碳纳米管增强镁基复合材料制备及界面研究进展
- 格式:docx
- 大小:28.39 KB
- 文档页数:3
镁基复合材料制备技术、性能及应用发展概况摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。
大致笔述了常用镁基复合材料研究概况、制备技术、性能及应用前景。
关键词:镁基复合材料制备技术性能应用Fabrication,Properties and Application of M agnesium—matrix CompositesDONG Qun CHEN Liqing ZHAO Mingjiu BI Jing(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)Abstract Magnesium—matrix composites with lightweight and high performance are becoming one of themost competitive and promising candidates in the applications of high—tech fields.An overview is made on the fabri—ating techniques,mechanical properties and applications for the typical magnesium—matrix composites,and theresearch trend is proposedKey words magnesium matrix composite,fabrication,properties,application. 0引言:镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料【E1】,主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。
碳纳米管增强金属基复合材料的力学性能研究近年来,碳纳米管(Carbon Nanotubes, CNTs)作为一种新型纳米材料,引发了广泛的研究兴趣。
由于其优异的力学性能和独特的结构,碳纳米管成为改善传统材料性能的理想增强剂。
本文旨在探讨碳纳米管增强金属基复合材料在力学性能方面的研究现状和发展趋势。
首先,碳纳米管作为增强剂,可以显著改善金属基材料的强度和硬度。
研究证实,当碳纳米管掺杂在金属基复合材料中时,由于其高强度和刚度,可以有效抵抗金属晶粒的滑移和扩散,从而提高材料的抗拉强度和屈服强度。
同时,碳纳米管还能增加复合材料的硬度,因为其针状结构可阻碍位错的运动,从而使材料更难发生塑性变形。
其次,碳纳米管对金属基复合材料的韧性和断裂韧度也有显著的影响。
相比于纯金属材料,碳纳米管可以增加复合材料的断裂韧度。
这是因为碳纳米管具有高强度和高韧性的特点,能够吸收和分散外载荷,在复合材料中形成桥梁效应,提高其韧性。
此外,由于碳纳米管材料表面的高能位缺陷,能够吸附并扩散裂纹的尖端,进一步抑制裂纹的扩展速率,从而提高复合材料的断裂韧度。
不仅如此,碳纳米管还可以提高金属基复合材料的疲劳寿命和耐蚀性。
由于其高强度、高模量和良好的润湿性,碳纳米管可以抵抗金属表面的应力腐蚀和疲劳裂纹扩展,延长金属基复合材料的使用寿命。
同时,碳纳米管还能够吸附和吸收金属表面的有害离子和分子,提高复合材料的耐腐蚀性能。
然而,在实际应用中,碳纳米管增强金属基复合材料还面临一些挑战。
首先,碳纳米管的分散性是影响复合材料力学性能的重要因素。
碳纳米管的高表面能使其易于团聚,在复合材料中形成团簇,导致性能不稳定。
因此,如何实现碳纳米管在金属基复合材料中的均匀分散是当前亟待解决的课题。
此外,碳纳米管与金属基材料之间的界面相互作用也是影响复合材料性能的关键因素之一。
界面的相容性和结合强度直接影响复合材料的力学性能。
寻找合适的界面改性方法和结构设计,以增加碳纳米管与金属基材料之间的结合力,实现优化的界面效果,是进一步提高复合材料性能的重要课题。
碳纳米管的制备和表征研究碳纳米管是一种非常重要的纳米材料,由于其具有优异的物理和化学性质,能够广泛应用于电子、化学、生物和医学等领域,成为了当今最热门的研究课题之一。
本文将介绍碳纳米管的制备和表征研究,旨在尽可能全面深入地介绍它的相关研究进展。
