)本例(4)所推导的结论“m C m n =n C m -1n -1”以及它的变形公式是非常重要的公式,应熟练掌握.[跟踪训练2] (1)①求值:C 5-n n +C 9-nn +1;②求证:C mn =m +1n -mC m +1n . (2)计算:①C 58+C 98100·C 77; ②C 05+C 15+C 25+C 35+C 45+C 55; ③C n n +1·C n -1n .解 (1)①⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.②证明:因为C mn =n !m !(n -m )!,m +1n -m C m +1n =m +1(m +1)!·n !(n -m )(n -m -1)!=n !m !(n -m )!,所以C mn =m +1n -mC m +1n . (2)①原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4950=5006.②原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. ③原式=C 1n +1·C 1n =(n +1)n =n 2+n . 探究3 简单的组合问题例3 现有10名教师,其中男教师6名,女教师4名. (1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法? (3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即有C 210=10×92×1=45种不同的选法. (2)可把问题分两类:第1类,选出2名男教师,有C 26种方法;第2类,选出2名女教师,有C 24种方法,即共有C 26+C 24=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26·C 24=6×52×1×4×32×1=90种不同的选法. 拓展提升解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与取出的元素之间的顺序有关,而组合问题与取出元素的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.[跟踪训练3] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.解 (1)从中任取5人是组合问题,共有C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.1.下列问题不是组合问题的是 ( )A.10个朋友聚会,每两人握手一次,一共握手多少次?B.平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C.集合{a1,a2,a3,…,a n}的含有三个元素的子集有多少个?D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?答案 D解析组合问题与次序无关,排列问题与次序有关,D项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15 答案 C解析 C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,n =14,故选C. 3.把三张游园票分给10个人中的3人,分法有 ( ) A .A 310种 B .C 310种 C .C 310A 310种 D .30种答案 B解析 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.若C 4n >C 6n ,则n 的集合是________. 答案 {6,7,8,9} 解析 ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.5.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解 (1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.。
1.2.2组合第一课时组合与组合数公式预习课本P21~24,思考并完成以下问题1.组合的概念是什么?2.什么是组合数?组合数公式是怎样的?3.组合数有怎样的性质?[新知初探]1.组合的概念从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念、公式、性质[点睛]排列与组合的联系与区别联系:二者都是从n个不同的元素中取m(n≥m)个元素.区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)从a,b,c三个不同的元素中任取两个元素的一个组合是C23.()(2)从1,3,5,7中任取两个数相乘可得C24个积.()(3)1,2,3与3,2,1是同一个组合.()(4)C35=5×4×3=60.()答案:(1)×(2)√(3)√(4)×2.C2n=10,则n的值为()A.10B.5C.3D.4答案:B3.从9名学生中选出3名参加“希望英语”口语比赛,不同选法有()A.504种B.729种C.84种D.27种答案:C4.计算C28+C38+C29=________.答案:120组合的概念[典例]判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?[解](1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.区分排列与组合的方法区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[活学活用]判断下列问题是组合问题还是排列问题:(1)把5本不同的书分给5个学生,每人一本;(2)从7本不同的书中取出5本给某个同学;(3)10个人相互写一封信,共写了几封信; (4)10个人互相通一次电话,共通了几次电话.