1份数列与极坐标
- 格式:docx
- 大小:153.74 KB
- 文档页数:10
总结高中数学极坐标公式及常见极坐标方程1总结高中数学极坐标公式及常见极坐标方程1极坐标公式是一种用极坐标表示平面上点的数学公式。
它由极径和极角两个参数组成。
极径表示点到原点的距离,极角表示点到正半轴的角度。
极坐标公式非常有用,可以简化一些复杂的计算。
它可以用来描述平面上的曲线、图形和方程。
在讲解极坐标公式之前,我们先来了解一下极坐标方程的常见形式。
1.点的极坐标表示一个点的极坐标由极径和极角两个参数表示。
在平面直角坐标系中,点的极坐标表示可以通过以下公式计算得到:x = r * cosθy = r * sinθ其中,(x,y)是点在直角坐标系中的坐标,r是点到原点的距离,θ是点到正半轴的角度。
2.极坐标的规范性要求为了避免重复表示同一个点,极坐标的规范性要求如下:-r>=0:极径必须为非负数,表示点到原点的距离。
-0<=θ<=2π:极角必须在0到2π之间,表示点到正半轴的角度。
3.极坐标方程的常见形式极坐标方程是一种用极径和极角表示的方程。
常见的极坐标方程形式如下:a.极坐标方程中的常数项-r=a:一个常数,描述了点到原点的距离。
-θ=b:一个常数,描述了点到正半轴的角度。
这两种形式表示的是一条线段或射线。
b.极坐标方程中的线性函数-r=a+bθ:一个线性函数,描述了极径随着极角变化的规律。
- θ = a + br:一个线性函数,描述了极角随着极径变化的规律。
这两种形式表示的是一条螺旋线或螺线。
c.极坐标方程中的二次函数-r=a+bθ^2:一个二次函数,描述了极径随着极角平方的变化。
- θ = a + br^2:一个二次函数,描述了极角随着极径平方的变化。
这两种形式表示的是一条渐开螺旋线。
总结而言,高中数学中的极坐标公式和方程主要包括了点的极坐标表示和几种常见的极坐标方程形式。
掌握极坐标公式和方程有助于我们更好地理解平面上的曲线和图形,同时也能够简化一些复杂的计算。
坐标系与参数方程 第1课时 坐标系1.伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念 在平面内取一个定点O ,自点O 引一条射线Ox ,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0),这就是极坐标与直角坐标的互化公式.3.图形概念方法微思考由极坐标的意义可判断平面上点的极坐标唯一吗? 提示 平面上的点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝⎛⎭⎫2,-π3.( ) (2)在极坐标系中,曲线的极坐标方程不是唯一的.( )(3)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( )(4)tan θ=1与θ=π4表示同一条曲线.( )题组二 教材改编2.若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π43.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.⎝⎛⎭⎫1,π2B.⎝⎛⎭⎫1,-π2 C.(1,0) D.(1,π)题组三 易错自纠4.在极坐标系中,已知点P ⎝⎛⎭⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A.ρsin θ=1 B.ρsin θ=3 C.ρcos θ=1 D.ρcos θ=35.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为 .6.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.当△AOB 是等边三角形时,求a 的值.极坐标与直角坐标的互化例1 将直角坐标方程与极坐标方程互化. (1)y 2=4x ;(2)y 2+x 2-2x -1=0;(3)θ=π3(ρ∈R ).跟踪训练1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.求曲线的极坐标方程例2 圆心C 的极坐标为⎝⎛⎭⎫2,π4,且圆C 经过极点. (1)求圆C 的极坐标方程;(2)求过圆心C 和圆与极轴交点(不是极点)的直线的极坐标方程.跟踪训练2 已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.极坐标方程的应用例3 (·江西师范大学附属中学模拟)在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+r cos φ,y =r sin φ(r >0,φ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1经过点P ⎝⎛⎭⎫23,π6,曲线C 2的极坐标方程为ρ2(2+cos 2θ)=6.(1)求曲线C 1的极坐标方程;(2)若A ⎝⎛⎭⎫ρ1,α-π6,B ⎝⎛⎭⎫ρ2,α+π3是曲线C 2上两点,求1|OA |2+1|OB |2的值.为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2ρcos ⎝⎛⎭⎫θ-π3=3 3.(1)求曲线C 1的极坐标方程;(2)已知点M (2,0),直线l 的极坐标方程为θ=π6,它与曲线C 1的交点为O ,P ,与曲线C 2的交点为Q ,求△MPQ 的面积.1.在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,求|AB |的值.3.(辽宁省朝阳市重点高中模拟)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1. (1)求圆C 的极坐标方程;(2)已知射线m :θ=α,α∈⎝⎛⎭⎫0,π2,若m 与圆C 交于点A (异于点O ),m 与直线l 交于点B ,求|OA ||OB |的最大值.4.如图,在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =2+7cos α,y =7sin α(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos θ,直线l 的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的极坐标方程与直线l 的直角坐标方程;(2)若直线l 与C 1,C 2在第一象限分别交于A ,B 两点,P 为C 2上的动点,求△PAB 面积的最大值.5.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2是圆心在极轴上,且经过极点的圆.已知曲线C 1上的点M ⎝⎛⎭⎫1,22对应的参数φ=π4,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫1,π3. (1)求曲线C 1,C 2的直角坐标方程;(2)若点A ,B 为曲线C 1上的两个点且OA ⊥OB ,求1|OA |2+1|OB |2的值.第2课时 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程. (2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.概念方法微思考1.在直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)中,(1)t 的几何意义是什么?(2)如何利用t 的几何意义求直线上任意两点P 1,P 2的距离?提示 (1)t 表示在直线上过定点P 0(x 0,y 0)与直线上的任一点P (x ,y )构成的有向线段P 0P 的数量. (2)|P 1P 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2.2.圆的参数方程中参数θ的几何意义是什么? 提示 θ的几何意义为该圆的圆心角.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(3)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( )(4)参数方程⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ⎝⎛⎭⎫θ为参数且θ∈⎣⎡⎦⎤0,π2表示的曲线为椭圆.( )题组二 教材改编2.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上3.直线⎩⎪⎨⎪⎧ x =t +1,y =t (t 为参数)与圆⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ(θ为参数)的位置关系为( )A.相离B.相切C.相交且直线过圆心D.相交但直线不过圆心题组三 易错自纠4.(2019·北京市西城区模拟)下列直线中,与曲线C :⎩⎪⎨⎪⎧x =1+2t ,y =-2+4t (t 为参数)没有公共点的是( )A.2x +y =0B.2x +y -4=0C.2x -y =0D.2x -y -4=05.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),若l 与圆x 2+y 2-4x +3=0交于A ,B 两点,且|AB |=3,则直线l 的斜率为 .6.设P (x ,y )是曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[0,2π))上任意一点,求yx 的取值范围.参数方程与普通方程的互化例1 在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2s 2,y =22s (s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.跟踪训练1 在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-5+22t ,y =5+22t (t 为参数),以O 为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(1)求曲线C 的直角坐标方程及直线l 的普通方程;(2)将曲线C 上的所有点的横坐标缩短为原来的12,再将所得到的曲线向左平移1个单位长度,得到曲线C 1,求曲线C 1上的点到直线l 的距离的最小值.参数方程的应用例2 (南省八市重点高中联考)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =5cos α,y =2+5sin α(α为参数).以原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4ρcos θ-3. (1)求C 1的普通方程和C 2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,A ,B 的中点为M ,点P (0,-1),求|PM |·|AB |的值.跟踪训练2 (河南省八市重点高中联考)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =cos α+3sin α,y =sin α-3cos α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴,取相同长度单位建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2. (1)求曲线C 和直线l 的直角坐标方程;(2)直线l 与y 轴交点为P ,经过点P 的直线与曲线C 交于A ,B 两点,证明:|P A |·|PB |为定值.极坐标方程和参数方程的例3 (淄博模拟)在平面直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).在以坐标原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中,曲线C 的极坐标方程为ρ=21+3cos 2θ,直线l 与曲线C 相交于不同的两点A ,B .(1)若α=π6,求直线l 的普通方程和曲线C 的直角坐标方程;(2)若|OP |为|P A |与|PB |的等比中项,其中P (3,2),求直线l 的斜率.跟踪训练3 (1)已知曲线C 1的极坐标方程为ρ=2cos θsin 2θ,C 2的参数方程为⎩⎨⎧x =2+22t ,y =2-22t (t 为参数).①将曲线C 1与C 2的方程化为直角坐标系下的普通方程;②若C 1与C 2相交于A ,B 两点,求|AB |.(2)已知直线l :⎩⎨⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.①将曲线C 的极坐标方程化为直角坐标方程;②设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值.1.已知在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数).(1)求曲线C 的普通方程;(2)经过点P ⎝⎛⎭⎫1,12(平面直角坐标系xOy 中的点)作直线l 交曲线C 于A ,B 两点,若P 恰好为线段AB 的中点,求直线l 的方程.2.在平面直角坐标系xOy 中,已知曲线C 1:x 23+y 24=1,以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(2cos θ-sin θ)=6. (1)试写出直线l 的直角坐标方程和曲线C 1的参数方程;(2)在曲线C 1上求一点P ,使点P 到直线l 的距离最大,并求出此最大值.3.在直角坐标系xOy 中,直线l 经过点P (1,0),倾斜角为π6.以坐标原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ+π3. (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|P A |+|PB |的值.4.在平面直角坐标系xOy 中,已知倾斜角为α的直线l 经过点A (-2,1).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1ρ=ρ+2sin θ3.(1)写出曲线C 的普通方程;(2)若直线l 与曲线C 有两个不同的交点M ,N ,求|AM |+|AN |的取值范围.5.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =3sin α(α为参数),在同一平面直角坐标系中,将曲线C 1上的点按坐标变换⎩⎪⎨⎪⎧x ′=32x +23,y ′=3y +2得到曲线C 2,以原点为极点、x 轴的正半轴为极轴,建立极坐标系. (1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若直线θ=π4(ρ∈R )与曲线C 1交于M ,N 两点,与曲线C 2交于P ,Q 两点,求|PQ ||MN |的值.