一、碳纳米管的制备方法碳纳米管的制备方法主要有以下几种:1. 等离子体增强化学气相沉积法该方法先用金属作为催化剂,在氧化镁或氧化铝的载体上制备成催化剂阵列,通过引入碳源和氢气,使用等离子体的方式来生成碳纳米管。
2. 化学气相沉积法该方法将催化剂和碳源同时放置在反应器内,不用外加能量,通过化学反应来制备碳纳米管。
3. 化学还原-热解法该方法先用催化剂将氧化石墨烯还原为石墨烯,然后利用热解技术进行碳化反应,制备碳纳米管。
以上三种方法是主流的制备碳纳米管的方法,但随着研究的深入,其它方法,如水热合成法、溶液-液相界面法等也逐渐被应用于制备碳纳米管。
二、碳纳米管表征技术为了对制备的碳纳米管进行表征和刻画,研究人员开发出了各种表征技术来研究其结构和性质,下面我们来介绍一些常用的表征技术:1. 透射电子显微镜(TEM)透射电子显微镜是最常用的碳纳米管表征技术之一,通过它可以直观的获得碳纳米管的观察图像。
2. 扫描电子显微镜(SEM)与TEM不同,扫描电子显微镜可以观察到碳纳米管的表面形貌,并能够获得表面形貌的三维结构图像。
3. 拉曼光谱(Raman)拉曼光谱具有非常高的灵敏性和分辨率,能够通过对碳纳米管的拉曼光谱图像进行功率谱分析,可以获得碳纳米管的结构、相互作用和物理特性等信息。
4. X射线粉末衍射(XRD)利用X射线的衍射实验,可以得到碳纳米管的晶格结构,晶格常数以及结晶度等信息。
5. 热重分析(TGA)热重分析可以帮助我们展现出材料在温度变化下的失重信息,从而推断出碳纳米管的热稳定性和热分解温度等相关信息。
以上技术对于制备和表征碳纳米管都有非常大的帮助,不同的表征方法可以从不同角度来对碳纳米管进行综合分析,有助于我们更好地了解碳纳米管的结构和性质。
碳纳米管-镁基复合材料的制备与物性研究碳纳米管/镁基复合材料的制备与物性研究摘要:碳纳米管/镁基复合材料由于其优异的力学性能和独特的物理化学性质,吸引了广泛的研究兴趣。
本文针对碳纳米管/镁基复合材料的制备方法和物性特征进行了综述。
首先介绍了碳纳米管和镁在复合材料中的优势及其应用领域。
然后,详细阐述了碳纳米管/镁基复合材料的制备方法,包括机械合金法、电化学沉积法、热压烧结法等。
接着,重点讨论了碳纳米管/镁基复合材料的物性研究,包括力学性能、热性能和电性能等方面。
最后,对该复合材料的未来研究方向提出了展望。
1.引言碳纳米管/镁基复合材料由于其独特的结构和优异的性能,在航空航天、汽车制造、电子设备等领域具有广泛的应用前景。
碳纳米管可以作为增强相,提高复合材料的强度和刚度,同时还可以增加复合材料的导电性。
镁作为基体材料,具有低密度、良好的塑性变形能力和较高的比强度。
因此,碳纳米管/镁基复合材料在实际应用中具有很大的潜力。
2.碳纳米管/镁基复合材料的制备方法2.1 机械合金法机械合金法是一种简单有效的制备碳纳米管/镁基复合材料的方法。
该方法将碳纳米管与镁粉一起放入球磨罐中,通过球磨过程使两者充分混合。
然后,通过热压烧结或热等静压成型等方法得到最终的复合材料。
机械合金法具有操作简单、成本低廉等优点,但碳纳米管的分散和镁与碳纳米管之间的界面结合仍然是一个挑战。
2.2 电化学沉积法电化学沉积法是一种通过电化学沉积技术来制备碳纳米管/镁基复合材料的方法。
在这种方法中,利用电化学沉积的原理在镁基体上沉积碳纳米管。
通过调节电解液成分和电沉积参数,可以控制碳纳米管的尺寸和形貌。
然后,通过热处理等方法来获得最终的复合材料。
电化学沉积法具有制备过程简单、对碳纳米管的控制能力强等优点,但需要对电化学沉积条件进行精确控制。
2.3 热压烧结法热压烧结法是一种将碳纳米管与镁粉混合后在高温高压下进行烧结的方法。
在高温下,碳纳米管与镁发生反应生成碳化镁,并与镁基体结合形成碳纳米管/镁基复合材料。
碳纳米管复合材料研究进展碳纳米管(Carbon nanotubes,CNTs)是由碳原子构成的长管状结构,直径在纳米级别范围内,具有优异的力学性质、电学性质和热学性质等特性。
碳纳米管的应用极其广泛,涉及到材料、化学、电子、生物和医学等领域。
在材料领域,由碳纳米管复合材料制成的材料在机器人、汽车、飞机、结构材料等方面具有广泛的应用前景。
本文将就碳纳米管复合材料研究进展,从制备、性质及其应用等方面进行论述。
一、制备方法碳纳米管复合材料的制备方法有许多种,包括机械法、溶液法、气相法、离子液体法等。
其中机械法制备的碳纳米管复合材料具有制备工艺简便、低成本、易扩展等优点,但是因为机械法的制备方式较为粗糙,可能会导致制备的复合材料的性能不佳。
离子液体法制备的碳纳米管复合材料具有制备工艺简便、成品纯度高等优势,但是由于离子液体具有较大的粘度,可能限制了碳纳米管的扩散,并形成束缚作用,从而影响复合材料的性能。