解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它是排列问题.(2)从7本不同的书中,取出5本给某个同学,在每种取法中取出的5本并不考虑书的顺序,故它是组合问题.(3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排列问题. (4)因为互通电话一次没有顺序之分,故它是组合问题.有关组合数的计算与证明[典例] (1)计算C 410-C 37·A 33; (2)证明:m C m n =n C m -1n -1.[解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C m n=m ·n !m !(n -m )! =n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.关于组合数公式的选取技巧(1)涉及具体数字的可以直接用n n -m C m n -1=nn -m ·(n -1)!m !(n -1-m )!=n !m !(n -m )!=C m n 进行计算. (2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的性质C m n =C n -mn简化运算.[活学活用]1.计算:C 38-n 3n +C 3n n +21的值.解:∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5.∵n ∈N *,∴n =10.∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=C 230+C 131=30×292×1+31=466. 2.求使3C x -7x -3=5A 2x -4成立的x 值.解:根据排列数和组合数公式,原方程可化为 3·(x -3)!(x -7)!4!=5·(x -4)!(x -6)!,即3(x -3)4!=5x -6,即为(x -3)(x -6)=40. ∴x 2-9x -22=0,解得x =11或x =-2. 经检验知x =11时原式成立. 3.证明下列各等式. (1)C m n =m +1n +1C m +1n +1; (2)C 0n +C 1n +1+C 2n +2…+C m -1n +m -1=C m -1n +m .解:(1)右边=m +1n +1·(n +1)!(m +1)![(n +1)-(m +1)]!=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn =左边,∴原式成立.(2)左边=(C 0n +1+C 1n +1)+C 2n +2+C 3n +3+…+C m -1n +m -1=(C 1n +2+C 2n +2)+C 3n +3+…+C m -1n +m -1=(C 2n +3+C 3n +3)+…+C m -1n +m -1=(C3n +4+C 4n +4)+…+C m -1n +m -1=…=C m -2n +m -1+C m -1n +m -1=C m -1n +m =右边,∴原式成立.简单的组合问题[典例] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件中,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加. [解] (1)C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C 59=126种不同的选法.解答简单的组合问题的思考方法(1)弄清要做的这件事是什么事;(2)选出的元素是否与顺序有关,也就是看看是不是组合问题; (3)结合两计数原理利用组合数公式求出结果. [活学活用]一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)从口袋内的8个球中取出3个球,取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 27=7×62×1=21. (3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=7×6×53×2×1=35.层级一 学业水平达标1.C 58+C 68的值为( )A .36B .84C .88D .504解析:选A C 58+C 68=C 69=C 39=9×8×73×2×1=84. 2.以下四个命题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开两辆车从甲地到乙地解析:选C 选项A 是排列问题,因为2个小球有顺序;选项B 是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C 是组合问题,因为2位观众无顺序;选项D 是排列问题,因为两位司机开哪一辆车是不同的.选C .3.方程C x 14=C 2x -414的解集为( )A .4B .14C .4或6D .14或2解析:选C 由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧x =14-(2x -4),2x -4≤14,x ≤14,解得x =4或6.4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆( )A .220个B .210个C .200个D .1 320个解析:选A C 312=220,故选A .5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A .60种B .48种C .30种D .10种解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C 25种方法,再从剩下的3人中选派2人参加星期日的公益活动有C 23种方法,由分步乘法计数原理可得不同的选派方法共有C 25·C 23=30种.