等差数列及其前n 项和1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差为12d .5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 概念方法微思考1.“a ,A ,b 是等差数列”是“A =a +b2”的什么条件?提示 充要条件.2.等差数列的前n 项和S n 是项数n 的二次函数吗?提示 不一定.当公差d =0时,S n =na 1,不是关于n 的二次函数.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) 题组二 教材改编2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .343.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.题组三 易错自纠4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( )A .d >875B .d <325C.875<d <325D.875<d ≤3255.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.6.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.等差数列1.(全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .122.(·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n3.(·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.4.(全国Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.等差数列的判定与证明例1 (·日照模拟)已知数列{a n },{b n }满足a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.求证:数列{b n }是等差数列,并求出数列{a n }的通项公式.跟踪训练1 在数列{a n }中,a 1=2,a n 是1与a n a n +1的等差中项.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求{}a n 的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1n 2a n 的前n 项和S n .等差数列性质的应用命题点1 等差数列项的性质例2 (江西省南昌江西师范大学附属中学模拟)已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7等于( )A .2B .7C .14D .28命题点2 等差数列前n 项和的性质例3 (1)(漳州质检)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( ) A .35 B .42 C .49 D .63(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.跟踪训练2 (1)(2019·遵义联考)已知数列{a n },{b n }均为等差数列,且前n 项和分别为S n 和T n ,若S n T n =3n +2n +1,则a 5b 5等于( ) A.295 B.2910 C.285 D.2810(2)(·莆田质检)设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为( ) A .6 B .7 C .8 D .13由数列的递推关系求通项公式 命题点1 累加法例1 设数列{a n }中,a 1=2,a n +1=a n +n +1,则a n =________.命题点2累乘法例2设数列{a n}中,a1=2,a n+1=nn+1a n,则a n=________.思维升华已知数列的递推关系求通项公式的典型方法(1)当出现a n=a n-1+f (n)时,用累加法求解.(2)当出现a na n-1=f (n)时,用累乘法求解.跟踪训练(1)(·龙岩质检)若数列{a n}满足a1=1,a n+1-a n-1=2n,则a n=________.(2)已知数列{a n}满足a1=23,a n+1=nn+2a n,求通项公式a n.1.(·四川省成都市石室中学模拟)在等差数列{a n}中,a1=2,a5=3a3,则a3等于()A.-2 B.0 C.3 D.62.(晋城模拟)记等差数列{a n}的前n项和为S n.若a6=16,S5=35,则{a n}的公差为()A.3 B.2 C.-2 D.-33.(·贵州省凯里第一中学模拟)在等差数列{a n}中,已知a1 011=1,则该数列前2 021项的和S2 021等于() A.2 020 B.2 021 C.4 040 D.4 0424.(江西省名校学术联盟联考)已知等差数列{a n}的前n项和为S n,若S7=a4,则()A.S3=S4B.S4=S5C.S5=S6D.S6=S75.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为()A.65 B.176 C.183 D.1846.在等差数列{a n}中,若a9a8<-1,且它的前n项和S n有最小值,则当S n>0时,n的最小值为()A.14 B.15 C.16 D.177.(北京)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为____________.8.(三明质检)在等差数列{a n}中,若a7=π2,则sin 2a1+cos a1+sin 2a13+cos a13=________.9.等差数列{a n},{b n}的前n项和分别为S n,T n,且S nT n=3n-12n+3,则a10b10=________.10.已知数列{a n+1-a n}是公差为2的等差数列,且a1=1,a3=9,则a n=________.11.已知数列{a n}满足(a n+1-1)(a n-1)=3(a n-a n+1),a1=2,令b n=1a n-1.(1)证明:数列{b n}是等差数列;(2)求数列{a n}的通项公式.12.已知等差数列{a n}的公差d>0,设{a n}的前n项和为S n,a1=1,S2S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.13.已知等差数列{a n}的前n项和为S n,b n=2n a且b1+b3=17,b2+b4=68,则S10等于() A.90 B.100 C.110 D.12014.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N *),且a 1=2,则a 20=________.15.(黑龙江省哈尔滨市第三中学模拟)已知x 2+y 2=4,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为( )A .210 B.1210 C.10 D.3210答案 D16.记m =d 1a 1+d 2a 2+…+d n a nn,若{}d n 是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{}d n 是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n -1等比均值”为3.记c n =2a n+k log 3b n ,数列{}c n 的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围.等比数列及其前n 项和1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式(1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).3.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列. (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .4.在等比数列{a n }中,若S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外). 概念方法微思考1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系? 提示 仍然是一个等比数列,这两个数列的公比互为倒数. 2.任意两个实数都有等比中项吗?提示 不是.只有同号的两个非零实数才有等比中项. 3.“b 2=ac ”是“a ,b ,c ”成等比数列的什么条件?提示 必要不充分条件.因为b 2=ac 时不一定有a ,b ,c 成等比数列,比如a =0,b =0,c =1.但a ,b ,c 成等比数列一定有b 2=ac .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 题组二 教材改编2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.3.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8 B .9 C .10 D .11题组三易错自纠4.若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则a1-a2b2的值为________.5.设S n为等比数列{a n}的前n项和,8a2+a5=0,则S5S2=________.6.一种专门占据内存的计算机病毒开机时占据内存1 MB,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB=210 MB)等比数列基本量的运算1.(·晋城模拟)设正项等比数列{a n}的前n项和为S n,若S2=3,S4=15,则公比q等于()A.5 B.4 C.3 D.22.(全国Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3等于()A.16 B.8 C.4 D.23.(全国Ⅰ)记S n为等比数列{a n}的前n项和,若a1=1,S3=34,则S4=________.4.(·全国Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,若S m=63,求m.等比数列的判定与证明例1 (·四川省名校联盟模拟)已知数列{a n }的前n 项和为S n ,且满足2S n =-a n +n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n -12为等比数列;(2)求数列{a n -1}的前n 项和T n .跟踪训练1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.等比数列性质的应用例2 (1)(黑龙江省大庆第一中学模拟)在各项不为零的等差数列{a n }中,2a 2 019-a 22 020+2a 2 021=0,数列{b n }是等比数列,且b 2 020=a 2 020,则log 2(b 2 019·b 2 021)的值为( ) A .1 B .2 C .4 D .8(2)已知等比数列{a n }的首项a 1=-1,其前n 项和为S n ,若S 10S 5=3132,则公比q =________.跟踪训练2 (1)(安徽省江淮十校月考)已知等比数列{a n }的公比q =-12,该数列前9项的乘积为1,则a 1等于( )A .8B .16C .32D .64(2)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N *).对于数列通项公式的求解,除了我们已经学习的方法以外,根据所给递推公式的特点,还有以下几种构造方式.构造法1 形如a n +1=ca n +d (c ≠0,其中a 1=a )型 (1)若c =1,数列{a n }为等差数列. (2)若d =0,数列{a n }为等比数列.(3)若c ≠1且d ≠0,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求. 方法如下:设a n +1+λ=c (a n +λ),得a n +1=ca n +(c -1)λ,与题设a n +1=ca n +d 比较系数得λ=dc -1(c ≠1),所以a n +dc -1=c ⎝⎛⎭⎫a n -1+d c -1(n ≥2),即⎩⎨⎧⎭⎬⎫a n +d c -1构成以a 1+dc -1为首项,以c 为公比的等比数列.例1 在数列{a n }中,若a 1=1,a n +1=3a n +2,则通项a n =________.构造法2 形如 a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)型a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)的求解方法是两端同时除以p n +1,即得a n +1p n +1-a n p n =q ,则数列⎩⎨⎧⎭⎬⎫a n p n 为等差数列.例2 (1)已知正项数列{a n }满足a 1=4,a n +1=2a n +2n +1,则a n 等于( )A .n ·2n -1 B .(n +1)·2nC .n ·2n +1 D .(n -1)·2n(2)(2019·武汉市二中月考)已知正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项a n 等于( )A .-3×2n -1B .3×2n -1C .5n +3×2n -1D .5n -3×2n -1构造法3 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1,其中a 1=a ,a 2=b 型) 可化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两根.例3 数列{a n }中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列{a n }的通项公式.构造法4 倒数为特殊数列(形如a n =pa n -1ra n -1+s型)例4 已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.1.(·韶关模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 23=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .242.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( ) A.13 B .-13 C.19 D .-193.