相比之下,气相法制备的碳纳米管具有制备工艺简单、制备效率高、碳纳米管纯度高等优势,但是气相法制备的碳纳米管需要高分辨率的仪器进行纯化处理,且气相法制备出的碳纳米管质量与管径分布不均匀。
二、材料性质碳纳米管复合材料具有优异的力学性质、电学性质和热学性质等。
碳纳米管复合材料的力学性能优于传统材料,其拉伸强度达到多千兆帕,弹性模量达到10万吨/立方厘米以上。
电学性质方面,碳纳米管的宽禁带结构使其表现出了金属和半导体的一些性质。
电学性质的优异性可用于电子器件的开发。
热学性质方面,碳纳米管的热传导性能突出,热扩散系数高达4000至6000W/mK左右,是金属的数倍。
然而,碳纳米管在制备和应用时也存在一些问题。
由于碳纳米管的外壳和内腔具有不同的物理结构,也导致了其结构多样化的特性。
复合材料内的碳纳米管方向性效应的强弱决定了复合材料的最终性能,因此研究碳纳米管在复合材料中的应用及取向问题至关重要。
同时,单根碳纳米管的直径和长度均较小,因此用于制备纳米复合材料时需要用到大量碳纳米管,制备过程的成本较高。
碳纳米管增强复合材料的制备与性能研究近年来,碳纳米管(Carbon Nanotube,简称CNT)因其出色的力学性能和独特的电子性质,成为研究领域的热门话题之一。
在复合材料领域,将CNT作为增强填料注入基体中,可以大幅度提升材料的力学性能,使复合材料具备更广泛的应用潜力。
首先,我们来了解一下碳纳米管的制备方法。
目前,常用的制备碳纳米管的方法主要有热解法和化学气相沉积法。
热解法是通过将碳源(例如甲烷、乙炔等)加热至高温,使其分解生成纳米级碳粉末,再通过高温炉进行淀粉状碳纳米管的制备。
化学气相沉积法则是在特定的温度和压力条件下,将金属催化剂与碳源气体(例如苯、甲烷等)共同进入炉管,通过热裂解反应在金属催化剂表面形成碳纳米管。
这两种方法各有优劣,根据具体需求选择合适的方法进行制备。
然而,对于碳纳米管的应用而言,单纯制备碳纳米管还不足以满足要求,还需要将其与基体材料相结合,形成增强复合材料。
常见的方式是通过浸渍法或机械混合法将碳纳米管注入到基体中。
浸渍法是将碳纳米管悬浮液浸渍于基体表面,并通过真空或气压的作用使其渗透至基体内部,达到均匀分散的目的。
机械混合法则是将碳纳米管与基体材料一同进行混合,利用机械力将其均匀分散。
这两种方法的选择取决于基体材料的性质和应用场景。
通过以上的制备方法,得到的碳纳米管增强复合材料具备了优异的力学性能。
首先,碳纳米管以其高强度和高刚度,使得增强复合材料的强度得到显著提升。
研究表明,在添加低浓度的碳纳米管的情况下,复合材料的拉伸强度可以提高 30%-100%。
其次,碳纳米管具有优异的导电性,可以赋予复合材料良好的导电性能。
这样的复合材料多用于电子元器件、防静电材料等领域。
此外,碳纳米管还具有优异的导热性能,使得复合材料具备了良好的散热性能,适用于热管理领域。
然而,碳纳米管增强复合材料的制备与性能研究仍有待进一步深入。
首先,目前碳纳米管的制备方法仍存在高成本、低产率的问题,限制了其在工业化生产中的应用。
碳纳米管的制备方法研究进展一、本文概述随着纳米科技的飞速发展,碳纳米管作为一种具有独特结构和优异性能的一维纳米材料,受到了广泛关注。
碳纳米管因其出色的电学、力学、热学等特性,在能源、电子、生物医疗等领域具有巨大的应用潜力。
然而,碳纳米管的规模化制备及其性能优化仍是当前研究的热点和难点。
本文旨在综述近年来碳纳米管制备方法的研究进展,分析不同制备方法的优缺点,探讨未来可能的发展方向,以期为推动碳纳米管的实际应用提供理论支持和技术指导。
文章首先回顾了碳纳米管的基本结构和性质,为后续研究方法的介绍奠定基础。
随后,重点介绍了化学气相沉积法、电弧放电法、激光烧蚀法等多种碳纳米管制备方法的研究进展,分析了这些方法在制备过程中的关键因素及其对碳纳米管性能的影响。
文章还关注了新兴制备方法如溶液法、模板法等在碳纳米管制备中的应用,以及这些方法的创新点和挑战。
通过对已有文献的梳理和评价,本文总结了当前碳纳米管制备领域的主要成果和不足,展望了未来的发展趋势。
未来,随着科学技术的不断进步,碳纳米管的制备方法将更加多样化、高效化,有望为碳纳米管的产业化发展奠定坚实基础。
二、碳纳米管的基本性质碳纳米管(Carbon Nanotubes,CNTs)是一种由碳原子以特定方式排列形成的一维纳米材料,自从1991年被首次发现以来,因其独特的结构和性质,已成为纳米科学和技术领域的研究热点。