故选C .6.C 03+C 14+C 25+…+C 1821的值等于________. 解析:原式=C 04+C 14+C 25+…+C 1821 =C 15+C 25+…+C 1821=C 1721+C 1821=C 1822=C 422=7 315.答案:7 3157.若已知集合P ={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为________.解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C 36=20种.答案:208.不等式C 2n -n <5的解集为________.解析:由C 2n -n <5,得n (n -1)2-n <5,∴n 2-3n -10<0.解得-2<n <5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x 8.解:(1)原方程等价于m (m -1)(m -2)=6×m (m -1)(m -2)(m -3)4×3×2×1,∴4=m -3,m =7.(2)由已知得:⎩⎪⎨⎪⎧x -1≤8,x ≤8,∴x ≤8,且x ∈N *,∵C x -18>3C x8,∴8!(x -1)!(9-x )!>3×8!x !(8-x )!.即19-x>3x ,∴x >3(9-x ),解得x >274,∴x =7,8.∴原不等式的解集为{7,8}.10.某区有7条南北向街道,5条东西向街道.(如图)(1)图中有多少个矩形?(2)从A 点走向B 点最短的走法有多少种?解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C 27·C 25=210(个).(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C 610=C 410=210(种)走法.层级二 应试能力达标1.若C 4n >C 6n ,则n 的集合是( )A .{6,7,8,9}B .{0,1,2,3}C .{n |n ≥6}D .{7,8,9}解析:选A∵C 4n >C 6n,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6,⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6.⇒⎩⎪⎨⎪⎧ n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6. ∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B 由题意,不同的放法共有C 13C 24=3×4×32=18种. 3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种解析:选D 和为偶数共有3种情况,取4个数均为偶数的取法有C 44=1种,取2奇数2偶数的取法有C 24·C 25=60种,取4个数均为奇数的取法有C 45=5种,故不同的取法共有1+60+5=66种.4.过三棱柱任意两个顶点的直线共15条,其中异面直线有( ) A .18对B .24对C .30对D .36对解析:选D 三棱柱共6个顶点,由此6个顶点可组成C 46-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.5.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x+2=16,得x 1=-3(舍去),x 2=5.答案:{5}6.某书店有11种杂志,2元1本的有8种,1元1本的有3种.小张买杂志用去10元钱,则不同买法的种数为________(用数字作答).解析:由已知分两类情况: (1)买5本2元的买法种数为C 58.(2)买4本2元的、2本1元的买法种数为C 48·C 23.故不同买法种数为C 58+C 48·C 23=266. 答案:2667.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 解:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14,要求C 12n 的值,故n ≥12,所以n =14,于是C 1214=C 214=14×132×1=91.8.已知集合A ={a 1,a 2,a 3,a 4},B ={0,1,2,3},f 是从A 到B 的映射. (1)若B 中每一元素都有原象,则不同的映射f 有多少个? (2)若B 中的元素0无原象,则不同的映射f 有多少个?(3)若f 满足f (a 1)+f (a 2)+f (a 3)+f (a 4)=4,则不同的映射f 又有多少个? 解:(1)显然映射f 是一一对应的,故不同的映射f 共有A 44=24个.(2)∵0无原象,而1,2,3是否有原象,不受限制,故A 中每一个元素的象都有3种可能,只有把A 中每一个元素都找出象,这件工作才算完成,∴不同的映射f 有34=81个.(3)∵1+1+1+1=4,0+1+1+2=4,0+0+1+3=4,0+0+2+2=4,∴不同的映射有:1+C 24A 22+C 24A 22+C 24=31个.。