(天津市河西区月考)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于( )A .93B .189 C.18916D .3785.(·永州模拟)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列6.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-162 C .2 D .1627.已知各项为正数的等比数列{a n }中, a 2a 3=16,则数列{log 2a n }的前四项和等于________.8.已知等比数列{a n }的前n 项和为S n ,且a 1=2 020,a 2+a 4=-2a 3,则S 2 021=________.9.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.10.(呼伦贝尔模拟)已知数列{a n }的前n 项和为S n ,且有a n =1n (n +1),若S 1,S m ,S n 成等比数列(m >1),则正整数n 的值为________.11.(全国Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.12.淄博模拟)已知数列{a n }的前n 项和为S n ,a 1=34,S n =S n -1+a n -1+12(n ∈N *且n ≥2),数列{b n }满足:b 1=-374,且3b n -b n -1=n +1(n ∈N *且n ≥2). (1)求数列{a n }的通项公式;(2)求证:数列{b n -a n }为等比数列.13.(山西省太原第五中学月考)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1 成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.14.(·江西省上饶横峰中学模拟)已知在等比数列{a n }中,a n >0,a 22+a 24=900-2a 1a 5,a 5=9a 3,则a 2 020的个位数字是________.15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2,….设第n 次“扩展”后得到的数列为1,x 1,x 2,…,x t ,2,并记a n =log 2(1·x 1·x 2·…·x t ·2),其中t =2n -1,n ∈N *,求数列{a n }的通项公式.16.已知数列{a n }的前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是首项为3,公差为2的等差数列,若b n =a 2n ,数列{b n }的前n项和为T n ,求使得S n +T n ≥268成立的n 的最小值.高考专题突破三高考中的数列问题等差数列、等比数列基本量命题点1数列与数学文化例1(1)(乐山模拟)《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织多少尺布?()A.1631 B.1629 C.12 D.815(2)(淄博模拟)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为:有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天恰好到达目的地,则第三天走了() A.192里B.48里C.24里D.96里跟踪训练1(1)(·潮州模拟)我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()A.6斤B.7斤C.9斤D.15斤(2)(江西省抚州市临川第一中学模拟)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还粟()A.253升 B.503升 C.507升 D.1007升命题点2等差数列、等比数列的交汇例2记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.。
高三数学极坐标解题方法
极坐标是一种描述平面上点位置的方法,它由极径和极角两个量组成。
在高中数学中,极坐标常被用来解决各种几何问题和参数方程的求解。
以下是高三数学中常见的极坐标解题方法:
1. 极坐标下的直线方程求解
要求解一条直线在极坐标下的方程,需要将直线的斜截式方程转换为极坐标方程。
首先,将直线的斜率表示成正切函数的形式:tan θ=k,其中θ是直线与x轴的夹角,k是直线的斜率。
然后,根据极坐标中的三角函数关系,可得到极坐标方程r=k/(cosθ-sinθ)。
2. 极坐标下的圆方程求解
要求解一个圆在极坐标下的方程,需要将圆的标准方程转换为极坐标方程。
假设圆的方程为(x-a)+(y-b)=r,其中(a,b)为圆心,r为半径。
将该方程中的x和y用极坐标表示,即x=r·cosθ,y=r·sin θ,代入原方程得到r-2ar·cosθ-a-b+r=0,化简可得到极坐标方程r=a·cosθ+b·sinθ。
3. 极坐标下的曲线求解
要求解一个曲线在极坐标下的方程,可以利用极坐标的定义和变换公式,将曲线转换成极坐标的形式。
具体来说,需要将曲线上的点用极坐标表示,然后根据变换公式,将直角坐标系中的方程转换成极坐标系中的方程。
例如,对于一条以原点为中心,半径为a的圆周,其方程为r=a,而一条以原点为中心,顶点位于x轴正半轴,对称轴与x轴夹角为θ的双曲线的方程为r=a/(cosθ+sinθ)。
总之,极坐标在高中数学中具有广泛的应用,掌握极坐标的解题方法可以有效地提高数学学习的效率。
高等数学基础复习资料一、引言高等数学作为大学数学的重要组成部分,是理工科学生必修的一门课程。
作为一门基础性的学科,高等数学为学生奠定了后续学习的数学基础,并为他们建立了抽象思维和逻辑推理能力奠定了基础。
本文将为大家提供一份高等数学基础复习资料,帮助学生系统回顾相关知识点,提高自己的数学水平。
二、数列与极限1. 数列的概念及表示方法- 数列的定义与本质特征- 数列的表示方法:通项公式、递推公式2. 数列的极限- 数列极限的定义与判定方法- 数列收敛与发散的判断- 数列极限的性质与运算规则3. 无穷级数- 级数的概念与收敛性判断- 常见级数的收敛性判断方法- 级数收敛的性质与运算规则三、函数与极限1. 函数的概念与性质- 函数的定义与分类- 函数的图像与性质2. 函数的极限- 函数极限的定义与性质- 常见函数极限的计算方法- 无穷小量与无穷大量的定义与性质3. 一元函数的连续性与导数- 函数连续性的定义与判断- 函数导数的定义与计算方法- 函数导数的性质与应用四、微分学1. 一元函数的微分学- 函数微分的定义与计算方法- 微分的几何意义与应用- 高阶微分与泰勒公式2. 函数的极值与最值- 函数极值的判定与求解- 条件极值与拉格朗日乘数法3. 函数的凸性与曲线的形状- 函数凸性的定义与判定方法- 曲线的拐点与渐进线五、积分学1. 定积分与不定积分- 定积分的定义与性质- 定积分计算的方法与技巧- 不定积分的定义与计算方法2. 反常积分- 反常积分的概念与判定- 常见反常积分的计算方法3. 微积分基本定理与应用- 微积分基本定理的表述与应用- 曲线下面积的计算- 参数方程与极坐标下的积分六、常微分方程1. 常微分方程的基本概念- 常微分方程的定义与分类- 一阶常微分方程的常见形式2. 一阶常微分方程的解法- 可分离变量方程的求解- 线性方程的求解- 齐次与非齐次方程的解法3. 高阶常微分方程- 二阶常微分方程解的一般性质- 常系数二阶齐次线性微分方程的解法- 特征方程求解与常系数二阶非齐次线性微分方程的解法七、向量代数与空间解析几何1. 向量的概念与性质- 向量的基本运算与性质- 向量的数量积与向量积2. 空间直线与平面- 点、直线与平面的位置关系- 空间直线的方程与相交关系- 空间平面的方程与位置关系3. 空间几何体的体积与曲面积分- 空间几何体的体积计算- 曲面积分的概念与计算方法八、多元函数微分学1. 多元函数的偏导数- 偏导数的定义与计算方法- 偏导数的几何意义与性质2. 多元函数的方向导数与梯度- 方向导数的定义与计算方法- 梯度的定义与性质3. 多元函数的极值与最值- 多元函数的极值点与极值- 约束条件下的极值求解九、多元函数积分学1. 二重积分与三重积分- 二重积分的定义与计算方法- 三重积分的定义与计算方法2. 极坐标与球坐标下的积分计算- 极坐标下的二重积分与三重积分- 球坐标下的三重积分3. 变量替换与重积分- 变量替换的基本思想与方法- 重积分的计算方法与应用十、常微分方程与偏微分方程初步1. 常微分方程初值问题的求解- 常微分方程初值问题的基本概念- 高阶线性常微分方程初值问题的求解2. 偏微分方程的基本概念与分类- 偏微分方程的基本定义与分类- 一阶偏微分方程的求解方法初探3. 偏微分方程边值问题与特解- 偏微分方程边值问题的基本概念- 常见偏微分方程的特解求解方法结语通过对高等数学基础内容的系统复习,我们可以巩固数理基础,提高数学水平,为后续的学习和研究打下坚实的基础。
坐标系与参数方程【知识要点】1、平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′= ,y ′= .的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2、极坐标系的概念(1)极坐标系的定义①取极点:平面内取一个定点O ; ②作极轴:自极点O 引一条射线Ox ;③定单位:选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向). (2)点的极坐标①定义:有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ);②意义:ρ=|OM |,即极点O 与点M 的距离(ρ≥0).θ=∠xOM ,即以极轴Ox 为始边,射线OM 为终边的角. 一般地,没有特殊说明时,我们认为ρ≥0,θ可取任意实数.(3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z )表示同一个点,特别地,极点O 的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.(4)极坐标与直角坐标的互化点P 的直角坐标为(x ,y ),极坐标为(ρ,θ),则互相转化公式为⎩⎪⎨⎪⎧x = ,y = .⎩⎪⎨⎪⎧ρ2= ,tan θ= . 3、圆的极坐标方程4、直线的极坐标方程(ρ∈R)一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6、圆锥曲线的参数方程(1)圆心为(a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x = ,y = .(θ为参数).(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x = ,y = . (θ为参数).(3)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x = ,y = . (θ为参数).(4)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x = ,y = .(t 为参数).7、直线的参数方程①过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),其中t 表示直线上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的数量。
数学高考必备知识总结数列与级数的应用技巧数学高考必备知识总结:数列与级数的应用技巧数学的高考考察内容众多,其中数列与级数是一个重要且常见的考点。
通过掌握数列与级数的应用技巧,可以有效提升解题效率和正确率。
本文将对数列与级数的常见应用进行总结,并提供一些解题技巧。
一、等差数列的应用等差数列是高考中最基础也最常见的数列之一。
在应用中,最常见的问题是求等差数列的通项公式以及根据已知条件求和。
1. 求等差数列的通项公式设等差数列的首项为a1,公差为d,第n项为an,则通项公式可以表示为an = a1 + (n - 1)d。
通过根据已知条件求解,可以确定等差数列的通项公式。
2. 求等差数列的和等差数列的和可以通过求通项公式以及项数来计算。
假设等差数列的前n项和为Sn,通过Sn = (n/2)(a1+an)公式计算。
二、等比数列的应用等比数列在高考中较为常见,也需要掌握一些基本的应用技巧。
1. 求等比数列的通项公式设等比数列的首项为a1,公比为q,第n项为an,则通项公式可以表示为an = a1 * q^(n-1)。
通过根据已知条件求解,可以确定等比数列的通项公式。
2. 求等比数列的和等比数列的和可以通过求通项公式以及项数来计算。
假设等比数列的前n项和为Sn,通过Sn = (a1 * (1 - q^n))/(1 - q)公式计算。
三、级数的应用技巧级数是数列的和,也是高考中的一个重要考点,主要涉及到级数收敛性判断和级数求和等问题。
1. 级数的收敛性判断对于数列an的和Sn,当Sn的极限存在有限值时,称级数收敛;当Sn的极限不存在或为无穷大时,称级数发散。
通过判断数列的通项公式或使用比较判别法、比值判别法等方法判断级数的收敛性。
2. 级数求和对于某些特殊的级数,可以通过一些技巧来求和。
例如,对于几何级数S= a/(1-r),可以通过乘以(1-r)得到(1-r)S=a,并进一步求解。
四、应用技巧小结数列与级数的应用技巧是数学高考解题的重要内容,通过对数列与级数的通项公式、求和公式以及收敛性判断等方面的掌握,可以更好地解决相关题目。
极坐标与参数方程知识点总结大全一、极坐标系统极坐标系统是一种用来表示平面上点的坐标系统,它与直角坐标系统相互转化。
在极坐标系统中,一个点的位置由径向和角度两个量来确定。
常用的表示方式为(r, θ),其中r表示点到原点的距离,称为极径,而θ表示与参考轴(通常为正X 轴)的夹角,称为极角。
极坐标系统与直角坐标系统之间可以通过如下的转换关系相互转化:•直角坐标→ 极坐标:x = r * cos(θ),y = r * sin(θ)•极坐标→ 直角坐标:r = sqrt(x^2 + y^2),θ = arctan(y/x)极坐标系统适用于描述旋转对称性的图形,例如圆、花朵等。
二、参数方程参数方程是一种用参数表示函数的方式。
在参数方程中,自变量和因变量都可以是参数。
一般来说,参数方程是将自变量和因变量都用参数表示的方程组。
以平面上的曲线为例,如果将曲线上的点的坐标分别用参数t表示,则曲线上的点的坐标可以表示为(x(t), y(t))。
这种表示方式称为参数方程。
参数方程在描述含有符号导数的曲线段以及曲线段的方向时非常有用。
参数方程可以将复杂的图形分解成多个简单的函数,从而方便进行图形的分析和计算。
它在计算机图形学、物理学、工程学等领域有广泛的应用。
三、极坐标与参数方程的关系极坐标与参数方程之间存在着密切的关系。
可以通过参数方程来描述极坐标系中的曲线。
一个常见的例子是圆的极坐标方程和参数方程的表示。
以圆的极坐标方程为例,极坐标方程为r = a,其中a为圆的半径。