碳纳米管的基本性质主要体现在其结构、电学、热学和力学性能上。
结构上,碳纳米管可以看作是由单层或多层石墨烯片卷曲而成的无缝管状结构,这种独特的结构赋予了碳纳米管出色的物理和化学性质。
电学方面,碳纳米管因其特殊的电子结构和量子限域效应,表现出优异的导电性能,既可以是金属性,也可以是半导体性,这取决于其直径和螺旋度。
热学方面,碳纳米管具有极高的热导率,使其成为潜在的散热材料。
力学性能上,碳纳米管具有超高的强度和模量,比钢强而轻,这使得它在复合材料增强和纳米机械等领域具有广阔的应用前景。
碳纳米管增强复合材料的力学性能研究碳纳米管是一种由碳原子构成的纳米材料,具有优异的力学性能和导电性。
随着科技的不断发展,研究人员越来越关注如何利用碳纳米管来增强复合材料的力学性能。
在本文中,我们将探讨碳纳米管增强复合材料的力学性能研究。
首先,我们需要了解碳纳米管的特性以及其对力学性能的影响。
碳纳米管具有轻质、高强度和高刚度的特点,使其成为一种理想的增强材料。
当碳纳米管嵌入在复合材料基体中时,可以显著提高复合材料的强度和刚度。
此外,碳纳米管还具有良好的导电性,使得碳纳米管增强复合材料在电子器件等领域具有广泛的应用前景。
然而,为了更好地利用碳纳米管的增强效果,我们需要深入研究其与复合材料基体的相互作用机制。
近年来的研究表明,碳纳米管与复合材料基体之间的力学耦合效应是影响复合材料力学性能的重要因素之一。
因此,研究人员通过模拟和实验的方法,对碳纳米管增强复合材料进行力学行为的研究。
在模拟方面,研究人员通常利用分子动力学模拟、有限元分析等方法,对碳纳米管增强复合材料的力学性能进行预测和优化。
通过这些模拟方法,研究人员能够探究碳纳米管与复合材料基体之间的相互作用机制,了解复合材料在不同力学加载下的响应行为,并提出相应的改善策略。
另一方面,实验是验证模拟结果和理论分析的重要手段。
通过制备碳纳米管增强复合材料样品,并进行力学性能测试,研究人员可以直接观察和测量复合材料的力学行为。
例如,拉伸试验、压缩试验、弯曲试验等可以评估复合材料的强度、刚度和韧性等性能指标。
同时,扫描电子显微镜、透射电子显微镜等技术可以观察和分析复合材料中碳纳米管的分散状态和界面结构。
除了研究碳纳米管与复合材料基体之间的相互作用机制,我们还需要考虑制备工艺对复合材料力学性能的影响。
研究人员通过改变碳纳米管的添加方法、复合材料基体的制备过程等控制变量,来研究制备工艺对复合材料力学性能的影响。
例如,通过调整碳纳米管的浓度和分散剂对复合材料的性能进行优化。
碳纳米管的研究进展及应用一引言1.1 纳米材料纳米材料是近年来受到人们极大关注的新型领域,纳米材料的概念形成于20世纪80年代,在上世纪90年代初期取得较大的发展。
广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料[1]。
当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。
纳米材料具有四大特点: 尺寸小、比表面积大、表面能高、表面原子比例大。
从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在国防、电子、化工、催化剂、医药等各种领域具有重要的应用价值。
1.2 碳纳米管碳是自然界分布非常普遍的一种元素。
碳元素的最大的特点之一就是存在多种同素异形体,形成许许多多的结构和性质完全不同的屋子。
长期以来,人们一直以为碳的晶体只有两种:石墨和金刚石。
直到1985年,英国科学家Kroto 和美国科学家Smalley在研究激光蒸发石墨电极时发现了碳的第三种晶体形式C60[2],从此开启了人类认识碳的新阶段。
1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)发现了多壁碳纳米管(MultiWalled Carbon Nanotubes ,MWNTs),直径为4-30nm,长度为1um。
,最初称之为“Graphite tubular”。
1993年单壁碳纳米管也被发现(Single-Walled Carbon Nanotubes ,SWNTs),直径从0.4nm到3-4nm,长度可达几微米。
碳纳米管(CNT)[3]又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。
碳纳米管增强聚合物复合材料的制备与性能研究简介:碳纳米管是一种具有优异力学性能和导电性的纳米材料,已被广泛应用于聚合物复合材料中。