人教新课标A版选修2-3 1.2排列与组合一、单选题(共12题;共24分)1.(2分)甲、乙等7人排成一排,甲在最中间,且与乙不相邻,那么不同的排法种数是()A.96B.120C.360D.4802.(2分)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种3.(2分)袋中有100个球,其中红球10个,从中任取5个球,则至少有一个红球的取法种数是()A.B.C.D.4.(2分)为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有()种A.36B.48C.60D.165.(2分)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.12种B.18种C.36种D.54种6.(2分)元宵节灯展后,悬挂有8盏不同的花灯需要取下,如图所示,每次取1盏,则不同的取法共有().A.32种B.70种C.90种D.280种7.(2分)在正方体的8个顶点中,以任意4个顶点为顶点的三棱锥,共有()A.52个B.54个C.58个D.62个8.(2分)2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为()A.72B.84C.96D.1209.(2分)为抗战新冠病毒,社会各界积极捐赠医疗物资.爱心人士向某市捐赠了6箱相同规格的医用外科口罩,现需将这6箱口罩分配给4家医院,每家医院至少1箱,则不同的分法共有()A.10种B.40种C.80种D.240种10.(2分)已知字母x,y,z各有两个,现将这6个字母排成一排,若有且仅有一组字母相邻(如),则不同的排法共有()种A.36B.30C.24D.1611.(2分)由这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为()A.180B.196C.210D.22412.(2分)在明代珠算发明之前,我们的先祖从春秋开始多是用算筹为工具来记数、列式和计算.算筹实际上是一根根相同长度的小木棍,算筹有纵式和横式两种,如图是利用算筹表示的数字,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,例如,137可以用根小木棍表示“ ”,则用6根小木棍(要求用完6根)能表示不含“ ”且没有重复数字的三位数的个数是()A.12B.18C.24D.27二、多选题(共2题;共6分)13.(3分)在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则下列结论正确的有()A.抽出的3件产品中恰好有1件是不合格品的抽法有种B.抽出的3件产品中恰好有1件是不合格品的抽法有种C.抽出的3件中至少有1件是不合格品的抽法有种D.抽出的3件中至少有1件是不合格品的抽法有种14.(3分)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则()A.某学生从中选3门,共有30种选法B.课程“射”“御”排在不相邻两周,共有240种排法C.课程“礼”“书”“数”排在相邻三周,共有144种排法D.课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法三、填空题(共4题;共4分)15.(1分)某校开设A类选修课5门,B类选修课4门,一位同学从中供选3门,若要求两类课程中至少选一门,则不同的选法共有.种16.(1分)五位同学排成一排,其中甲、乙必须在一起,而丙、丁不能在一起的排法有种17.(1分)若,则.18.(1分)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.四、解答题(共6题;共80分)19.(15分)已知4名学生和2名教师站在一排照相,求:(1)(5分)中间二个位置排教师,有多少种排法?(2)(5分)两名教师不能相邻的排法有多少种?(3)(5分)两名教师不站在两端,且必须相邻,有多少种排法?20.(15分)将7名应届师范大学毕业生分配到3所中学任教.(最后结果用数字表示)(1)(5分)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?(2)(5分)一所学校安排4个人,一所学校安排2个人,一所学校1个人,有多少种不同的分配方案?(3)(5分)其中有两所学校都各安排3个人,另一所学校安排1个人,有多少种不同的分配方案?21.(10分)有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)(5分)共有几种放法?(2)(5分)恰有2个盒子不放球,有几种放法?22.(10分)(1)(5分)由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数共有几种?(2)(5分)我校高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,求不同的选取法的种数. 23.(15分)盒子内有3个不同的黑球,5个不同的白球.(1)(5分)全部取出排成一列,3个黑球两两不相邻的排法有多少种?(2)(5分)从中任取6个球,白球的个数不比黑球个数少的取法有多少种?(3)(5分)若取一个白球记2分,取一个黑球记1分,从中任取5个球,使总分不少于7分的取法有多少种?24.(15分)江夏一中高二年级计划假期开展历史类班级研学活动,共有6个名额,分配到历史类5个班级(每个班至少0个名额,所有名额全部分完).(1)(5分)共有多少种分配方案?(2)(5分)6名学生确定后,分成A、B、C、D四个小组,每小组至少一人,共有多少种方法?(3)(5分)6名学生来到武汉火车站.火车站共设有3个“安检”入口,每个入口每次只能进1个旅客,求6人进站的不同方案种数.答案解析部分1.【答案】D【解析】【解答】解:甲的位置在中间已经固定,甲与乙不相邻,因此甲的左右相邻两个位置应从除甲乙之外的5人中选2人进行排列,剩下的人在其余位置上全排列,故有种,故答案为:D.【分析】从出甲乙之外的5人中选2人排在甲的两边并和甲相邻,剩下的全排列,利用排列数公式和乘法计数原理得到..2.