使用参数方程表示时,可以将极坐标方程转化为参数方程x = a * cos(θ),y = a * sin(θ)。
同样地,通过参数方程也可以得到一些特殊的极坐标曲线,例如r = a *cos(θ)可以表示一条心形曲线。
四、极坐标曲线的绘制在计算机图形学中,可以通过极坐标方程或参数方程来绘制各种各样的曲线。
对于一个极坐标曲线,可以选择一系列的角度值,然后根据极坐标方程或参数方程计算出相应的极径或坐标点,再将这些点连接起来就可以绘制出曲线。
极坐标与参数方程知识点(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数)(或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). (三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
坐标系与参数方程1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标 系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直 角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎨⎧x =ρcos θy =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x x ≠0.2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=α;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ; (3)直线过点M (b ,π2)且平行于极轴:ρsin θ=b .3.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆的方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程 (1)圆心位于极点,半径为r :ρ=r ;(2)圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)圆心位于M (r ,π2),半径为r :ρ=2r sin θ.4.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).5.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数).(2)抛物线y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt .真题感悟1.(2013·)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.2.(2013·)设曲线C 的参数方程为⎩⎨⎧x =ty =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.3.(2013·)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎨⎧x =a cos φy =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin (θ+π4)=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________. 4.(2011·)在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,则AB 的最小值为________.5.(2012·)在直角坐标系xOy 中,已知曲线C 1:⎩⎨⎧x =t +1,y =1-2t(t 为参数)与曲线C 2:⎩⎨⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.6.[2014·XX 卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.7.[2014·XX 卷] 在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.8. [2014·XX 卷]C.(坐标系与参数方程选做题)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.题型与方法题型一 极坐标与直角坐标、参数方程与普通方程的互化 例1 已知直线l 的参数方程:⎩⎨⎧x =t ,y =1+2t(t 为参数)和圆C 的极坐标方程:ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4 (θ为参数). (1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.变式训练1 已知直线l 的参数方程是⎩⎨⎧x =2t ,y =4t +a (t 为参数),圆C 的极坐标方程为ρ=4 2cos ⎝ ⎛⎭⎪⎫θ+π4.(1)将圆C 的极坐标方程化为直角坐标方程;(2)若圆上有且仅有三个点到直线l 的距离为2,XX 数a 的值.题型二 曲线的极坐标方程例2 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程.变式训练2 (2012·)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参数方程.题型三 曲线的参数方程及应用例3 (2012·)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.变式训练3已知直线l 的参数方程是⎩⎪⎨⎪⎧x =22ty =22t +42(t 是参数),圆C 的极坐标方程为ρ=2cos(θ+π4).(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.典例 (10分)在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M 的极坐标为⎝ ⎛⎭⎪⎫42,π4,曲线C 的参数方程为⎩⎨⎧x =1+2cos α,y =2sin α(α为参数).(1)求直线OM 的直角坐标方程;(2)求点M 到曲线C 上的点的距离的最小值. 规X 解答1.已知圆C 的参数方程为⎩⎨⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为 ________________.2.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos α,y =1+sin α(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ(cos θ-sin θ)+1=0,则C 1与C 2的交点个数为________.3.点P (x ,y )在曲线⎩⎨⎧x =-2+cos θy =sin θ(θ为参数,θ∈R )上,则y x 的取值X 围是________.4.若直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数)垂直,则k =______.6.(2012·)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.专题限时规X 训练一、填空题1.曲线C :⎩⎨⎧x =-2+2cos αy =2sin α(α为参数),若以点O (0,0)为极点,x 轴正半轴为极轴建立极坐标系,则该曲线的极坐标方程是________.2.已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为________.3.已知曲线C 的参数方程是⎩⎨⎧x =a cos φy =3sin φ(φ为参数,a >0),直线l 的参数方程是⎩⎨⎧x =3+ty =-1-t (t 为参数),曲线C 与直线l 有一个公共点在x 轴上,则曲线C 的普通方程为________.4.(2013·)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎨⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则AB=________.二、解答题5.设直线l 1的参数方程为⎩⎨⎧x =1+t ,y =1+3t (t 为参数),直线l 2的方程为y =3x +4,求l 1与l 2间的距离.6.在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎨⎧x =4-2t ,y =3-t(t 为参数)平行的直线的普通方程.7.(2012·)在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.8.已知直线的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,圆M 的参数方程⎩⎨⎧x =2cos θ,y =-2+2sin θ(其中θ为参数),极点在直角坐标原点,极轴与x 轴正半轴重合. (1)将直线的极坐标方程化为直角坐标方程;(2)求圆M 上的点到直线的距离的最小值.9.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),已知过点P (-2,-4)的直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+22t ,y =-4+22t ,直线l 与曲线C 分别交于M ,N 两点. (1)写出曲线C 和直线l 的普通方程;(2)若PM ,MN ,PN 成等比数列,求a 的值.10.(2013·)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.2013、2014年全国高考理科数学试题分类汇编:坐标系与参数方程一、选择题1 .(2013年普通高等学校招生统一考试XX 数学(理)试题(纯WORD 版))在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和D .=0()cos=1R θρρ∈和二、填空题2 .(2013年普通高等学校招生统一考试XX 数学(理)试题(含答案))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = ______.3 .(2013年高考XX 卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________4 .(2013年高考卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.5 .(2013年普通高等学校招生统一考试XX 数学(理)试题(含答案))在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t ⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 6 .(2013年普通高等学校招生统一考试XX 省数学(理)卷(纯WORD 版))(坐标系与参数方程选讲选做题)已知曲线C的参数方程为x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则的极坐标方程为_____________. 7 .(2013年高考XX 卷(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .x8 .(2013年高考XX 卷(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x t y t =⎧⎨=⎩(为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________9 .(2013年高考XX 卷(理))在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________.10.(2013年高考XX 卷(理))在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线与圆O 的极坐标方程分别为sin 4πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.三、解答题11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—4;坐标系与参数方程已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.12.(2013年普通高等学校招生统一考试XX 数学(理)试题(WORD 版))选修4-4:坐标系与参数方程在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.13.(2013年普通高等学校招生统一考试XX 数学(理)试题(纯WORD 版))坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上. (1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.14.(2013年普通高等学校招生全国统一招生考试XX 卷(数学)(已校对纯WORD 版含附加题))C.[选修4-4:坐标系与参数方程]本小题满分10分.在平面直角坐标系xoy 中,直线的参数方程为⎩⎨⎧=+=ty t x 21 (为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线与曲线C 的普通方程,并求出它们的公共点的坐标.(2013年高考新课标1(理))选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).[2014·XX 卷] 选修44:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.[2014·新课标全国卷Ⅱ] 选修44:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.23.[2014·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.。
极点极线和调和点列
极点极线和调和点列
什么是极点极线?
极点极线是极坐标系中的概念,极坐标系是由极轴和极角组成的坐标系,与直角坐标系有着不同的思考方式和表达方式。
在极坐标系中,极点是坐标系中心,极线是从极点出发的射线。
每个点都可以用极坐标系来表示,即以它与极点的距离为半径,以它与极线的夹角为极角。
极点极线在几何中有着广泛的应用,例如求解过定点的线段中,与该线段成比的那条线段的端点,即可利用极点极线关系求得。
极点极线还可以用于几何中对称的问题,如求解一个圆上异侧两点的中垂线的交点。
极点极线的应用并不仅限于几何中,还可以应用于物理、工程学和数学等领域。
什么是调和点列?