本文旨在介绍碳纳米管增强聚合物复合材料的制备方法、性能研究与应用前景。
1. 碳纳米管的制备方法1.1 化学气相沉积法化学气相沉积法是目前最常用的碳纳米管制备方法之一。
通过控制反应温度、反应压力和催化剂的选择和浓度,可以获得不同直径、长度和结构的碳纳米管。
1.2 电弧放电法电弧放电法是碳纳米管制备的另一种常用方法。
通过在高温、高压的条件下,将碳电极电弧放电,生成包含碳纳米管的石墨颗粒。
随后,通过化学处理将碳纳米管分离出来。
1.3 碳纳米管纤维拉伸制备法碳纳米管纤维拉伸制备法通过对多股碳纳米管进行拉伸和整合,形成具有优异性能的连续纤维。
2. 碳纳米管增强聚合物复合材料的制备2.1 碳纳米管的表面改性为了增加碳纳米管与聚合物基体的相容性和界面结合强度,可以对碳纳米管进行表面改性。
常用的表面改性方法包括氧化、还原、聚合等。
2.2 碳纳米管的分散碳纳米管在聚合物基体中的均匀分散对于复合材料的性能至关重要。
常用的碳纳米管分散方法包括超声处理、表面活化剂包覆等。
2.3 聚合物基体的选择不同类型的聚合物基体对于碳纳米管增强复合材料的性能有重要影响。
常用的聚合物基体包括聚酰胺、聚酰亚胺、聚酯等。
2.4 制备工艺的优化通过调节制备工艺参数,如温度、压力和搅拌速度等,可以优化碳纳米管增强聚合物复合材料的结构与性能。
3. 碳纳米管增强聚合物复合材料的性能研究3.1 机械性能碳纳米管的引入可以显著提升聚合物复合材料的力学性能。
研究表明,适量添加碳纳米管可以提高复合材料的强度、刚度和韧性。
3.2 导电性能碳纳米管具有优异的导电性能,可以赋予聚合物复合材料良好的导电特性。
研究表明,适量添加碳纳米管可以显著提高复合材料的电导率和导电稳定性。
3.3 热稳定性碳纳米管的引入可以提高聚合物复合材料的热稳定性,延长其使用寿命。
国外碳纳米管复合材料研究现状碳纳米管自被发现以来,因其独特的结构和优异的性能,成为了材料科学领域的研究热点。
特别是在复合材料领域,碳纳米管的加入为材料性能的提升带来了新的契机。
国外在碳纳米管复合材料的研究方面取得了众多显著的成果,本文将对其进行详细阐述。
一、碳纳米管的特性碳纳米管具有极高的强度和韧性。
其强度可达到钢铁的数十倍,同时具有出色的柔韧性,能够承受较大的变形而不断裂。
此外,碳纳米管还具有优异的电学性能,电导率极高,可与金属相媲美。
良好的热学性能也是其特点之一,热导率高,散热效果好。
这些特性使得碳纳米管在复合材料中具有极大的应用潜力。
二、国外碳纳米管复合材料在不同领域的研究现状1、航空航天领域在航空航天领域,对材料的性能要求极为苛刻。
国外研究人员致力于将碳纳米管复合材料应用于飞机结构件中,以减轻重量并提高强度。
例如,美国的研究团队成功开发出了碳纳米管增强的碳纤维复合材料,用于飞机机翼的制造,不仅减轻了结构重量,还提高了抗疲劳性能和耐腐蚀性。
2、电子领域在电子领域,碳纳米管复合材料可用于制造高性能的电子器件。
日本的科研人员成功制备出了碳纳米管与半导体材料复合的薄膜,用于制造柔性显示屏,具有更高的分辨率和更低的能耗。
此外,碳纳米管复合材料还可用于制造高效的电池电极,提高电池的充放电性能和循环寿命。
3、能源领域能源领域也是碳纳米管复合材料的重要应用方向。
德国的研究小组开发出了碳纳米管与聚合物复合的质子交换膜,用于燃料电池中,提高了燃料电池的功率密度和稳定性。
在太阳能电池方面,国外研究人员将碳纳米管与光伏材料复合,提高了太阳能电池的光电转换效率。
4、生物医学领域在生物医学领域,碳纳米管复合材料具有广阔的应用前景。
美国的科研团队研发出了碳纳米管与生物活性分子复合的材料,用于药物输送和组织工程。
碳纳米管的高比表面积和良好的生物相容性,使得药物能够更有效地负载和释放,促进组织的修复和再生。
三、制备方法1、溶液共混法这是一种较为常见的方法,将碳纳米管和基体材料分散在溶剂中,通过搅拌、超声等手段使其均匀混合,然后去除溶剂得到复合材料。
碳纳米管增强复合材料的力学性能研究复合材料是由两种或多种不同类型的材料通过一定的加工方式组合在一起而成,其中一种被称为增强相,另一种则称为基质相。
碳纳米管(Carbon Nanotube,简称CNT)作为一种新型的增强相材料,因其出色的力学性能而受到广泛关注。
本文将重点探讨碳纳米管增强复合材料的力学性能,并评估其潜在应用。
1. 碳纳米管的结构与性质碳纳米管是由由一个或多个由碳原子构成的六角截面的圆柱体组成的纳米级管状结构。
碳纳米管具有极高的比强度和比刚度,同时具有优良的导电性和导热性。
这些特性使得碳纳米管成为增强复合材料理想的增强相材料。