【答案】C【解析】【解答】首先从6名同学中选1名去甲场馆,方法数有;然后从其余5名同学中选2名去乙场馆,方法数有;最后剩下的3名同学去丙场馆.故不同的安排方法共有种.故答案为:C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.3.【答案】C【解析】【解答】由题意,袋中有100个球,其中红球10个,从中任取5个球,至少有一个红球的取法有:①直接法:种不同的取法;②间接法:.故答案为:C.【分析】根据题意,可分别利用直接法和间接法求解,得到答案.4.【答案】A【解析】【解答】根据题意可知必有二名志愿者去同一小区开展工作,因此有种方式,所以四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者共有种方式.故答案为:A【分析】根据题意可知必有二名志愿者去同一小区开展工作,结合排列数的定义进行求解即可.5.【答案】B【解析】【解答】由于节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,则节目乙可放在第二、三、五个位置中的任何一个位置,其他节目任意排列,由分步计数原理可知,该台晚会节目演出顺序的编排方案共有种,故答案为:B.【分析】固定节目甲、丙的位置,将节目乙放在第二、三、五个位置中的任何一个位置,其他节目任意排列,利用分步计数原理可得出结果.6.【答案】B【解析】【解答】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,即每串灯取下的顺序确定,取下的方法有种.故答案为:B【分析】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,由定序问题可求解.7.【答案】C【解析】【解答】从正方体的8个顶点中任取四个顶点,共有种,其中有6个表面和6个对角面中的四个顶点共面,不能构成三棱锥,所以共有个三棱锥.故答案为:C.【分析】利用间接法可得结果:从正方体的个顶点中任取四个顶点的取法减去四点共面的情形即可得到结果.8.【答案】B【解析】【解答】先选择一个非0数排在首位,剩余数全排列,共有种,其中1和0排在一起形成10和原来的10有重复,考虑1和0相邻时,且1在0的左边,和剩余数字共有4!=24种排法,其中一半是重复的,故此时有12种重复.故共有种.故答案为:B.【分析】先选择一个非0数排在首位,剩余数全排列,共有种,其中1和0排在一起有重复,共有12种,即可得答案.9.【答案】A【解析】【解答】由题意, 因为6箱医用外科口罩的规格相同,故四家医院分配到的口罩箱数有1,1,2,2与1,1,1,3两种情况,则分配的方法有:①1,1,2,2:从4家医院中选择两家,分别分配1箱,共种.②1,1,1,3:从4家医院选出1家,分配给3箱,共种.共种.故答案为:A【分析】分四家医院分配到的口罩箱数分别为1,1,2,2与1,1,1,3两种情况,分别计算再求和即可. 10.【答案】A【解析】【解答】有且仅有一组字母相邻,这组字母有三种情况:.当相邻的这组字母为时,将6个位置编成1-6号,若在1号和2号,则3号和5号字母相同,4号和6号字母相同,有2种排法;若在2号和3号,则1号和5号字母相同,4号和6号字母相同,有2种排法;若在3号和4号,则1号和2号字母不相同,5号和6号字母不相同,有种排法;若在4号和5号,则2号和6号字母相同,1号和3号字母相同,有2种排法;若在5号和6号,则1号和3号字母相同,2号和4号字母相同,有2种排法,即相邻的字母为时,共有种排法.同理,相邻的字母为时,也都有12种排法,故共有种排法.故答案为:A.【分析】有且仅有一组字母相邻,这组字母有三种情况:,利用位置分析法,可得出当相邻的字母为时,共有12种排法,进而可知不同的排法共有有种.11.【答案】C【解析】【解答】分两种情况:⑴个位与百位填入0与8,则有个;⑵个位与百位填入1与9,则有个.则共有个.故答案为:C【分析】首先分析可得,个位数字与百位数字之差的绝对值等于8的情况有2种,即:①当个位与百位数字为0,8时,②当个位与百位为1,9时,分别求出所有的情况,由加法原理计算可得答案.12.【答案】C【解析】【解答】数字7、2、1组成6个,数字7、6、1组成6个,数字6、3、1组成6个,数字3、2、1组成6个,共24个符合要求的三位数.故答案为:C.【分析】6根小木棍可能组成数字7、2、1,7、6、1,6、3、1,3、2、1,分别对其进行全排列即可得出结果.13.【答案】A,C,D【解析】【解答】解:根据题意,若抽出的3件产品中恰好有1件是不合格品,即抽出的3件产品中有2件合格品,1件不合格品,则合格品的取法有种,不合格品的取法有种,则恰好有1件是不合格品的取法有种取法;则正确,错误;若抽出的3件中至少有1件是不合格品,有2种情况,①抽出的3件产品中有2件合格品,1件不合格品,有种取法,②抽出的3件产品中有1件合格品,2件不合格品,有种取法,则抽出的3件中至少有1件是不合格品的抽法有种,正确;也可以使用间接法:在100件产品中任选3件,有种取法,其中全部为合格品的取法有种,则抽出的3件中至少有1件是不合格品的抽法有种取法,正确;故答案为:ACD.【分析】根据题意,依次分析选项,对于,由分步计数原理计算可得合格品的取法以及不合格品的取法,由分步计数原理可得正确,错误;对于,分2种情况讨论:①抽出的3件产品中有2件合格品,1件不合格品,②抽出的3件产品中有1件合格品,2件不合格品,由加法原理可得;对于,由间接法分析:先计算在100件产品中任选3件的取法数目,再计算其中全部为合格品的取法,据此分析可得正确;综合即可得答案.14.【答案】C,D【解析】【解答】6门中选3门共有种,A不符合题意;课程“射”“御”排在不相邻两周,共有种排法,B不符合题意;课程“礼”“书”“数”排在相邻三周,共有种排法,C符合题意;课程“乐”不排在第一周,课程“御”不排在最后一周,共有种排法,D符合题意.故答案为:CD【分析】根据排列组合的相邻关系和不相邻关系,以及有限制排列的关系,逐个分析选项即可. 