调和点列是一个数列,在这个数列中相邻的两个数的和的倒数等于这
两个数的调和平均数的两倍。
例如,如果数列为a1,a2,a3,…,an,则a1和a2的调和平均数为
2/(1/a1+1/a2),而a1和a2的和为a1+a2,两个数的和的倒数是
1/(a1+a2)。
因此,如果相邻的两个数a1和a2遵循这个规律,则1/(a1+a2)等于
2/a1+2/a2,即a1+a2等于2a1a2/(a1+a2),这就是调和点列的定义。
调和点列的应用广泛,例如在统计学中,调和平均数被用作计算平均变化率、平均速率和平均利率等。
此外,在电路分析和物理学中,调和点列也有着重要的应用,例如在计算电阻、电容和电感等问题时,利用调和点列可以更快地求解出电路中的未知量。
极坐标什么是极坐标?极坐标是一种描述平面上点的坐标系统。
传统的笛卡尔坐标系使用x和y坐标来表示点的位置,而极坐标使用半径和角度来表示。
极坐标最常用于描述圆形和波浪状的事物,例如天体运动、风力分布以及电子设备中的天线方向等。
在极坐标系中,点的位置由两个坐标值确定:极径和极角。
极径是指从原点(极点)到点的距离,而极角则是指从参考线(通常是x轴正方向)到与该点连线的夹角。
极坐标通常使用极径和极角的顺序表示,例如(r, θ)。
极坐标和笛卡尔坐标的转换极坐标和笛卡尔坐标是两种描述二维平面上点的坐标系统。
它们之间可以通过一些简单的数学公式进行转换。
从极坐标到笛卡尔坐标的转换如下:x = r * cos(θ)y = r * sin(θ)其中x和y是点在笛卡尔坐标系中的坐标,r是点到极点的距离,θ是与参考线之间的夹角。
从笛卡尔坐标到极坐标的转换如下:r = sqrt(x^2 + y^2)θ = atan2(y, x)其中r是点到极点的距离,θ是与参考线之间的夹角,x和y是点在笛卡尔坐标系中的坐标。
极坐标的应用极坐标在许多领域中都有广泛的应用。
以下是一些常见的应用场景:天文学天文学中使用极坐标来描述天体的运动和位置。
通过极坐标,天文学家可以准确地计算恒星、行星和其他天体的位置和轨道。
例如,地球的自转和公转可以用极坐标来表示,从而帮助天文学家预测天气和季节变化。
几何学在几何学中,极坐标可以简化对于圆和椭圆等曲线的研究。
通过引入极坐标,可以更容易地描述和计算这些曲线的性质。
此外,极坐标也广泛用于描述和分析复杂图形的对称性和周期性。
工程学工程学中常常使用极坐标来描述物体的方向和位置。
例如,在雷达系统中,极坐标可以用来表示目标的方位角和距离,从而实现目标追踪和定位。
另外,在无线通信领域,极坐标被用于天线的定向和指向。
数学分析极坐标在数学分析中有广泛的应用。
它可以简化对于复杂函数和曲线的研究和计算。
极坐标可以用来描述极限、微分方程和积分等数学概念。
专题六极坐标系与参数方程知识梳理1、伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换,(0):,(0)x x y y λλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点P′(x′,y′),称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
注:当1λ>时,表示横向伸长;当01λ<<时,表示横向压缩。
当1μ>时,表示纵向伸长;当01μ<<时,表示纵向压缩。
这里P(x,y)是变换前的点,P′(x′,y′)是变换后的点。
2、极坐标系:(1)极坐标系的定义:如图,在平面内取一个定点O,自极点O 引一条射线Ox,同时再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
其中定义O 称为极点,射线Ox 称为极轴。
(2)极坐标:设M 是平面内的任意一点,ρ表示OM 的长度,θ表示以射线Ox 为始边,以射线OM 为终边所成的角,则有序实数对(,)ρθ称为点M 的极坐标,记为M (,)ρθ.其中ρ称为极径,θ称为极角。
一般地,不作特殊说明,我们认为0ρ≥,θ可以取任意实数。
(3)建立极坐标后,给定ρ和θ,就可以在平面内唯一确定点M;反过来,给定平面任意一点,也可以确定它的极坐标(,)ρθ。
(4)一般地,极坐标(,)ρθ与(,2)()k k Z ρθπ+∈表示同一个点,特别地,极点O 的坐标为(0,)()R θθ∈,和直角坐标不同,平面内一个点的极坐标有无数种表示。
如果规定0ρ>,02θπ≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的,这时点与极坐标是一种一一对应关系。
(5)极坐标系中点的对称:(,)A ρθ3()2:y A ρθπθρπθρπθ⎧⎪⎪=⎨⎪⎪+⎩12关于极轴的对称点:A (,-)关于轴的对称点:A (,-)关于极点的对称点(,)3、极坐标与直角坐标的互化:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度,设平OAA 2A 1A 3xy····O·xρMθ(,)ρθ面内的任意一点M 的直角坐标和极坐标分别为(x,y)和(,)ρθ,则有:cos sin x y ρθρθ=⎧⎨=⎩,tan ,0yx x ρθ⎧=⎪⎨=≠⎪⎩4、极坐标方程的定义:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程(,)0f ρθ=,并且坐标适合方程(,)0f ρθ=的点都在曲线C 上,那么方程(,)0f ρθ=叫做曲线C 的极坐标方程。
1.极坐标系(1)定义在平面内取定点O,叫做极点,引一条射线OX叫做极轴,再选定一个长度单位和角的正方向(通常以逆时针方向),这样就建立了极坐标系;(2)点的极坐标点M在极坐标平面内,|OM|=ρ,∠MOX=θ,则点M的坐标为M(ρ,θ),ρ叫做点M的极径,θ叫做点M的极角.当ρ<0时,∠XOP=θ,在OP的反向延长线上取一点M,使|OM|=|ρ|,点M就是坐标为(ρ,θ)的点.由于(ρ,θ+2kπ),(-ρ,θ+(2k+1)π)(k∈Z)都表示同一点,因此在极坐标平面上点与有序数对不是一一对应的.但如果限定ρ>0,0≤θ<2π或-π<θ≤π,则除极点外就可以一一对应了;(3)对称点坐标点M(ρ,θ)关于极轴的对称点为M;(ρ,-θ),点M(ρ,θ)关于极点的对称点为M。
(-ρ,θ),点M(ρ,θ)关于过极点与极轴垂直的直线(极垂线)的对称点为M(-ρ,-θ);(4)极坐标内两点的距离公式2.直角坐标与极坐标的互化(1)互化条件原点与极点重合,极轴与x轴正半轴重合,两个坐标系长度单位一致.(2)互化公式(3)互化公式所得到的圆锥曲线的方程例题在极坐标系中,点(ρ,0)与(-ρ,π-θ)的位置是 [ ]A.关于极轴所在直线对称;B.关于极点对称;D.重合.说明一般地,为了求出点(ρ,θ)满足一定条件的极坐标,可先写出它的极坐标的一般形式,再根据ρ和θ的条件确定k的值,从而得到所要求的坐标.【例4】已知点B,C,D的直角坐标为(2,-2),(0,-15),(-12,5),求它的极坐标(ρ>0,0<θ<2π).[ ]A.直线B.圆C.双曲线D.抛物线分析将方程化为直角坐标方程,即可判断曲线形状.因为给定的[ ]∴极坐标方程是ρ=1+cosθ(图形是心脏线).说明通过上两例可看出,化极坐标方程为直角坐标方程有时较容易判断曲线形状,但如曲线是由动点旋转运动而产生的,则它的极坐标方程可能比直角坐标方程简单.解法2 由圆锥曲线的统一方程可知∴b2=a2-c2=132-122=52以下同上.说明显然解法2简便,直接根据ρ,θ的几何意义求出a和c.*【例8】求以抛物线y2=3x的焦点为极点,对称轴向右的方向为极轴的正方向时,抛物线的极坐标方程.说明本例作了特殊的要求,则不能用互化公式,利用圆锥曲线统一的极坐标方程不仅方程形式简单,而且几何意义明显,这种特殊的互化方法有广泛的应用,应予以特别注意.解ρ(0)=6即a+c=6ρ(π)=2即a-c=2【例10】点P在直线x+y=1上移动,在连接原点与点P的射线上取点Q,使|QP|·|OQ|=4,求点Q的轨迹方程(如图3-2)解 x+ y=1化成极坐标方程为ρcosθ+ρsinθ=1即x′2+y′2=±(4x+4y).故Q点轨迹方程为 x2+y2-4x-4y=0,和x2+y2+4x+4y=0.3.曲线的极坐标方程在极坐标系中,称方程F(ρ,o)=0是曲线C的极坐标方程,如果以这个方程的每一个解为坐标的点都是曲线C上的点,而且C上每一个点的坐标中至少有一个坐标能够满足这个方程.4.求曲线的极坐标方程和直角坐标系中一样,在极坐标系中求曲线的极坐标方程的主要方法有直接法、转移法和参数法,每种方法的计算步骤与直角坐标系完全类似,只需把步骤中的直角坐标(x,y)改成极坐标(ρ,θ)就可以了.求曲线的极坐标方程,经常要用正、余弦定理三角形面积公式和有关三角知识.5.常见曲线的极坐标方程(1)经过极点倾斜角为α的直线方程为θ=α和θ=α+π;(2)与极轴平行并与极轴距离为a(a>0)的直线方程为ρsinθ=±a;(3)与极轴垂直(含极轴所在直线)与极点距离为b(b>0)的直线方程ρcosθ=±b;(4)圆心在极点,半径为r的圆的极坐标方程为ρ=r;(5)圆心在O′(ρ0,θ0),半径为r的圆的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r2=0;当0<e<l时,方程表示椭圆,当e=1,θ≠2kπ时方程表示抛物线,*(7)等速螺线方程(二)极坐标·习题解法提要(1)极坐标系是用长度和角度来确定平面内点的位置的一种坐标系,通常点的极坐标(ρ,θ)中,ρ取非负值,表示极点O到点A的距离,极角θ采用弧度制.必要时,ρ也可取负值.极坐标平面上同一点的极坐标有无数种表示法,即若(ρ,θ)是一个点的极坐标,则(ρ,2kπ+θ),[-ρ,(2k+1)π+θ](k∈Z)都是此点的极坐标.(2)在极坐标系中,由于曲线上同一点有不同的坐标,故对于一条曲线的同一极坐标方程,点的坐标中有的满足该方程,有的则不一定满足;但曲线上点的极坐标中应至少有一个满足此曲线的这一方程.同一曲线的极坐标方程也可能不止一种形式.(3)由于极坐标是用长度和角度来表示的,故在求曲线的极坐标方程时,常构造三角形,利用三角形中的边角关系及三角函数的有关公式求出ρ和θ的关系式,即曲线的方程.求曲线的极坐标方程的基本方法有:①直接法:建立极坐标系,根据动点的运动规律,列出动点的极径ρ与极角θ间的关系式,化简整理得出极坐标方程ρ=f(θ).同时应注意θ的取值范围.②代入法:若已知Q点的轨迹方程和动点P与Q点的相关关系,则可先求出P,Q的极坐标间的关系式,再将关系式代入Q点满足的极坐标方程中,求出P点的轨迹的极坐标方程.③先求曲线的普通方程,再转化为极坐标方程.(4)在同一平面内建立的一个极坐标系和一个直角坐标系,当极点与坐标原点重合,极轴与x轴正半轴重合时,平面上任一点P的极坐标(ρ,θ)与直角坐标(x,y)之间存在下列关系:(5)常见曲线的极坐标方程:(i)直线①过极点、倾斜角为α的直线:θ=α(ρ∈R)②与极轴垂直的直线:ρcosθ=a③与极轴平行的直线:ρsinθ=a④倾斜角为α、极点到它的距离在d的直线:ρsin(α-θ)=d(ii)圆①圆心在极点、半径为a的圆:ρ=a②过极点、圆心为(a,0)、半径为|a|的圆:ρ=2acosθ④圆心为C(ρ0,θ0),半径为r的圆:(iii)圆锥曲线的统一的极坐标方程其中e为离心率,p为焦点到对应准线的距离.①当0<e<1时,方程表示极点为左焦点,极轴所在直线为对称轴的椭圆;②当e=1时,方程表示极点为焦点,开口向右的抛物线;③当e>1时,方程表示极点为右焦点,极轴所在直线为对称轴的双曲线.ρ>0时,为右支;ρ<0时,为左支.椭圆的极坐标方程ρ=ep/(1-ecosθ)是以左焦点F1为极点O,射线F1F2为极轴,依据椭圆的第二定义得来此时极点到椭圆的左准线是p,椭圆的任意点P(ρ,θ)满足ρ/(p+ρcosθ)=e--->ρ=ep+eρcosθ--->ρ(1-ecosθ)=ep--->ρ=ep/(1-ecosθ)(0<e<1)这就是椭圆的极坐标方程。
极坐标与参数方程1.直角坐标系与极坐标系可以互相转换。
在两个坐标系中取相同的长度单位,将直角坐标系的原点作为极点,x轴正半轴作为极轴。
对于任意点M,其直角坐标为(x,y),极坐标为(ρ,θ),其中ρ表示点M到原点的距离,θ表示点M与极轴的夹角。
它们之间的关系是ρ²=x²+y²,x=ρcosθ,y=ρsinθ,tanθ=y/x(当x≠0时)。