2. 碳纳米管增强复合材料的制备方法碳纳米管可以通过化学气相沉积、热解石墨和碳化物等方法制备得到。
在制备碳纳米管增强复合材料时,一般将碳纳米管与基质相材料进行混合,通过化学反应、传统制备方法或纳米级的加工方法使其形成复合材料。
3. 碳纳米管在普通复合材料中的作用由于碳纳米管的高比强度和高比刚度特性,将其引入普通复合材料中可以显著提高材料的力学性能。
碳纳米管的加入可以增加复合材料的强度、刚度和韧性,同时降低其密度。
这些改善的力学性能使得碳纳米管增强复合材料在结构材料、航空航天和汽车工业等领域具有广泛的应用前景。
4. 碳纳米管与基质相的界面碳纳米管与基质相之间的界面是影响复合材料力学性能的关键因素。
良好的界面相互作用可以有效地传递应力,提高复合材料的强度。
一些技术,如化学修饰和表面涂覆处理,已经被应用于改善碳纳米管与基质相之间的界面结合性能。
5. 碳纳米管增强复合材料的力学性能评价方法评价碳纳米管增强复合材料的力学性能通常涉及拉伸、压缩和弯曲等力学测试。
通过这些测试,可以了解复合材料的强度、刚度、韧性和疲劳性能等关键力学指标。
此外,还可以使用纳米力学测试方法研究碳纳米管在复合材料中的局部机械性能。
6. 碳纳米管增强复合材料的应用前景由于碳纳米管增强复合材料的出色力学性能和广泛的应用领域,它已经被广泛研究并应用于结构材料、电子器件、能源存储和传感器等领域。
碳纳米材料的研究进展XX武汉大学化学与分子科学学院摘要:碳纳米材料是具有纳米尺寸的碳材料,它有纳米材料的特性如表面效应,并且已经在许多领域中有着广泛的应用,如新能源、高效的储存器及各种电子器件。
由于碳元素在自然界中丰度大,相对质量小,化学与热力学性质稳定,所以在最近的二十年里碳材料在轻质、稳定结构材料方面有很广泛的应用。
尤其像富勒烯、碳纳米管、石墨烯、碳纤维等碳纳米结构材料引起了科学家们的广泛关注。
并且这些材料有可能为我们在新能源和高效的微电子器件方面带来革命性的突破。
本文将通过最新的研究成果,介绍碳纳米材料在电学器件、光学器件、传感器件等方面的应用,比较说明富勒烯,碳纳米管,石墨烯等材料的潜在应用前景,并对未来石墨烯的研究中的挑战做综述性论述。
关键词:碳纳米材料发展趋势新的研究成果微电子器件The development of carbon nanomaterialsYang LiCollege of chemistry and molecular, Wuhan universityAbstract:carbon nanomaterials materials, that is, carbon materials with a feature size on the nanometer scale and, in some cases, functionalized surfaces, already play an important role in a wide range of emerging fields, such as the search for novel energy sources, efficientenergy storage, sustainable chemical technology, as well as organic electronic materials. The high natural abundance of carbon, its low specific weight, as well as the chemical and thermal robustness of the different carbon allotropes have resulted in carbon components being increasingly utilized in cheap, lightweight, and durable high-performance materials over thepast two decades.