15.【答案】70【解析】【解答】由条件可知3门课程可以分成以下两种情况:类2门,类1门,共有种,或类1门,类2门,共有,所以不同的选法共有种方法.故答案为:70【分析】根据分类计数原理,3门功课可分成2种情况,分别求方法种数.16.【答案】24【解析】【解答】根据题意,先将甲乙看成一个“元素”,有2种不同的排法,将丙、丁单独排列,也有2种不同的排法,若甲、乙与第5个元素只有一个在丙丁之间,则有种情况,若甲、乙与第5个元素都在丙丁之间,有2种不同的排法,则不同的排法共有种情况.故答案为:24.【分析】根据题意,先使用捆绑法,将甲乙看成一个“元素”,再将丙、丁单独排列,进而将若甲、乙与第5个元素分类讨论,分析丙丁之间的不同情况,由乘法原理,计算可得答案.17.【答案】3【解析】【解答】因为,所以,化简得,解得.故答案为:3.【分析】用排列数和组合数的定义把已知等式化为乘积形式,然后可解方程.18.【答案】36【解析】【解答】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:现在可看成是3组同学分配到3个小区,分法有:根据分步乘法原理,可得不同的安排方法种故答案为:36.【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.19.【答案】(1)解:;(2)解:;(3)解:.【解析】【分析】(1)先排教师有种方法,再排学生有种方法,再根据分步计数原理即可得到答案;(2)先排4名学生有种方法,再把老师插入4个学生形成的5个空位中,有种方法,根据分步计数原理即可得到答案;(3)先将2名老师看成一个整体,有种方法,再从4名学生种选2名排两端,有种方法,最后将剩下的2名学生和老师这个整体全排列,有种方法,由乘法原理即可得到答案.20.【答案】(1)解:(种)(2)解:(种)(3)解:(种)【解析】【分析】(1)利用组合的知识求解;(2)先不均匀分组,再分配到学校即可求解;(3)先不均匀分组,再分配即可.21.【答案】(1)解:每一个球有4种放法,故共有44=256(种)(2)解:恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有种,再放到2个小盒中有种放法,共有种方法;第二类,2个盒子中各放2个小球有种放法,故恰有2个盒子不放球的方法共有种放法.【解析】【分析】(1)明确共有4个球,每个球都有4种放法,盒子可以不放球,根据分步计数原理求解.(2)首先明确有两个盒子不放球的含义是将4个球放入2个盒子中,放球分为两类,一类是1个盒子放3个另一个放1个,二类是两个盒子各放2个,分别求出每一类的放法,再用加法计数原理求解.22.【答案】(1)解:十位数字与千位数字之差的绝对值等于7,可得千位数字和十位数字的组合有五种,每种组合中百位和个位的数共有种组合,所以符合条件的四位数共有种.(2)解:情形一:不选三班的同学,从12个人中选出3人,有种选取方法,其中来自同一个班级的情况有种,则此时有种选取方法;情形二:选三班的一位同学,三班的这一位同学的选取方法有4种,剩下的两位同学从剩下的12人中任选2人,有种选取方法,则此时有种选取方法.根据分类计数原理,共有种选取方法.【解析】【分析】(1)千位数字和十位数字的组合有五种,百位和个位的数共有种组合,计算得到答案.(2)考虑不选三班的同学和选三班的一位同学两种情况,利用排除法和分步分类计数原理得到答案.23.【答案】(1)解:首先5个白球进行排列,然后3个黑球进行插空,则3个黑球两两不相邻的排法有种;(2)解:从中任取6个球,白球的个数不比黑球个数少的取法有3类:1个黑球和5个白球、2个黑球和4个白球、3个黑球和3个白球,共有种(3)解:从中任取5个球,使总分不少于7分的取法有4类:5个白球、4个白球1个黑球、3个白球2个黑球、2个白球3个黑球,共有种.【解析】【分析】(1)首先5个白球进行排列,然后3个黑球进行插空,则3个黑球两两不相邻的排法有;(2)从中任取6个球,白球的个数不比黑球个数少的取法有3类:1个黑球和5个白球、2个黑球和4个白球、3个黑球和3个白球;(3)从中任取5个球,使总分不少于7分的取法有4类:5个白球、4个白球1个黑球、3个白球2个黑球、2个白球3个黑球.24.【答案】(1)解:由题意得:问题转化为不定方程的非负整数解的个数,∴方程又等价于不定方程的正整数解的个数,利用隔板原理得:方程正整数解的个数为,∴共有多少种分配方案.(2)解:将问题转化为不定方程的正整数解个数,分组后再进行排列,∵不定方程的正整数解个数为,∴共有种方法.(3)解:设6名学生在3个安检的人数分别为,∵方程非负整数解的个数等价于方程的正整数解的个数,∴6人进站的不同方案种数为.【解析】【分析】(1)将问题转化为不定方程的非负整数解问题,再利用隔板原理进行求解;(2)将问题转化为不定方程的正整数解问题,再利用隔板原理、排列数公式进行求解;(3)将问题转化为不定方程方程的正整数解问题,再利用隔板原理、排列数公式进行求解.。
2013年高中数学 1.2 2排列与组合教案新人教A版选修选修2-3
教学内容背景材料:
义务教育课程标准实验教科书(人教版)二年级上册第八单元的排列与组合
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有顺序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:经历探索简单事物排列与组合规律的过程
教学难点:初步理解简单事物排列与组合的不同
教具准备:教学课件
学具准备:每生准备3张数字卡片,学具袋
教学过程:
能写出几个两位数?问题刚说完小
个,小狗说
学生活动教师巡视。
同学写出的个数不同,怎样
力、情感。
2
小熊、小猪一共握几次手?怎样握?
的同与不同,师:刚才我们帮森林学校的小动物们
直夸同学们聪明呢!通过解决这两个
?
计一下共有多少种穿法。
如果需要的。