2.直线的极坐标方程为ρsin(θ-α)=d,其中d为直线到极点的距离,α为极轴到直线的角度。
对于特殊位置的直线,如过极点的直线、过点M(a,0)且垂直于极轴的直线、过点M(b,π/2)且平行于极轴的直线,它们的极坐标方程分别为θ=α、ρcosθ=a、ρsinθ=b。
3.圆的极坐标方程为2ρ²-2ρr cos(θ-θ0)+r²=0,其中M(ρ,θ)为圆心,r为半径,θ0为极轴与圆心连线的角度。
对于特殊位置的圆,如圆心位于极点且半径为r的圆,其极坐标方程为ρ=r;圆心位于M(r,0)且半径为r的圆,其极坐标方程为ρ=2rcosθ;圆心位于M(r,π/2)且半径为r的圆,其极坐标方程为ρ=2r sinθ。
4.直线的参数方程为x=x0+t cosα,y=y0+t sinα,其中M(x0,y0)为直线上的一点,α为直线倾斜角,t为参数。
5.圆的参数方程为x=x0+r cosθ,y=y0+r sinθ,其中M(x0,y0)为圆心,r为半径,θ为参数,0≤θ≤2π。
6.椭圆的参数方程为x=a cosθ,y=b sinθ,其中a、b为长轴和短轴的长度;抛物线的参数方程为x=2pt²,y=2pt,其中p 为焦距的一半。
1.给定曲线C的极坐标方程ρ=2cosθ,在以极点为原点、x 轴正半轴为极轴的直角坐标系中,其参数方程为x=2cos(t),y=2sin(t)。
2.给定曲线C的参数方程为x=t²,y=t,在以原点为极点、x轴正半轴为极轴的极坐标系中,其极坐标方程为ρ=tan(θ)。
教学设计【教学目标】1、知识目标:(1)掌握极坐标的意义,会把极坐标转化一般方程(2)掌握参数方程与一般方程的转化(3)会极坐标与参数方程的简单应用2、能力目标:通过对公式的应用,提高学生分析问题和解决问题的能力,多方面考虑事物,培养他们的创新精神和思维严谨性.3、情感目标:培养学生数形结合方法,转化思想,参数思想的思想方法.【教学重点】1、极坐标方程、一般坐标、参数方程的相互转化2、极坐标系与直角坐标系的简单应用【教学难点】极坐标ρ的几何意义和直角坐标中t的几何意义的应用及极坐标系中的运算【考点分析】坐标系与参数方程和绝对值不等式在全国一卷高考中为二者选一考,一般是10分的比较容易的题,知识相对比较独立,与其他章节联系不大,容易拿分.绝对值这道题一般是第一问解绝对值不等式,第二问解决含参问题(解不等式讨论,恒成立问题,面积问题等).高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定.【教学过程】一、两个坐标系三种方程的相互转换(提问形式回顾)这一部分刚上节课刚讲完,所以只回顾。
二、应用(1)求极坐标方程π),半径R,例1 在极坐标系中,已知圆C的圆心坐标为C(2,求圆C的极坐标方程.【解析】方法一、将线与点都转化为直角坐标,然后利用直角坐标系的结论写出圆的方程,最后将圆的直角坐标方程转化极坐标方程。
体现了转化思想(这道题让学生展示,最后总结)*此处易错方法二、直接法这种方法学生比较生,也不知如何下手,所以老师来点拨:建立极坐标系,设p(ρ,θ),在△OPC中利用余弦定理,建立ρ,θ的方程。
关键是用好ρ的几何意义。
(给学生留时间整理)(2)ρ的几何意义的应用练习:在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【解析】(1)主要是练习例1求轨迹方程 (学生黑板展示) 总结:相关点法求轨迹方程,注意等价转化(2)学生讲(用的是例1的方法1)再度体现了转换思想 师讲:直接法ρ的几何意义的应用AB =ρA -ρB 这道题后紧跟两道变式,练习ρ的几何意义的应用。
极坐标与参数方程知识点及题型归纳总结知识点精讲一、极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.二、极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). 三、极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)四、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图16-33所示).五、圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.六、椭圆的参数方程椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤).七、双曲线的参数方程双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z .八、抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).题型归纳即思路提示题型1 极坐标方程化直角坐标方程 思路提示对于极坐标方程给出的问题解答一般都是通过化为直角坐标方程,利用直角坐标方程求解.这里需注意的是极坐标系与直角坐标系建立的对应关系及其坐标间的关系cos sin x y ρθρθ=⎧⎨=⎩. 例16.7 在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=(ρ∈R )的距离是 .分析 将极坐标方程转化为平面直角坐标系中的一般方程求解.解析 极坐标系中的圆4sin ρθ=转化为平面直角坐标系中的一般方程为224x y y +=,即22(2)4x y +-=,其圆心为(0,2),直线6πθ=转化为平面直角坐标系中的方程为:y x =,即0x =.圆心(0,2)到直线0x ==. 变式1 已知曲线12,C C 的极坐标方程分别为cos 3ρθ=,4cos ρθ=,(0,0)2πρθ≥≤<,则曲线1C 与2C 交点的极坐标为 .变式2 ⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程; (2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.变式3已知一个圆的极坐标方程是5sin ρθθ=-,求此圆的圆心和半径. 例16.8 极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( )A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线分析 将极坐标方程化为直角坐标方程.解析 因为(1)()0(0)ρθπρ--=≥,所以1ρ=或θπ=(0)ρ≥.11ρ=⇒=,得221x y +=,表示圆心在原点的单位圆;(0)θπρ=≥表示x 轴的负半轴,是一条射线.故选C.变式1 极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 变式2 在极坐标系中,点(2,)6P π-到直线:sin()16l πρθ-=的距离是 .变式3 直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .题型2 直角坐标方程化为极坐标方程思路提示如果题目中已知的曲线为直角坐标方程,而解答的问题是极坐标系下的有关问题,这里要利用直角坐标与极坐标关系式cos sin x y ρθρθ=⎧⎨=⎩,将直角坐标方程化为极坐标方程.例16.9 在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(1)在以O 为极点,x 轴为极轴的极坐标系中,分别写出圆1C , 2C 的极坐标方程,并求出圆1C , 2C 的交点坐标(用极坐标表示);(2)求出1C 与2C 的公共弦的参数方程.解析 (1)圆1C 的极坐标方程为2ρ=,圆2C 的极坐标方程为4cos ρθ=.24cos ρρθ=⎧⎨=⎩解得2ρ=,3πθ=±,故圆1C 与圆2C 的交点的坐标为(2,),(2,)33ππ-. 注:极坐标系下点的表示不唯一.(2)解法一:由cos sin x y ρθρθ=⎧⎨=⎩,得圆1C 与圆2C 的交点的坐标分别为.故圆1C 与2C 的公共弦的参数方程为1(x t y t=⎧≤≤⎨=⎩.解法二: 将1x =代入cos sin x y ρθρθ=⎧⎨=⎩得cos 1ρθ=,从而1cos ρθ=.于是圆1C 与2C 的公共弦的参数方程为1()tan 33x y ππθθ=⎧-≤≤⎨=⎩.变式1 曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极抽建立极坐标系,则曲线C 的极坐标方程为 _.题型3 参数方程化普通方程 思路提示已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法,三角法)转化为普通方程解答.例16.10 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)没有公共点,则实数m 的取值范围是 . 解析 将圆的参数方程1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)化为普通方程22(1)(2)1x y -++=,圆心(1,2)-,半径1r =.直线与圆无公共点,则圆心到直线的距离大于半径,|38|15m -+>|5|5m ⇒->,得10m >或0m <,即m 的范围是(,0)(10,)-∞+∞.变式 1 在平面直角坐标系xOy 中,直线l 的参数方程33x t y t=+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θ∈π),则圆C 圆心坐标为 _,圆心到直线l 的距离为 . 变式2 (2013湖北理16)在庄角坐标系xOy 中,椭圆C 的参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l与圆O 的极坐标方程分别为sin()4πρθ+=(m 为非零数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 . 变式3 参数方程sin cos sin cos x y θθθθ=+⎧⎨=⎩(θ是参数)的普通方程是 .例16.11 已知动圆22:2cos 2sin 0C x y ax by θθ+--=(,a b 是正常数,a b ≠,θ是参数),则圆心的轨迹是 .解析 由动圆22:2cos 2sin 0C x y ax by θθ+--=得222222(cos )(sin )cos sin x a y b a b θθθθ-+-=+.圆心坐标为(cos ,sin )a b θθ(θ为参数),设cos x a θ=,sin y b θ=,则221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22221x y a b +=为所求轨迹方程,所以圆心的轨迹是椭圆.变式1 方程2232(05)1x t t y t ⎧=+⎪≤≤⎨=-⎪⎩表示的曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线变式2 已知直线11cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),2cos :sin x C y θθ=⎧⎨=⎩(θ为参数).(1)当3πα=时,求1C 与2C 的交点坐标;(2)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点.当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.题型4 普通方程化参数方程 思路提示对于直线与圆锥曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里有代数换元(如抛物线22y px =的参数方程222x pt y pt =⎧⎨=⎩)或三角换元(如椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩).例16.12 在平面直角坐标系xOy 中,设(,)P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值.分析 利用椭圆的参数方程,建立,x y 与参数θ的关系,运用三角函数最值的求法,求解x y +的最大值.