[1] In particular, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), graphene, and carbon fibers are famous.Furthermore, such materials might offer solutions to the challenges associated with the on-going depletion of nonrenewable energy resources or climate change, and they may promote further breakthroughs in the field of microelectronics.Here, we present an extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples. Specific attention is devoted to each class of carbon nanomaterial,thereby allowing comparative analysis of the suitability of fullerenes, carbon nanotubes, and graphene for each application area. In this manner, this article will provide guidance to future application developers and also articulate the remaining research challenges confronting this field.Key words carbon nanomaterials development trend new research results microelectronics引言:碳元素是生命的骨架, 是人类最早接触并利用的元素之一碳元素的最大特点之一是存在众多的同素异形体, 如金刚石、石墨、富勒烯、碳纳米管、石墨烯、卡拜等。
碳纳米管增强镁基复合材料制备及界面研究进展
摘要:随着我国经济在快速发展,社会在不断进步,在碳纳米管增强镁基
(CNTs/Mg)复合材料制备过程中,碳纳米管间极易因范德华力团聚,且碳和镁
浸润性差,因此,研究碳纳米管的均匀分散和良好的界面结合对CNTs/Mg复合材
料的应用具有重要意义。
本文综述了碳纳米管增强镁基(CNTs/Mg)复合材料的
制备工艺进展和近年来国内外学者在改善界面结合与碳纳米管化学镀层方面的研
究成果,总结了镁基复合材料的界面增强机制,并展望了CNTs/Mg复合材料未来
的界面研究发展方向。
关键词:碳纳米管;镁基复合材料;制备方法;界面研究;界面增强机制
引言
随着工业的发展以及环境问题的凸显,现代社会对高比强度和高比弹性模量
的新型材料需求也越来越迫切。
镁合金由于低密度、高比强度以及切削加工性能好,被认为是最具有潜力的新一代结构功能材料。
由于镁合金强度相对较低,尚
不能满足大量工业应用,而镁基复合材料可以在提高强度的同时不降低塑性,因
而在航空航天、汽车制造、石油化工等领域有着巨大的应用潜力。
在复合材料领域,增强体的选择是影响综合性能最为关键的因素之一。
目前,已经获得广泛研
究的增强体有SiC颗粒、SiC晶、碳纤维、碳纳米管(CNTs)等。
在众多增强体中,CNTs具有诸多优异的性能,其作为增强体的复合材料在性能上有很大的提升,被认为是最有潜力的增强相之一。
制备的CNTs增强钛基复合材料,其硬度由纯钛
的221HV提升至1216HV,杨氏模量由120GPa提升至198GPa。
在铝合金中加入CNTs后,屈服强度上升了42.9%。
由于CNTs极易出现团聚而影响复合材料的性能,所以要制备出性能突出的复合材料,应采用新型制备方法,使CNTs在基体
中分布均匀。
本文主要介绍国内外CNTs增强镁基复合材料所采用的新型制备方法,随后对材料的力学性能、物理性能等作相应介绍,最后对复合材料的制备趋
势进行展望。
1碳纳米管增强镁基复合材料的研究状况
采用搅拌铸造的方法制成了碳纳米管增强镁基复合材料,测试了力学性能,
观察和分析了显微组织。
同时,用TEM和EDS方法对碳纳米管涂覆层的界面结构和成分进行了分析。
试验结果表明:采用化学镀镍处理,可在碳纳米管表面获得
均匀且结合力较强的涂覆层,从而改善碳纳米管和基体之间的润湿和结合状况。
试验结果表明碳纳米管对镁基材料具有较好的增强效果,尤其是经过涂覆处理的
碳纳米管,其增强效果更明显。
在其试验条件下,碳纳米管能细化晶粒组织,提
高复合材料的抗拉强度、伸长率、硬度和弹性模量。
但是,其实验结果也同时显
示碳纳米管的加入量不能超过1070。
否则,因碳纳米管难以分散而使复合材料的
力学性能大幅下降。
采用搅拌铸造法制备了CNTs/AM60镁基复合材料。
研究了搅拌法加入碳纳米管的工艺特点,测试了复合材料的力学性能,并利用扫描电子显