解析 点(,)P x y 是椭圆2213x y +=上的一个动点,则sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),[0,2]θ∈π,则sin x y θθ+=+2sin()3πθ=+,[0,2]θ∈π,故max ()2x y +=.变式1 已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 变式2 直线l 过(1,1)P ,倾斜角6πα=.(1) 写出l 的参数方程;(2)l 与圆224x y +=相交于,A B 两点,求P 到,A B 两点的距离之积.变式3 已知抛物线2:4C y x =,点(,0)M m 在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =时,l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.题型5 参数方程与极坐标方程的互化 思路提示参数方程与极坐标方程的互化问题,需要通过普通方程这一中间桥梁来实现,先将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).例16.13 已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .分析 把曲线C 的参数方程化为普通方程,求出切线l 的普通方程,然后把求出的直线l 的普通方程化为极坐标方程.解析 由22sin cos 1t t +=得曲线C 的普通方程为222x y +=,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为1-,所以切线l 的方程为1(1)y x -=--,即20x y +-=.把cos x ρθ=,sin y ρθ=代入直线l 的方程可得cos sin 20ρθρθ+-=sin()204πθ+-=,化简得sin()4πθ+=变式1 设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .有效训练题 1.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A. 一条射线和一个圆B. 两条直线C. 一条直线和一个圆D. 一个圆 2.圆cos )ρθθ=-的圆心的一个极坐标是( )A. (B. (2,)4πC. 3(2,)4π D. 7(2,)4π3.在极坐标系中,若等边△ABC 的两个顶点是(2,)4A π,5(2,)4B π.那么顶点C 的坐标可能是( )A. 3(4,)4πB. 3)4πC. )πD. (3,)π4.直线的参数方程为sin 501cos50x t y t ⎧=-⎪⎨=-⎪⎩(t 为参数),则直线的倾斜角为( )A. 40B. 50C. 140D.1305.过点(2,3)A 的直线的参数方程为232x ty t =+⎧⎨=+⎩(t 为参数),若此直线与直线30x y -+=相交于点B ,则||AB =( )6.设曲线C 的参数方程23cos 13sin x y θθ=+⎧⎨=-+⎩( θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l的点的个数为( ) A. 1 B. 2 C.3 D.4 7.已知直线l的极坐标方程为sin()42πρθ-=,圆M 的参数方程为22cos 12sin x y θθ=+⎧⎨=-+⎩( θ为参数),则圆M 上的点到直线l 的最短距离为 .8.在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为 . 9.已知抛物线的参数方程为222x pt y pt=⎧⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作准线l 的垂线,垂足为E ,若||||EF MF =,点M 的横坐标是3,则p = .10.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,)4π,求△OMN 的面积. 11.已知椭圆221164x y +=,O 为坐标原点,,P Q 为椭圆上的两动点,若OP OQ ⊥,求22||||OP OQ +的最大值.12. 已知曲线12cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线2247:cos 016C ρθ-+=.(1)若,P Q 分别是曲线1C 和曲线2C 上的两个动点,求线段PQ 长度的最小值;(2)若曲线1C 上与x 轴、y 轴的正半轴分别交于,A B 点,P 是曲线1C 上第一象限内的动点,O 是坐标原点,试求四边形OAPB 面积的最大值.。
极坐标的两种表示方法一、极坐标的概念1.1 极坐标是一种很有趣的坐标表示方法呢。
它不像咱们平常熟悉的直角坐标,直角坐标是用横纵坐标来确定一个点的位置。
极坐标呢,是用距离和角度来确定点的位置。
想象一下,就好像你在一个大操场上,你站在一个固定的点,然后描述另一个点的位置,你可以说它离你有多远,以及相对于你的方向是怎样的角度。
这就是极坐标的基本想法啦。
1.2 极坐标在很多实际情况中都特别有用。
比如说在描述圆形或者扇形相关的东西时,那可真是得心应手。
在物理里面,像描述一些做圆周运动的物体的位置之类的,极坐标就派上大用场了。
这就好比是一把特殊的钥匙,专门用来开某些形状或者运动相关的锁。
2.1 一种表示方法是(r,θ)。
这里的r呢,表示的是点到极点(也就是咱们刚刚说的那个固定的点)的距离。
这个距离一定是个非负的数值哦。
就像是你和朋友之间的绳子长度,只能是正数或者零,不可能是负数的。
θ呢,表示的是从极轴(咱们可以想象成一个基准的方向,就像指南针的北方)按逆时针方向旋转到连接极点和该点的射线所转过的角度。
这个角度可以是任意的实数,它就像是一个指针,指出了方向。
2.2 另一种表示方法有点特别。
有时候我们会遇到(-r,θ + π)这样的表示。
这是怎么回事呢?这里的 -r看起来有点奇怪,其实它表示的是沿着与原来方向相反的方向,距离极点的距离为r的点。
这就好比是你本来朝着一个方向走了一段路,现在你要朝着相反的方向走同样的距离。
而θ + π呢,是因为当你朝着相反方向的时候,角度也相应地改变了,就像你本来朝着东走,现在朝着西走,方向就转了180度(也就是π弧度)。
这种表示方法虽然看起来有点绕,但是在解决一些复杂的几何或者物理问题的时候,就像是一把隐藏的利器,能起到意想不到的效果。
2.3 这两种表示方法就像是一对双胞胎,虽然看起来有点不同,但实际上是紧密相关的。
它们各自有各自的用途,有时候用一种表示方法可能会让问题变得简单明了,就像顺水行舟一样轻松;而有时候用另一种表示方法可能就会让你在解决问题的时候卡壳,这时候就得灵活转换,不能一条道走到黑。
极点极线法成等差数列-回复极点极线法(Polar Pole Method)是一种几何解析法,用于确定平面上的等差数列。
它的基本思想是,通过找到等差数列的两个相邻项之间的极点和极线,进而确定其他的项。
在介绍极点极线法之前,我们需要先了解一些基础知识。
极坐标系是一种描述平面上点的坐标系,其中点的位置通过极径和极角来确定。
极点是极坐标系中的原点,极线是从极点出发的射线。
任意一点可以用它到极点的距离(极径)和该点与极线的夹角(极角)来表示。
现在,让我们来说明极点极线法如何用来确定等差数列。
首先,我们假设平面上有一组点构成了等差数列。
让我们用a表示等差数列的首项,d表示公差。
根据等差数列的定义,我们可以得出等差数列的一般项公式为:an = a + (n-1)d其中,an表示等差数列的第n项。
接下来,我们选择等差数列的两个相邻项,假设它们是第m项和第(m+1)项。
我们将这两个点分别表示为Pm和P(m+1)。
现在,我们需要找到这两个点之间的极点和极线。
我们知道,极点是指从极点出发的射线与PmP(m+1)的中垂线的交点。
我们可以通过求解中垂线的方程,找到它们的交点。
中垂线的方程可以通过Pm和P(m+1)的坐标来确定。
假设点Pm的极坐标为(rm, θm),点P(m+1)的极坐标为(r(m+1), θ(m+1))。
根据极坐标的定义,我们可以用以下公式将点的极坐标转换为直角坐标:x = rm * cos(θm)y = rm * sin(θm)通过将上述公式应用于Pm和P(m+1),我们可以得到它们的直角坐标表示。
然后,我们可以用这些坐标来求解中垂线的方程。
假设中垂线的方程为lx + my + n = 0。
我们可以将Pm和P(m+1)的坐标代入中垂线的方程,进而求解出l、m和n的值。
最后,我们可以得到中垂线的方程。
通过求解中垂线的方程,我们可以找到极点P。
接下来,我们需要找到极线。
极线是从极点出发的射线。
我们可以通过极点和Pm的直角坐标来确定极线的方程。
高考数学中的极坐标方程的图像特征极坐标方程是高考数学中的一个重要概念。
它是解析几何中描述平面上点的一种方式,更具体地说,它是描述点与坐标原点之间距离和极角之间的关系的方程。
这种方式是基于极坐标系的,其中距离表示为半径,极角表示为角度。
极坐标方程可以表示各种形状的图像特征,包括线性图像、圆形图像、椭圆图像等等。
其中,线性图像是最简单的,它是由直线和线段组成的图像。
直线的极坐标方程是r=cosθ和r=sinθ,分别对应于以坐标原点为中心沿x轴和y轴方向的直线。
而线段的极坐标方程是r=±cosθ和r=±sinθ,用于描述平面上的四个象限中的线段。
圆形图像是由圆周组成的图像。
圆形的极坐标方程是r=a,其中a是圆的半径。
这个方程表示点到坐标原点的距离为常数a的所有点的集合,形成了一个圆形。
椭圆图像是由椭圆形状组成的图像。
椭圆的极坐标方程是r=a±b*cosθ和r=a±b*sinθ,其中a和b是椭圆的半长轴和半短轴。
这个方程描述了平面上到某个点的距离与角度之间的关系,可以形成一个椭圆形状的图像。
除了上述例子,极坐标方程还可以表示其他形状的图像,如双曲线和极坐标花朵等等。
对于高考数学考生来说,理解极坐标方程的图像特征是非常重要的。
因为它们不仅可以帮助考生理解解析几何的基本概念,而且还可以在解决一些高级数学问题时提供帮助。
总之,极坐标方程是解析几何中描述平面上点的一种方式,可以表示各种形状的图像特征。
对于高考数学考生来说,理解极坐标方程的图像特征是非常重要的。
只有深入理解这个概念,才能更好地掌握解析几何的基本概念,从而在考试中取得好成绩。
1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( D )A .11B .5C .-8D .-11解析:通过8a 2+a 5=0,设公比为q ,将该式转化为8a 2+a 2q 3=0,解得q =-2,代入所求式可知答案选D.2.(2012·安徽省城名校第四次联考)数列{a n }的前n 项和为S n ,若a n =1n (n +2),则S 10等于( A )A.175264B.7255C.1012D.1112解析:S 10=11×3+12×4+13×5+…+19×11+110×12=12[(1-13)+(12-14)+(13-15)+…+(19-111)+(110-112)] =12(1+12-111-112) =175264. 故选A. 3.(2012·山东省莱芜市高三上期末)已知数列{a n }是首项为2,公差为1的等差数列,数列{b n }是首项为1,公比为2的等比数列,则数列{ab n }前10项的和等于( D )A .511B .512C .1023D .1033解析:a n =2+(n -1)×1=n +1,b n =1×2n -1=2n -1, 依题意得M n =a 1+a 2+a 4+…+a 2n -1=(1+1)+(2+1)+…+(2n -1+1) =2n -1+n ,M 10=210+10-1=1033,故选D.4.(改编)数列{(3n -1)·4n -1}的前n 项和S n =( A )A .(n -23)·4n +23B .(n -23)·4n +1+23C .(n -23)·4n -1+23D .(n -23)·4n +43解析:S n =2×1+5×4+8×42+…+(3n -1)·4n -1,① 4S n =4×2+5×42+…+(3n -1)·4n ,② ②-①得:3S n =-2-3(4+42+…+4n -1)+(3n -1)·4n =2+(3n -2)4n ,所以S n =(n -23)·4n +23,故选A.13.(2011·辽宁高考理科·T17)已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(Ⅱ)求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和. 【思路点拨】(Ⅰ)先求首项1a 和公差d ,再求通项公式;(Ⅱ)可利用错位相减法求和.【精讲精析】(Ⅰ)设等差数列{}n a 的公差为d ,由已知条件可得⎩⎨⎧-=+=+,10122,011d a d a⎩⎨⎧-==.1,11d a 故数列{}n a 的通项公式为 .2n a n -= (Ⅱ)设数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和为n S ,即n S =,22121-+++n n a a a 故1S =1, n n n a a a S 242221+++= .所以,当n >1时,2n S =1112122---++-+n n n a a a a a -n n a 2=n 1n 1112n 1()2422---+++- =n n n 22)211(11-----=n n 2,所以n S =12-n n 综上,数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和n S =12-n n . 11.(2011·山东高考理科·T20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前n 项和S n .【思路点拨】(Ⅰ)由题意易知.由等比数列的通项公式写出数列的通项公式.(Ⅱ)由题意易知数列为摆动数列,利用分组求和法,可以将奇数项和偶数项分开来求解数列的前n 项和,但是要分奇数和偶数两种情况讨论. 【精讲精析】(Ⅰ)由题意可知1232,6,18a a a ===,公比32123a a q a a ===, 通项公式为123n n a -=⋅;1232,6,18a a a ==={}n b(Ⅱ)()1111ln 23(1)ln(23)23(1)[ln 2(1)ln 3]---=+-=+-=+-+-nn n n n n n n n b a a n ×××当2(*)n k k =∈N 时,122n k S b b b =+++212(133){1(23)[(22)(21)]}ln3-=+++++-+++--+- k k k 2132ln 331ln 3132-=+=-+-k n n k ×当21(*)n k k =-∈N 时,1221n k S b b b -=+++222(133){(12)[(23)(22)}ln3ln 2-=++++-++---- k k k ]21132(1)ln 3ln 213--=----k k ×131ln 3ln 22-=---n n 故31ln 3,2131ln 3ln 22⎧-+⎪⎪=⎨-⎪---⎪⎩nn n n n S n n 为偶数;,为奇数.7.(2011·新课标全国高考理科·T17)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设 3132log log ......log ,n n b a a a =+++3log log ......log ,n n b a a a =+++求数列1{}nb 的前n 项和. 【思路点拨】第(Ⅰ)问可由12231a a +=,23269a a a =联立方程组求得1a 和公比q ,从而求得n a 的通项公式.第(Ⅱ)问中,需先利用对数的性质化简n b ,再用裂项相消的方法求数列1{}nb 的前n 项和. 【精讲精析】(Ⅰ)设数列{}n a 的公比为q ,由23269a a a =得23a 32349a a =所以219q =.由条件可知0n a >,故13q =.由12231a a +=得11231a a q +=,所以113a =.故数列{}n a 的通项公式为n a =1()3n.(Ⅱ )31323n log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-.故12112()(1)1n b n n n n =-=--++,.所以数列1{}nb 的前n 项和为21n n -+. 8.(2011·福建)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上一个动点,求它到直线l 的距离的最小值.解:(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标系,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.(2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α)从而点Q 到直线l 的距离为:d =|3cos α-sin α+4|2=2cos ⎝ ⎛⎭⎪⎫α+π6+42=2cos ⎝ ⎛⎭⎪⎫α+π6+22, 由此得,当cos ⎝ ⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2. 9.已知曲线C 的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎪⎫θ-π4+6=0,求: (1)曲线C 的普通方程;(2)设点P (x ,y )是曲线C 上任意一点,求xy 的最大值和最小值.解:(1)原方程可化为ρ2-42ρ⎣⎢⎡⎦⎥⎤cos θ·cos π4+sin θ·sin π4+6=0,即ρ2-4ρcos θ-4ρsin θ+6=0.∵⎩⎪⎨⎪⎧ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,∴x 2+y 2-4x -4y +6=0,即(x -2)2+(y -2)2=2,此方程即为所求普通方程.(2)设x -22=cos θ,y -22=sin θ,则xy =(2+2cos θ)(2+2sin θ)=4+22(cos θ+sin θ)+2cos θsin θ.设t =cos θ+sin θ,则t =2sin ⎝ ⎛⎭⎪⎫θ+π4,∴t ∈[-2,2],t 2=1+2cos θsin θ,从而2cos θsin θ=t 2-1.∴xy =3+22t +t 2.当t =-2时,xy 取得最小值1;当t =2时,xy 取得最大值9.10.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.圆O 的参数方程为⎩⎨⎧x =-22+r cos θy =-22+r sin θ(θ为参数,r >0).(1)求圆心的极坐标;(2)当r 为何值时,圆O 上的点到直线l 的最大距离为3?解:(1)圆心坐标为⎝⎛⎭⎪⎫-22,-22,设圆心的极坐标为(ρ,θ), 则ρ=⎝⎛⎭⎪⎫-222+⎝ ⎛⎭⎪⎫-222=1,所以圆心的极坐标为⎝ ⎛⎭⎪⎫1,54π.(2)直线l 的极坐标方程为ρ⎝ ⎛⎭⎪⎫22sin θ+22cos θ=22,∴直线l 的普通方程为x +y -1=0, ∴圆上的点到直线l 的距离d =⎪⎪⎪⎪⎪⎪-22+r cos θ-22+r sin θ-12,即d =⎪⎪⎪⎪⎪⎪-2+2r sin ⎝ ⎛⎭⎪⎫θ+π4-12.∴圆上的点到直线l 的最大距离为2+2r +12=3,∴r =4-22.11.(2011·哈师大附中、东北师大附中、辽宁省实验中学第一次联考)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos αy =1+t sin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ.(1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标; (2)若直线l 与曲线C 的相交弦长为23,求直线l 的参数方程. 解:(1)直线l 的普通方程为y -1=-1(x +1),即y =-x , ① 曲线C 的直角坐标方程为x 2+y 2-4x =0. ② ①代入②得:2x 2-4x =0,解得x =0或x =2.∴A (0,0),B (2,-2),极坐标为A (0,0),B ⎝⎛⎭⎪⎫22,7π4. (2)由题意可得圆心C (2,0)到相交弦的距离为22-(3)2=1,设直线l 的斜率为k ,则l 的方程为y -1=k (x +1),则y =kx +k +1,∴|2k +k +1|k 2+1=1,∴k =0或k =-34.∴l :⎩⎪⎨⎪⎧x =-1+ty =1(t 为参数)或⎩⎪⎨⎪⎧x =-1-45t y =1+35t(t 为参数).12.已知A 、B 是椭圆x 29+y 24=1与x 轴、y 轴的正半轴的两交点,在第一象限的椭圆弧上求一点P ,使四边形OAPB 的面积最大.解:设点P 的坐标为(3cos θ,2sin θ),其中0<θ<π2,∵S四边形AOBP=S △APB +S △AOB ,其中S △AOB 为定值,故只需S △APB最大即可.因为AB 为定长,故只需点P 到AB 的距离最大即可.AB 的方程为2x +3y -6=0,点P 到AB 的距离为d =|6cos θ+6sin θ-6|13=613·⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫θ+π4-1,∴θ=π4时,d 取最大值,从而S △APB 取最大值,这时点P 的坐标为⎝ ⎛⎭⎪⎫322,2. 13.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θy =2sin θ(θ为参数),P 是圆与y 轴的交点,若以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆的切线的极坐标方程.解:依题意,圆C :⎩⎪⎨⎪⎧x =1+2cos θy =2sin θ是以(1,0)为圆心,2为半径的圆,与y 轴交于(0,±3),如图所示.设R 是切线上一点,∵PR 为圆C 的切线,∴△CPR 为直角三角形,∴CR ·cos ∠RCP =CP ,又∠PCO =π3,∴极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-2π3=2;若取圆与y 轴负轴交点,则极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+2π3=2.14.(2011·辽宁)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧ x =cos φy =sin φ(φ为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ,(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 1是什么曲线,并求出a 与b 的值; (2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2B 1的面积.解:(1)C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(2)C 1,C 2的普通方程分别为x 2+y 2=1和x29+y 2=1,当α=π4时,射线l 与C 1交点A 1的横坐标为x =22,与C 2交点B 1的横坐标为x ′=31010.当α=-π4时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为(2x ′+2x )(x ′-x )2=25.15.(2011·课标)在直线坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数) M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. 解:(1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2,由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y 2=2+2sin α.即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数) (2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.。