微镜和能谱分析对复合材料的断口形貌进行了观察和分析。
研究结果表明,碳纳
米管能细化复合材料晶粒组织,且起搭接晶粒和承载变形抗力作用。
与基体合金
相比,复合材料抗拉强度、弹性模量、显微硬度显著增加,延伸率最大可提高74.52%,但是碳纳米管加入量过多会导致偏聚,使复合材料力学性能下降。
2碳纳米管增强镁基复合材料制备及界面研究
2.1碳纳米管和镁的机械结合
机械结合是指通过增强体和基体之间的收缩摩擦力产生的界面结合,由于
CNTs极大的表面积使机械结合成为最直接,也是主要的界面结合方式。
通常碳纳米管与镁之间不发生化学反应,因此,良好分散的CNTs/Mg复合材料界面处结合
较好,其强度和弹性模量也得到提高。
通过球磨法将Mg粉细化并与CNTs进行混合,真空热压烧结和热挤压制备了分散均匀的CNTs/Mg复合材料,质量分数3%
-CNTs/Mg复合材料弹性模量达到55GPa,相比于基体提高了37.5%。
将CNTs
和Mg-6Zn合金屑混合搅拌并超声熔炼,再通过液固态挤压的方法制备了
CNTs/Mg复合材料,可以观察到界面无产物生成,在液固态挤压作用下,CNTs和Mg界面结合良好,未发现孔隙等缺陷,复合材料的强度和弹性模量相较基体均
得到提升,尤其是弹性模量相比于基体提高了48%之多。
2.2储氢性能
氢是未来可能取代煤炭和石油的新一代能源,关于氢的存贮介质备受瞩目。
镁合金有很高的储氢量,可达到大约7.8wt%。
研究发现纳米尺寸的镁吸收氢的速
率很快,储氢性能变好,原因是晶界面积增大使储氢量上升。
在镁合金中加入碳
纳米管可以有效减小晶粒尺寸,这为提升储氢量奠定了很好的基础。
最近,研究
了PM方法制备的CNTs增强镁基复合材料的储氢性能,发现加入Ni和CNTs之后的复合材料的储氢量相对于合金有了很明显的提高,但是不加入Ni的复合材料的储氢性能与纯镁几乎没有差距,他们推测新相Mg2Ni和碳纳米管共同作用促进了
材料对氢的吸收。
虽然上述方法对镁合金储氢性能有明显的改良作用,但关于复
合材料的储氢机制还应做进一步研究。
2.3Ni/Mg催化合成CNTs
镍是工业生产中常用的催化剂,也是合成CNTs的主要催化剂。
沉积沉淀法是制备催化剂前驱体的普遍方法,相对于其他工艺,它能使催化剂更均匀的分布在
基体上,且可达到纳米尺度,为CNTs的生长奠定基础。
催化剂镍的含量为10%时,以甲烷为碳源能够在镁粉上成功合成CNTs,但考虑到过高的镍含量对后期复合材料性能的影响较大,因此需要找出一个能够合成CNTs的催化剂的最低含量,以确定镍作为催化剂是否适合制备镁基复合材料。
用同样的方法分别配制Ni含量3%,5%,7%,10%,15%的催化剂前驱体,并经过相同的锻烧、还原、生长工艺
来制备CNTs/Mg复合粉末。
2.4化学镀层与界面润湿结合研究
碳纳米管和Mg不发生反应,通常界面干净无稳定界面产物,但容易因C-
Mg不润湿产生界面缺陷;界面反应可以增强界面结合力,但界面反应较难控制,且会对CNTs的结构产生损伤。
碳纳米管表面改性可以解决这个问题。
碳纳米管
的表面化学改性方法较多,主要包括:表面化学镀、气相沉积、高能束流辐照等。
其中,化学镀具有工艺操作简便,镀层均匀无孔洞等优点,广泛应用于各种金属
和非金属的表面镀层。
在碳纳米管表面进行化学镀最早是在1996年由Ebbesen
等首次提出,此后被国内外学者广泛采用。
结语
CNTs增强镁基复合材料具有优良的综合性能,可望在汽车和航空航天工业上
获得广泛应用。
优质高效的CNTs增强镁基复合材料的制备方法及复合材料性能
的研究,正受到国内外材料工作者越来越多的关注。
根据对新型CNTs增强镁基
复合材料制备技术的分析,可以总结出当前制备技术的发展趋势:一是制备过程
优化及简化,使获得优良性能的复合材料更加便捷;二是对复合材料物理性能的
探索。
在保证其优异力学性能的基础上,对其物理性能进行探索,揭示性能变化
机制,为制备结构与功能一体化的复合材料奠定基础。
相信随着将来对CNTs增
强镁基复合材料研究的深入,它将会广泛应用于各个领域。
参考文献:
[1]陈亚光,蔡晓兰,王开军,等.碳纳米管增强镁基复合材料的研究现状及发展[J].材料导报,2012,26(11):110-112.
[2]徐强,曾效舒,周国华.钟罩浸块铸造法制备的CNTs/AZ31镁基复合材料的力学性能[J].中国有色金属学报,2010,20(2):189-194.[3]武玺旺,肖建中,夏风,等.碳纳米管的分散方法与分散机理[J].材料导报,2011,25(9):16-19.。